1
|
Edwards NA, Rankin SA, Kashyap A, Warren A, Agricola ZN, Kenny AP, Kofron M, Shen Y, Chung WK, Zorn AM. Disrupted endosomal trafficking of the Vangl-Celsr polarity complex underlies congenital anomalies in Xenopus trachea-esophageal morphogenesis. Dev Cell 2025:S1534-5807(25)00286-2. [PMID: 40412385 DOI: 10.1016/j.devcel.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/18/2024] [Accepted: 04/29/2025] [Indexed: 05/27/2025]
Abstract
Disruptions in foregut morphogenesis can result in life-threatening conditions where the trachea and esophagus fail to separate, such as esophageal atresia (EA) and tracheoesophageal fistulas (TEFs). The developmental basis of these congenital anomalies is poorly understood, but recent genome sequencing reveals that de novo variants in intracellular trafficking genes are enriched in EA/TEF patients. Here, we confirm that mutation of orthologous genes in Xenopus disrupts trachea-esophageal separation similar to EA/TEF patients. The Rab11a recycling endosome pathway is required to localize Vangl-Celsr polarity complexes at the luminal cell surface where opposite sides of the foregut tube fuse. Partial loss of endosomal trafficking or Vangl-Celsr complexes disrupts epithelial polarity and cell division orientation. Mutant cells accumulate at the fusion point, fail to relocalize cadherin, and do not separate into distinct trachea and esophagus. These data provide insights into the mechanisms of congenital anomalies and general paradigms of tissue fusion during organogenesis.
Collapse
Affiliation(s)
- Nicole A Edwards
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Scott A Rankin
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adhish Kashyap
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alissa Warren
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zachary N Agricola
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alan P Kenny
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew Kofron
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aaron M Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM), Perinatal Institute, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Kamei CN, Sampson WGB, Albertz C, Aries O, Wolf A, Upadhyay RM, Hughes SM, Schenk H, Bonnet F, Draper BW, McCracken KW, Marciano DK, Oxburgh L, Drummond IA. Multiple Wnt signaling pathways direct epithelial tubule interconnection in the regenerating zebrafish kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645545. [PMID: 40196581 PMCID: PMC11974930 DOI: 10.1101/2025.03.26.645545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Epithelial tubule fusion is fundamental for kidney morphogenesis. Differentiating nephron tubules interconnect with collecting system epithelia to generate a lumenal pathway for fluid excretion. In the adult zebrafish kidney, nephrogenesis occurs as a regenerative response to injury and provides a model to explore cell signaling pathways required for tubule interconnection. We show that canonical Wnt signaling at the junction between two tubules induces a mesenchymal, invasive cell phenotype and is required, along with Src kinase and rac1, to generate basal cell protrusions. The Wnt ligands wnt9b and wnt4 are both required for new nephron formation after injury. Mutation in wnt4 or treatment with the canonical Wnt inhibitor IWR1 blocks formation of basal protrusions in forming nephrons. Mutation in the Wnt receptor frizzled9b reveals a fusion-associated non-canonical Wnt pathway that acts to 1) restrict canonical Wnt gene expression, 2) drive Rho kinase-dependent apical constriction of epithelial cells, and 3) position basal protrusions and generate orthogonal tubule lumenal connections. As a result, frizzled9b mutant nephrons fail to fully interconnect with target distal tubules. Our results indicate that canonical and non-canonical Wnt signaling interact in the same cells to orient and drive tubule interconnection in the regenerating zebrafish kidney.
Collapse
|
3
|
Oprysk LM, Vazquez M, Shinbrot T. Internal cohesion gradient as a novel mechanism of collective cell migration. PLoS Comput Biol 2025; 21:e1012769. [PMID: 40063623 PMCID: PMC12077783 DOI: 10.1371/journal.pcbi.1012769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/14/2025] [Accepted: 01/07/2025] [Indexed: 05/16/2025] Open
Abstract
Experiments demonstrate that individual cells that wander stochastically can migrate persistently as a cluster. We show by simulating cells and their interactions that collective migration by omnidirectional cells is a generic phenomenon that can be expected to arise whenever (a) leading and trailing cells migrate randomly, and (b) leading cells are more closely packed than trailing neighbors. The first condition implies that noise is essential to cluster motion, while the second implies that an internal cohesion gradient can drive external motion of a cluster. Unlike other swarming phenomena, we find that this effect is driven by cohesion asymmetry near the leading cell, and motion of interior cells contribute minimally - and in fact interfere with - a cluster's persistent migration.
Collapse
Affiliation(s)
- Larissa M. Oprysk
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Maribel Vazquez
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Troy Shinbrot
- Department of Biomedical Engineering Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
4
|
Vagne Q, Salbreux G. Generic theory of interacting, spinning, active polar particles: A model for cell aggregates. Phys Rev E 2025; 111:014423. [PMID: 39972799 DOI: 10.1103/physreve.111.014423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/05/2024] [Indexed: 02/21/2025]
Abstract
We present a generic framework for describing interacting, spinning, active polar particles, aimed at modeling dense cell aggregates, where cells are treated as polar, rotating objects that interact mechanically with one another and their surrounding environment. Using principles from nonequilibrium thermodynamics, we derive constitutive equations for interaction forces, torques, and polarity dynamics. We subsequently use this framework to analyze the spontaneous motion of cell doublets, uncovering a rich phase diagram of collective behaviors, including steady rotation driven by flow-polarity coupling or interactions between polarity and cell position.
