1
|
Gu J, Liu F, Li L, Mao J. Advances and Challenges in Modeling Autosomal Dominant Polycystic Kidney Disease: A Focus on Kidney Organoids. Biomedicines 2025; 13:523. [PMID: 40002937 PMCID: PMC11852630 DOI: 10.3390/biomedicines13020523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent hereditary disorder characterized by distinct phenotypic variability that has posed challenges for advancing in-depth research. Recent advancements in kidney organoid construction technologies have enabled researchers to simulate kidney development and create simplified in vitro experimental environments, allowing for more direct observation of how genetic mutations drive pathological phenotypes and disrupt physiological functions. Emerging technologies, such as microfluidic bioreactor culture systems and single-cell transcriptomics, have further supported the development of complex ADPKD organoids, offering robust models for exploring disease mechanisms and facilitating drug discovery. Nevertheless, significant challenges remain in constructing more accurate ADPKD disease models. This review will summarize recent advances in ADPKD organoid construction, focusing on the limitations of the current techniques and the critical issues that need to be addressed for future breakthroughs. New and Noteworthy: This review presents recent advancements in ADPKD organoid construction, particularly iPSC-derived models, offering new insights into disease mechanisms and drug discovery. It focuses on challenges such as limited vascularization and maturity, proposing potential solutions through emerging technologies. The ongoing optimization of ADPKD organoid models is expected to enhance understanding of the disease and drive breakthroughs in disease mechanisms and targeted therapy development.
Collapse
Affiliation(s)
| | | | | | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310058, China; (J.G.); (F.L.); (L.L.)
| |
Collapse
|
2
|
Chang Y, Lan F, Zhang Y, Ma S. Crispr-Based Editing of Human Pluripotent Stem Cells for Disease Modeling. Stem Cell Rev Rep 2024; 20:1151-1161. [PMID: 38564139 DOI: 10.1007/s12015-024-10713-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The CRISPR system, as an effective genome editing technology, has been extensively utilized for the construction of disease models in human pluripotent stem cells. Establishment of a gene mutant or knockout stem cell line typically relies on Cas nuclease-generated double-stranded DNA breaks and exogenous templates, which can produce uncontrollable editing byproducts and toxicity. The recently developed adenine base editors (ABE) have greatly facilitated related research by introducing A/T > G/C mutations in the coding regions or splitting sites (AG-GT) of genes, enabling mutant gene knock-in or knock-out without introducing DNA breaks. In this study, we edit the AG bases in exons anterior to achieve gene knockout via the ABE8e-SpRY, which recognizes most expanded protospacer adjacent motif to target the genome. Except for gene-knockout, ABE8e-SpRY can also efficiently establish disease-related A/T-to-G/C variation cell lines by targeting coding sequences. The method we generated is simple and time-saving, and it only takes two weeks to obtain the desired cell line. This protocol provides operating instructions step-by-step for constructing knockout and point mutation cell lines.
Collapse
Affiliation(s)
- Yun Chang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yongshuai Zhang
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China.
| | - Shuhong Ma
- Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, 100037, China
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
3
|
Chen Q, Sun X, Li Y, Yang X, Yang X, Xu H, Cai H, Hu J. The potential of organoids in renal cell carcinoma research. BMC Urol 2024; 24:120. [PMID: 38858665 PMCID: PMC11165752 DOI: 10.1186/s12894-024-01511-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
Renal cell carcinoma, a leading cause of death in urological malignancies, arises from the nephron. Its characteristics include diversity in disease biology, varied clinical behaviors, different prognoses, and diverse responses to systemic therapies. The term 'organoids' is used to describe structures resembling tissues created through the three-dimensional cultivation of stem cells in vitro. These organoids, when derived from tumor tissues, can retain the diversity of the primary tumor, mirror its spatial tissue structure, and replicate similar organ-like functions. In contrast to conventional two-dimensional cell cultures and the transplantation of tumor tissues into other organisms, organoids derived from tumors maintain the complexity and microenvironment of the original tumor tissue. This fidelity makes them a more reliable model for the development of cancer drugs, potentially accelerating the translation of these drugs to clinical use and facilitating personalized treatment options for patients. This review aims to summarize the recent advancements in the use of organoids for studying renal cell carcinoma, focusing on their cultivation, potential applications, and inherent limitations.
