1
|
Li L, Zeng Y, Cheng G, Yang H. Acetylation and deacetylation dynamics in stress response to cancer and infections. Semin Immunol 2025; 78:101957. [PMID: 40288003 DOI: 10.1016/j.smim.2025.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In response to stress stimuli, cells have evolved various mechanisms to integrate internal and external signals to achieve dynamic homeostasis. Lysine acetyltransferase (KATs) and deacetyltransferase (KDACs) are the key modulators of epigenetic modifications, enabling cells to modulate cellular responses through the acetylation and deacetylation of both histone and nonhistone proteins. Understanding the signaling pathways involved in cellular stress response, along with the roles of KATs and KDACs may pave the way for the development of novel therapeutic strategies. This review discusses the molecular mechanisms of acetylation and deacetylation in stress responses related to tumorigenesis, viral and bacterial infections. In tumorigenesis section, we focused on the tumor cells' intrinsic and external molecules and signaling pathways regulated by acetylation and deacetylation modification. In viral and bacterial infections, we summarized the update research on acetylation and deacetylation modification in viral and bacterial infections, which systematical introduction on this topic is not too much. Additionally, we provide an overview of current therapeutic interventions and clinical trials involving KAT and KDAC inhibitors in the treatment of cancer, as well as viral and bacterial infection-related diseases.
Collapse
Affiliation(s)
- Lili Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yanqiong Zeng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Genhong Cheng
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Tan K, Wang J, Su X, Zheng Y, Li W. KAT6A/YAP/TEAD4 pathway modulates osteoclastogenesis by regulating the RANKL/OPG ratio on the compression side during orthodontic tooth movement. Prog Orthod 2024; 25:29. [PMID: 39129034 PMCID: PMC11317454 DOI: 10.1186/s40510-024-00530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Orthodontic tooth movement (OTM) is a dynamic equilibrium of bone remodeling, involving the osteogenesis of new bone and the osteoclastogenesis of old bone, which is mediated by mechanical force. Periodontal ligament stem cells (PDLCSs) in the periodontal ligament (PDL) space can transmit mechanical signals and regulate osteoclastogenesis during OTM. KAT6A is a histone acetyltransferase that plays a part in the differentiation of stem cells. However, whether KAT6A is involved in the regulation of osteoclastogenesis by PDLSCs remains unclear. RESULTS In this study, we used the force-induced OTM model and observed that KAT6A was increased on the compression side of PDL during OTM, and also increased in PDLSCs under compression force in vitro. Repression of KAT6A by WM1119, a KAT6A inhibitor, markedly decreased the distance of OTM. Knockdown of KAT6A in PDLSCs decreased the RANKL/OPG ratio and osteoclastogenesis of THP-1. Mechanistically, KAT6A promoted osteoclastogenesis by binding and acetylating YAP, simultaneously regulating the YAP/TEAD axis and increasing the RANKL/OPG ratio in PDLSCs. TED-347, a YAP-TEAD4 interaction inhibitor, partly attenuated the elevation of the RANKL/OPG ratio induced by mechanical force. CONCLUSION Our study showed that the PDLSCs modulated osteoclastogenesis and increased the RANKL/OPG ratio under mechanical force through the KAT6A/YAP/TEAD4 pathway. KAT6A might be a novel target to accelerate OTM.
Collapse
Affiliation(s)
- Kuang Tan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Jiayi Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Xinyu Su
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR China.
| |
Collapse
|
3
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 inhibition represses melanoma cell growth and BRAF inhibitor resistance via upregulating SPARC expression. NAR Cancer 2024; 6:zcae018. [PMID: 38650694 PMCID: PMC11034028 DOI: 10.1093/narcan/zcae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), a conserved secreted glycoprotein, plays crucial roles in regulating various biological processes. SPARC is highly expressed and has profound implications in several cancer types, including melanoma. Understanding the mechanisms that govern SPARC expression in cancers has the potential to lead to improved cancer diagnosis, prognosis, treatment strategies, and patient outcomes. Here, we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression in melanoma cells. Depletion or inhibition of HDAC10 upregulates SPARC expression, whereas overexpression of HDAC10 downregulates it. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the state of acetylation of histone H3 at lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby fine-tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth primarily by activating AMPK signaling and inducing autophagy. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitization of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through indirect histone modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC.
