1
|
Qiu L, Liu Y, Yang Z, Zhao X, Gong Y, Jiao S. Clinical Significance and Immune Infiltration Analyses of a Novel Nerve-Related lncRNA Signature in Gastric Cancer. Mol Biotechnol 2025; 67:209-225. [PMID: 38145446 DOI: 10.1007/s12033-023-00997-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023]
Abstract
Gastric cancer (GC) is a progressive disease with high morbidity and mortality. Accumulating evidence indicated that nervous system-cancer crosstalk can affect the occurrence and progression of GC. However, the role of nerve-related lncRNAs (NRLs) in GC remains largely unexplored. In this study, a total of 441 nerve-related genes were collected from the KEGG database, and two approaches, unsupervised clustering and WGCNA, were employed to identify NRLs. Lasso regression analysis was then used to construct the nerve-related lncRNA signature (NRLS). Based on the expression profiles of 5 lncRNAs, we developed a stable NRLS to predict survival in GC patients, and survival analyses showed significantly shorter overall survival (OS) in patients with high NRLS. In addition, the NRLS was found to be positively correlated with immune characteristics, including tumor-infiltrating immune cells, immune modulators, cytokines and chemokines. We then analyzed the role of NRLS in predicting chemotherapy and immunotherapy responses, and constructed the OS nomogram combining NRLS and other clinical features. In conclusion, we constructed a robust NRLS model to stratify GC patients and predict the outcomes of chemotherapy and immunotherapy. This study can provide a new perspective for future individualized treatment of GC.
Collapse
Affiliation(s)
- Lupeng Qiu
- Medical School of Chinese PLA, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Medical Oncology, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., No.86 Shuangying West Road, Changping District, Beijing, 102299, China
| | - Yaru Liu
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., No.86 Shuangying West Road, Changping District, Beijing, 102299, China
| | - Zizhong Yang
- Department of Medical Oncology, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiao Zhao
- Department of Medical Oncology, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yixin Gong
- Research and Development Department, Beijing DCTY Biotech Co., Ltd., No.86 Shuangying West Road, Changping District, Beijing, 102299, China.
| | - Shunchang Jiao
- Department of Medical Oncology, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
2
|
Li W, Ding F, Zhang J. Development of an immunogenic cell death-related lncRNAs signature for prognostic risk assessment in gastric cancer. Transl Cancer Res 2024; 13:4420-4440. [PMID: 39262480 PMCID: PMC11385251 DOI: 10.21037/tcr-24-344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 09/13/2024]
Abstract
Background Immunogenic cell death (ICD) is a functionally specialized form of apoptosis induced by endoplasmic reticulum (ER) stress and is associated with a variety of cancers, including gastric cancer (GC). In recent years, long non-coding RNAs (lncRNAs) have been shown to be important mediators in the regulation of ICD. However, the specific role and prognostic value of ICD-related lncRNAs in GC remain unclear. This study aims to develop an ICD-related lncRNAs signature for prognostic risk assessment in GC. Methods The ICD-related lncRNAs signature (ICDlncSig) of GC was constructed by univariate Cox regression analysis, least absolute shrinkage, and selection operator (LASSO) regression model and multivariate Cox regression analysis, and the signature was correlated with immune infiltration. The potential response of GC patients to immunotherapy was predicted by the tumor immune dysfunction and rejection (TIDE) algorithm. In vitro functional experiments were conducted to assess the impact of lncRNAs on the proliferation, migration, and invasion capabilities of GC cells. Results We constructed a novel ICDlncSig and found that this signature could be used as a prognostic risk model to predict survival of GC patients by validating it in the training cohort, testing cohort and entire cohort. The robust predictive power of the signature was demonstrated by building a Nomogram based on ICDlncSig scores and clinical characteristics. Furthermore, immune cell subpopulations, expression of immune checkpoint genes, and response to chemotherapy and immunotherapy differed significantly between the high- and low-risk groups. The in vitro functional experiments revealed that AP002954.1 and AP000695.1 can promote the proliferation, migration, and invasion of GC cells. Conclusions In conclusion, our ICDlncSig model has significant predictive value for the prognosis of GC patients and may provide clinical guidance for individualized immunotherapy.