Collapse
Affiliation(s)
- Qiuyang Chen
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Sun
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yubei Li
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyue Yang
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejian Yang
- Department of Urology, Suqian First Hospital, Suqian, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Jun Hu
- Department of Nursing, Jiangsu Cancer Hospital & The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
4
|
Liu M, Zhang C, Gong X, Zhang T, Lian MM, Chew EGY, Cardilla A, Suzuki K, Wang H, Yuan Y, Li Y, Naik MY, Wang Y, Zhou B, Soon WZ, Aizawa E, Li P, Low JH, Tandiono M, Montagud E, Moya-Rull D, Rodriguez Esteban C, Luque Y, Fang M, Khor CC, Montserrat N, Campistol JM, Izpisua Belmonte JC, Foo JN, Xia Y. Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo. Cell Stem Cell 2024; 31:52-70.e8. [PMID: 38181751 DOI: 10.1016/j.stem.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/15/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Human pluripotent stem cell-derived kidney organoids offer unprecedented opportunities for studying polycystic kidney disease (PKD), which still has no effective cure. Here, we developed both in vitro and in vivo organoid models of PKD that manifested tubular injury and aberrant upregulation of renin-angiotensin aldosterone system. Single-cell analysis revealed that a myriad of metabolic changes occurred during cystogenesis, including defective autophagy. Experimental activation of autophagy via ATG5 overexpression or primary cilia ablation significantly inhibited cystogenesis in PKD kidney organoids. Employing the organoid xenograft model of PKD, which spontaneously developed tubular cysts, we demonstrate that minoxidil, a potent autophagy activator and an FDA-approved drug, effectively attenuated cyst formation in vivo. This in vivo organoid model of PKD will enhance our capability to discover novel disease mechanisms and validate candidate drugs for clinical translation.
Collapse
Affiliation(s)
- Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Chao Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Ximing Gong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Tian Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Michelle Mulan Lian
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore
| | - Elaine Guo Yan Chew
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore
| | - Angelysia Cardilla
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Keiichiro Suzuki
- Institute for Advanced Co-Creation Studies, Osaka University, Toyonaka 560-8531, Osaka, Japan; Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan; Graduate School of Frontier Bioscience, Osaka University, Suita 560-8531, Osaka, Japan
| | - Huamin Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yuan Yuan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Institute of Special Environmental Medicine, Nantong University, Nantong 226019, Jiangsu, China
| | - Yan Li
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Mihir Yogesh Naik
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yixuan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Bingrui Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Wei Ze Soon
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Emi Aizawa
- Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Osaka, Japan
| | - Pin Li
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Jian Hui Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Moses Tandiono
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore
| | - Enrique Montagud
- Hospital Clinic of Barcelona, Career Villarroel, 170, 08036 Barcelona, Spain
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - Yosu Luque
- Hospital Clinic of Barcelona, Career Villarroel, 170, 08036 Barcelona, Spain
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore; Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Eye Research Institute, 20 College Road Discovery Tower, Level 6 The Academia, Singapore 169856, Singapore
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration (PR Lab), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Josep M Campistol
- Hospital Clinic of Barcelona, Career Villarroel, 170, 08036 Barcelona, Spain
| | | | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, A∗STAR, Singapore 138672, Singapore.
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| |
Collapse
|
5
|
Nauryzgaliyeva Z, Goux Corredera I, Garreta E, Montserrat N. Harnessing mechanobiology for kidney organoid research. Front Cell Dev Biol 2023; 11:1273923. [PMID: 38077999 PMCID: PMC10704179 DOI: 10.3389/fcell.2023.1273923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 10/16/2024] Open
Abstract
Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.
Collapse
Affiliation(s)
- Zarina Nauryzgaliyeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
6
|
Liang J, Liu Y. Animal Models of Kidney Disease: Challenges and Perspectives. KIDNEY360 2023; 4:1479-1493. [PMID: 37526653 PMCID: PMC10617803 DOI: 10.34067/kid.0000000000000227] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Kidney disease is highly prevalent and affects approximately 850 million people worldwide. It is also associated with high morbidity and mortality, and current therapies are incurable and often ineffective. Animal models are indispensable for understanding the pathophysiology of various kidney diseases and for preclinically testing novel remedies. In the last two decades, rodents continue to be the most used models for imitating human kidney diseases, largely because of the increasing availability of many unique genetically modified mice. Despite many limitations and pitfalls, animal models play an essential and irreplaceable role in gaining novel insights into the mechanisms, pathologies, and therapeutic targets of kidney disease. In this review, we highlight commonly used animal models of kidney diseases by focusing on experimental AKI, CKD, and diabetic kidney disease. We briefly summarize the pathological characteristics, advantages, and drawbacks of some widely used models. Emerging animal models such as mini pig, salamander, zebrafish, and drosophila, as well as human-derived kidney organoids and kidney-on-a-chip are also discussed. Undoubtedly, careful selection and utilization of appropriate animal models is of vital importance in deciphering the mechanisms underlying nephropathies and evaluating the efficacy of new treatment options. Such studies will provide a solid foundation for future diagnosis, prevention, and treatment of human kidney diseases.