Collapse
Affiliation(s)
- Hongbo Ling
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Yixuan Li
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Changmin Peng
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State Cancer Institute, The Penn State University, 400 University Drive, Hershey, PA 17033, USA
| | - Edward Seto
- George Washington Cancer Center, Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
4
|
He S, Li Y, Wang L, Li Y, Xu L, Cai D, Zhou J, Yu L. DNA methylation landscape reveals GNAS as a decitabine-responsive marker in patients with acute myeloid leukemia. Neoplasia 2024; 49:100965. [PMID: 38245923 PMCID: PMC10830847 DOI: 10.1016/j.neo.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND The demethylation agent decitabine (DAC) is a pivotal non-intensive alternative treatment for acute myeloid leukemia (AML). However, patient responses to DAC are highly variable, and predictive biomarkers are warranted. Herein, the DNA methylation landscape of patients treated with a DAC-based combination regimen was compared with that of patients treated with standard chemotherapy to develop a molecular approach for predicting clinical response to DAC. METHODS Twenty-five non-M3 AML patients were enrolled and subjected to DNA methylation sequencing and profiling to identify differentially methylated regions (DMRs) and genes of interest. Moreover, the effects of a DAC-based regimen on apoptosis and gene expression were explored using Kasumi-1 and K562 cells. RESULTS Overall, we identified 541 DMRs that were specifically responsive to DAC, among which 172 DMRs showed hypomethylation patterns upon treatment and were aligned with the promoter regions of 182 genes. In particular, GNAS was identified as a critical DAC-responsive gene, with in vitro GNAS downregulation leading to reduced cell apoptosis induced by DAC and cytarabine combo treatment. CONCLUSIONS We found that GNAS is a DAC-sensitive gene in AML and may serve as a prognostic biomarker to assess the responsiveness of patients with AML to DAC-based therapy.
Collapse
Affiliation(s)
- Shujiao He
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Yan Li
- Department of Hematology, Peking Third Hospital, 49 North Garden Road, Beijing 100191, China; Department of Haematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lei Wang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, 155 Hong Tian Rd, Baoan District, Shenzhen 518125, China; Shenzhen University-Haoshi Cell Therapy Institute, 155 Hong Tian Rd, Baoan District, Shenzhen 518125, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Diya Cai
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China
| | - Jingfeng Zhou
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China.
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan Ave 1098, Nanshan District, Shenzhen 518000, China.
| |
Collapse
|
5
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 blockade upregulates SPARC expression thereby repressing melanoma cell growth and BRAF inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570182. [PMID: 38106051 PMCID: PMC10723323 DOI: 10.1101/2023.12.05.570182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC), a highly conserved secreted glycoprotein, is crucial for various bioprocesses. Here we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression. HDAC10 depletion or inhibition upregulates, while overexpression of HDAC10 downregulates, SPARC expression. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the acetylation state of histone H3 lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth, primarily by induction of autophagy via activation of AMPK signaling. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitivity of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through epigenetic modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC. Highlights HDAC10 is the primary HDAC member that tightly controls SPARC expression. HDAC10 coordinates with p300 in modulating the H3K27ac state at SPARC regulatory elements and the recruitment of BRD4 to these regions. HDAC10 depletion and resultant SPARC upregulation inhibit melanoma cell growth by inducing autophagy via activation of AMPK signaling.SPARC upregulation as a result of HDAC10 depletion resensitizes resistant cells to BRAF inhibitors.