Collapse
Affiliation(s)
- Wen Li
- Department of Immunology, Nantong University School of Medicine, Nantong, China
| | - Fan Ding
- Department of Medical Administration, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Jie Zhang
- Department of Immunology, Nantong University School of Medicine, Nantong, China
| |
Collapse
|
3
|
Chen Q, Zhou Q. Identification of exosome-related gene signature as a promising diagnostic and therapeutic tool for breast cancer. Heliyon 2024; 10:e29551. [PMID: 38665551 PMCID: PMC11043961 DOI: 10.1016/j.heliyon.2024.e29551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background Exosomes are promising tools for the development of new diagnostic and therapeutic approaches. Exosomes possess the ability to activate signaling pathways that contribute to the remodeling of the tumor microenvironment, angiogenesis, and the regulation of immune responses. We aimed to develop a prognostic score based on exosomes derived from breast cancer. Materials and methods Training was conducted on the TCGA-BRCA dataset, while validation was conducted on GSE20685, GSE5764, GSE7904, and GSE29431. A total of 121 genes related to exosomes were retrieved from the ExoBCD database. The Cox proportional hazards model is used to develop risk score model. The GSVA package was utilized to analyze single-sample gene sets and identify exosome signatures, while the WGCNA package was utilized to identify gene modules associated with clinical outcomes. The clusterProfiler and GSVA R packages facilitated gene set enrichment and variation analyses. Furthermore, CIBERSORT quantified immune infiltration, and a correlation between gene expression and drug sensitivity was assessed using the TIDE algorithm. Results An exosome-related prognostic score was established using the following selected genes: ABCC9, PIGR, CXCL13, DOK7, CD24, and IVL. Various immune cells that promote cancer immune evasion were associated with a high-risk prognostic score, which was an independent predictor of outcome. High-risk and low-risk groups exhibited significantly different infiltration abundances (p < 0.05). By conducting a sensitivity comparison, we found that patients with high-risk scores exhibited more favorable responses to immunotherapy than those with low-risk scores. Conclusion The exosome-related gene signature exhibits outstanding performance in predicting the prognosis and cancer status of patients with breast cancer and guiding immunotherapy.
Collapse
Affiliation(s)
- Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, Hunan, China
| | - Qin Zhou
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Breast Disease in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
4
|
Zhang W, Yan Y, Peng J, Thakur A, Bai N, Yang K, Xu Z. Decoding Roles of Exosomal lncRNAs in Tumor-Immune Regulation and Therapeutic Potential. Cancers (Basel) 2022; 15:286. [PMID: 36612282 PMCID: PMC9818565 DOI: 10.3390/cancers15010286] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Exosomes are nanovesicles secreted into biofluids by various cell types and have been implicated in different physiological and pathological processes. Interestingly, a plethora of studies emphasized the mediating role of exosomes in the bidirectional communication between donor and recipient cells. Among the various cargoes of exosomes, long non-coding RNAs (lncRNAs) have been identified as crucial regulators between cancer cells and immune cells in the tumor microenvironment (TME) that can interfere with innate and adaptive immune responses to affect the therapeutic efficiency. Recently, a few major studies have focused on the exosomal lncRNA-mediated interaction between cancer cells and immune cells infiltrated into TME. Nevertheless, a dearth of studies pertains to the immune regulating role of exosomal lncRNAs in cancer and is still in the early stages. Comprehensive mechanisms of exosomal lncRNAs in tumor immunity are not well understood. Herein, we provide an overview of the immunomodulatory function of exosomal lncRNAs in cancer and treatment resistance. In addition, we also summarize the potential therapeutic strategies toward exosomal lncRNAs in TME.
Collapse
Affiliation(s)
- Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ning Bai
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Keda Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
5
|
Zhu K, Tao Q, Yan J, Lang Z, Li X, Li Y, Fan C, Yu Z. Machine learning identifies exosome features related to hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:1020415. [PMID: 36200042 PMCID: PMC9527306 DOI: 10.3389/fcell.2022.1020415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most malignant tumors with a poor prognosis. There is still a lack of effective biomarkers to predict its prognosis. Exosomes participate in intercellular communication and play an important role in the development and progression of cancers. Methods: In this study, two machine learning methods (univariate feature selection and random forest (RF) algorithm) were used to select 13 exosome-related genes (ERGs) and construct an ERG signature. Based on the ERG signature score and ERG signature-related pathway score, a novel RF signature was generated. The expression of BSG and SFN, members of 13 ERGs, was examined using real-time quantitative polymerase chain reaction and immunohistochemistry. Finally, the effects of the inhibition of BSG and SFN on cell proliferation were examined using the cell counting kit-8 (CCK-8) assays. Results: The ERG signature had a good predictive performance, and the ERG score was determined as an independent predictor of HCC overall survival. Our RF signature showed an excellent prognostic ability with the area under the curve (AUC) of 0.845 at 1 year, 0.811 at 2 years, and 0.801 at 3 years in TCGA, which was better than the ERG signature. Notably, the RF signature had a good performance in the prediction of HCC prognosis in patients with the high exosome score and high NK score. Enhanced BSG and SFN levels were found in HCC tissues compared with adjacent normal tissues. The inhibition of BSG and SFN suppressed cell proliferation in Huh7 cells. Conclusion: The RF signature can accurately predict prognosis of HCC patients and has potential clinical value.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiatao Yan
- Wenzhou Business College, Wenzhou, China
| | - Zhichao Lang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congcong Fan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhengping Yu,
| |
Collapse
|