Collapse
Affiliation(s)
- Jianqing Liang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
7
|
Dilz J, Auge I, Groeneveld K, Reuter S, Mrowka R. A proof-of-concept assay for quantitative and optical assessment of drug-induced toxicity in renal organoids. Sci Rep 2023; 13:6167. [PMID: 37061575 PMCID: PMC10105743 DOI: 10.1038/s41598-023-33110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/07/2023] [Indexed: 04/17/2023] Open
Abstract
Kidneys are complex organs, and reproducing their function and physiology in a laboratory setting remains difficult. During drug development, potential compounds may exhibit unexpected nephrotoxic effects, which imposes a significant financial burden on pharmaceutical companies. As a result, there is an ongoing need for more accurate model systems. The use of renal organoids to simulate responses to nephrotoxic insults has the potential to bridge the gap between preclinical drug efficacy studies in cell cultures and animal models, and the stages of clinical trials in humans. Here we established an accessible fluorescent whole-mount approach for nuclear and membrane staining to first provide an overview of the organoid histology. Furthermore, we investigated the potential of renal organoids to model responses to drug toxicity. For this purpose, organoids were treated with the chemotherapeutic agent doxorubicin for 48 h. When cell viability was assessed biochemically, the organoids demonstrated a significant, dose-dependent decline in response to the treatment. Confocal microscopy revealed visible tubular disintegration and a loss of cellular boundaries at high drug concentrations. This observation was further reinforced by a dose-dependent decrease of the nuclear area in the analyzed images. In contrast to other approaches, in this study, we provide a straightforward experimental framework for drug toxicity assessment in renal organoids that may be used in early research stages to assist screen for potential adverse effects of compounds.
Collapse
Affiliation(s)
- Jasmin Dilz
- Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany.
| | - Isabel Auge
- Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany
| | - Kathrin Groeneveld
- Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany
| | - Stefanie Reuter
- ThIMEDOP, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany
| | - Ralf Mrowka
- Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany.
- ThIMEDOP, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany.
| |
Collapse
|
8
|
Corridon PR. Still finding ways to augment the existing management of acute and chronic kidney diseases with targeted gene and cell therapies: Opportunities and hurdles. Front Med (Lausanne) 2023; 10:1143028. [PMID: 36960337 PMCID: PMC10028138 DOI: 10.3389/fmed.2023.1143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The rising global incidence of acute and chronic kidney diseases has increased the demand for renal replacement therapy. This issue, compounded with the limited availability of viable kidneys for transplantation, has propelled the search for alternative strategies to address the growing health and economic burdens associated with these conditions. In the search for such alternatives, significant efforts have been devised to augment the current and primarily supportive management of renal injury with novel regenerative strategies. For example, gene- and cell-based approaches that utilize recombinant peptides/proteins, gene, cell, organoid, and RNAi technologies have shown promising outcomes primarily in experimental models. Supporting research has also been conducted to improve our understanding of the critical aspects that facilitate the development of efficient gene- and cell-based techniques that the complex structure of the kidney has traditionally limited. This manuscript is intended to communicate efforts that have driven the development of such therapies by identifying the vectors and delivery routes needed to drive exogenous transgene incorporation that may support the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Peter R. Corridon,
| |
Collapse
|
9
|
Ozcelik A, Abas BI, Erdogan O, Cevik E, Cevik O. On-Chip Organoid Formation to Study CXCR4/CXCL-12 Chemokine Microenvironment Responses for Renal Cancer Drug Testing. BIOSENSORS 2022; 12:1177. [PMID: 36551144 PMCID: PMC9775535 DOI: 10.3390/bios12121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Organoid models have gained importance in recent years in determining the toxic effects of drugs in cancer studies. Organoid designs with the same standardized size and cellular structures are desired for drug tests. The field of microfluidics offers numerous advantages to enable well-controlled and contamination-free biomedical research. In this study, simple and low-cost microfluidic devices were designed and fabricated to develop an organoid model for drug testing for renal cancers. Caki human renal cancer cells and mesenchymal stem cells isolated from human umbilical cord were placed into alginate hydrogels. The microfluidic system was implemented to form size-controllable organoids within alginate hydrogels. Alginate capsules of uniform sizes formed in the microfluidic system were kept in cell culture for 21 days, and their organoid development was studied with calcein staining. Cisplatin was used as a standard chemotherapeutic, and organoid sphere structures were examined as a function of time with an MTT assay. HIF-1α, CXCR4 and CXCL-12 chemokine protein, and CXCR4 and CXCL-12 gene levels were tested in organoids and cisplatin responses. In conclusion, it was found that the standard renal cancer organoids made on a lab-on-a-chip system can be used to measure drug effects and tumor microenvironment responses.