Collapse
|
6
|
Abdel-Aziz AK, Dokla EME, Saadeldin MK. FLT3 inhibitors and novel therapeutic strategies to reverse AML resistance: An updated comprehensive review. Crit Rev Oncol Hematol 2023; 191:104139. [PMID: 37717880 DOI: 10.1016/j.critrevonc.2023.104139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mona Kamal Saadeldin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Leahy Drive, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Bozdemir N, Uysal F. Histone acetyltransferases and histone deacetyl transferases play crucial role during oogenesis and early embryo development. Genesis 2023; 61:e23518. [PMID: 37226850 DOI: 10.1002/dvg.23518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Chao F, Zhang Y, Lv L, Wei Y, Dou X, Chang N, Yi Q, Li M. Extracellular Vesicles Derived circSH3PXD2A Inhibits Chemoresistance of Small Cell Lung Cancer by miR-375-3p/YAP1. Int J Nanomedicine 2023; 18:2989-3006. [PMID: 37304971 PMCID: PMC10256819 DOI: 10.2147/ijn.s407116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Small cell lung cancer (SCLC) is a subtype of lung cancer with high malignancy and poor prognosis. Rapid acquisition of chemoresistance is one of the main reasons leading to clinical treatment failure of SCLC. Studies have indicated that circRNAs participate in multiple processes of tumor progression, including chemoresistance. However, the molecular mechanisms of circRNAs driving the chemoresistance of SCLC are not well specified. Methods The differentially expressed circRNAs were screened by transcriptome sequencing of chemoresistant and chemosensitive SCLC cells. The EVs of SCLC cells were isolated and identified by ultracentrifugation, Western blotting, transmission electron microscopy, nanoparticle tracking analysis and EVs uptake assays. The expression levels of circSH3PXD2A in serum and EVs of SCLC patients and healthy individuals were detected by qRT‒PCR. The characteristics of circSH3PXD2A were detected by Sanger sequencing, RNase R assay, nuclear-cytoplasmic fraction assay, and fluorescence in situ hybridization assay. The mechanisms of circSH3PXD2A inhibiting SCLC progression were studied by bioinformatics analysis, chemoresistance assay, proliferation assay, apoptosis assay, transwell assay, pull-down assay, luciferase reporting assay, and mouse xenograft assay. Results It was identified that the circSH3PXD2A was a prominently downregulated circRNA in chemoresistant SCLC cells. The expression level of circSH3PXD2A in EVs of SCLC patients was negatively associated with chemoresistance, and the combination of EVs-derived circSH3PXD2A and serum ProGRP (Progastrin-releasing peptide) levels had better indications for DDP-resistant SCLC patients. CircSH3PXD2A inhibited the chemoresistance, proliferation, migration, and invasion of SCLC cells through miR-375-3p/YAP1 axis in vivo and in vitro. SCLC cells cocultured with EVs secreted by circSH3PXD2A-overexpressing cells exhibited decreased chemoresistance and cell proliferation. Conclusion Our results manifest that EVs-derived circSH3PXD2A inhibits the chemoresistance of SCLC through miR-375-3p/YAP1 axis. Moreover, EVs-derived circSH3PXD2A may serve as a predictive biomarker for DDP-resistant SCLC patients.
Collapse
Affiliation(s)
- Fengmei Chao
- Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Yang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, People's Republic of China
| | - Lei Lv
- Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Yaqin Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, People's Republic of China
| | - Xiaoyan Dou
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, People's Republic of China
| | - Na Chang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, People’s Republic of China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, People's Republic of China
| |
Collapse
|
9
|
Lagunas-Rangel FA. DNA damage accumulation and repair defects in FLT3-ITD acute myeloid leukemia: Implications for clonal evolution and disease progression. Hematol Oncol 2023; 41:26-38. [PMID: 36131612 PMCID: PMC10087755 DOI: 10.1002/hon.3076] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 09/17/2022] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia is a group of hematological diseases that have a high mortality rate. During the development of this pathology, hematopoietic cells acquire chromosomal rearrangements and multiple genetic mutations, including FLT3-ITD. FLT3-ITD is a marker associated with a poor clinical prognosis and involves the activation of pathways such as PI3K/AKT, MAPK/ERK, and JAK/STAT that favor the survival and proliferation of leukemic cells. In addition, FLT3-ITD leads to overproduction of reactive oxygen species and defective DNA damage repair, both implicated in the appearance of new mutations and leukemic clones. Thus, the purpose of this review is to illustrate the molecular mechanisms through which FLT3-ITD generates genetic instability and how it facilitates clonal evolution with the generation of more resistant and aggressive cells. Likewise, this article discusses the feasibility of combined therapies with FLT3 inhibitors and inhibitors of DNA repair pathways.
Collapse
|