Collapse
Affiliation(s)
- Adem Ozcelik
- Department of Mechanical Engineering, Aydın Adnan Menderes University, Aydin 09010, Turkey
| | - Burcin Irem Abas
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Omer Erdogan
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Evrim Cevik
- Department of Machinery and Metal Technologies, Kocarli Vocational School, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Ozge Cevik
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
10
|
Yuan Y, Chen H, Ou S, Cai B, Zhang R, Qin Y, Pan M, Cao S, Pei D, Hou FF. Generation of mitochondria-rich kidney organoids from expandable intermediate mesoderm progenitors reprogrammed from human urine cells under defined medium. Cell Biosci 2022; 12:174. [PMID: 36243732 PMCID: PMC9569036 DOI: 10.1186/s13578-022-00909-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The kidneys require vast amounts of mitochondria to provide ample energy to reabsorb nutrients and regulate electrolyte, fluid, and blood pressure homeostasis. The lack of the human model hinders the investigation of mitochondria homeostasis related to kidney physiology and disease. RESULTS Here, we report the generation of mitochondria-rich kidney organoids via partial reprogramming of human urine cells (hUCs) under the defined medium. First, we reprogrammed mitochondria-rich hUCs into expandable intermediate mesoderm progenitor like cells (U-iIMPLCs), which in turn generated nephron progenitors and formed kidney organoids in both 2D and 3D cultures. Cell fate transitions were confirmed at each stage by marker expressions at the RNA and protein levels, along with chromatin accessibility dynamics. Single cell RNA-seq revealed hUCs-induced kidney organoids (U-iKOs) consist of podocytes, tubules, and mesenchyme cells with 2D dominated with mesenchyme and 3D with tubule and enriched specific mitochondria function associated genes. Specific cell types, such as podocytes and proximal tubules, loop of Henle, and distal tubules, were readily identified. Consistent with these cell types, 3D organoids exhibited the functional and structural features of the kidney, as indicated by dextran uptake and transmission electron microscopy. These organoids can be further matured in the chick chorioallantoic membrane. Finally, cisplatin, gentamicin, and forskolin treatment led to anatomical abnormalities typical of kidney injury and altered mitochondria homeostasis respectively. CONCLUSIONS Our study demonstrates that U-iKOs recapitulate the structural and functional characteristics of the kidneys, providing a promising model to study mitochondria-related kidney physiology and disease in a personalized manner.
Collapse
Affiliation(s)
- Yapei Yuan
- grid.416466.70000 0004 1757 959XDivision of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangdong Provincial Institute of Nephrology, Guangzhou, 510515 China
| | - Huan Chen
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Sihua Ou
- grid.410737.60000 0000 8653 1072Joint School of Life Science, Guangzhou Institutes of Biomedicine and Health, Chinese Academic and Sciences, Guangzhou Medical University, Guangzhou, 511436 China
| | - Baomei Cai
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Ruifang Zhang
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Yue Qin
- grid.428926.30000 0004 1798 2725CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Mengjie Pan
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Shangtao Cao
- grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| | - Duanqing Pei
- grid.494629.40000 0004 8008 9315Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024 China
| | - Fan Fan Hou
- grid.416466.70000 0004 1757 959XDivision of Nephrology, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangdong Provincial Institute of Nephrology, Guangzhou, 510515 China ,grid.508040.90000 0004 9415 435XBioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005 China
| |
Collapse
|