Collapse
Affiliation(s)
- Quentin Vagne
- University of Geneva, Quai Ernest Ansermet 30, 1205 Geneva, Switzerland
| | | |
Collapse
|
5
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
6
|
Hou J, Feng Y, Yang Z, Ding Y, Cheng D, Shi Z, Li R, Xue L. Primary Sjögren's syndrome: new perspectives on salivary gland epithelial cells. Eur J Med Res 2024; 29:371. [PMID: 39014509 PMCID: PMC11253495 DOI: 10.1186/s40001-024-01967-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease primarily affecting exocrine glands such as the salivary glands, leading to impaired secretion and sicca symptoms. As the mainstay of salivation, salivary gland epithelial cells (SGECs) have an important role in the pathology of pSS. Emerging evidence suggests that the interplay between immunological factors and SGECs may not be the initial trigger or the sole mechanism responsible for xerostomia in pSS, challenging conventional perceptions. To deepen our understanding, current research regarding SGECs in pSS was reviewed. Among the extensive aberrations in cellular architecture and function, this review highlighted certain alterations of SGECs that were identified to occur independently of or in absence of lymphocytic infiltration. In particular, some of these alterations may serve as upstream factors of immuno-inflammatory responses. These findings underscore the significance of introspecting the pathogenesis of pSS and developing interventions targeting SGECs in the early stages of the disease.
Collapse
Affiliation(s)
- Jiaqi Hou
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yiyi Feng
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Zhixia Yang
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Yimei Ding
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Dandan Cheng
- Shanghai Skin Diseases Hospital, 200 Wuyi Road, Changning District, Shanghai, 200050, China
| | - Zhonghao Shi
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Rouxin Li
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China
| | - Luan Xue
- Rheumatology Department, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Hongkou District, Shanghai, 200437, China.
| |
Collapse
|
7
|
Liang Q, Yang S, Mai M, Chen X, Zhu X. Mining phase separation-related diagnostic biomarkers for endometriosis through WGCNA and multiple machine learning techniques: a retrospective and nomogram study. J Assist Reprod Genet 2024; 41:1433-1447. [PMID: 38456992 PMCID: PMC11143086 DOI: 10.1007/s10815-024-03079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the role of phase separation-related genes in the development of endometriosis (EMs) and to identify potential characteristic genes associated with the condition. METHODS We used GEO database data, including 74 non-endometriosis and 74 varying-degree EMs patients. Our approach involved identifying significant gene modules, exploring gene intersections, identifying core genes, and screening for potential EMs biomarkers using weighted gene co-expression network analysis (WGCNA) and various machine learning approaches. We also performed gene set enrichment analysis (GSEA) to understand relevant pathways. This comprehensive approach helps investigate EMs genetics and potential biomarkers. RESULTS Nine genes were identified at the intersection, suggesting their involvement in EMs. GSEA linked DEGs to pathways like complement and coagulation cascades, DNA replication, chemokines, apical plasma membrane processes, and diseases such as Hepatitis B, Human T-cell leukemia virus 1 infection, and COVID-19. Five feature genes (FOS, CFD, CCNA1, CA4, CST1) were selected by machine learning for an effective EMs diagnostic nomogram. GSEA indicated their roles in mismatch repair, cell cycle regulation, complement and coagulation cascades, and IL-17 inflammation. Notable differences in immune cell proportions (CD4 T cells, CD8 T cells, DCs, macrophages) were observed between normal and disease groups, suggesting immune involvement. CONCLUSIONS This study suggests the potential involvement of phase separation-related genes in the pathogenesis of endometriosis (EMs) and identifies promising biomarkers for diagnosis. These findings have implications for further research and the development of new therapeutic strategies for EMs.
Collapse
Affiliation(s)
- Qiuyi Liang
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Shengmei Yang
- Obstetrical Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiyi Mai
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiurong Chen
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
8
|
Li L, Jiao L, Feng D, Yuan Y, Yang X, Li J, Jiang D, Chen H, Meng Q, Chen R, Fang B, Zou X, Luo Z, Ye X, Hong Y, Liu C, Li C. Human apical-out nasal organoids reveal an essential role of matrix metalloproteinases in airway epithelial differentiation. Nat Commun 2024; 15:143. [PMID: 38168066 PMCID: PMC10762242 DOI: 10.1038/s41467-023-44488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Extracellular matrix (ECM) assembly/disassembly is a critical regulator for airway epithelial development and remodeling. Airway organoid is widely used in respiratory research, yet there is limited study to indicate the roles and mechanisms of ECM organization in epithelial growth and differentiation by using in vitro organoid system. Moreover, most of current Matrigel-based airway organoids are in basal-out orientation where accessing the apical surface is challenging. We present a human apical-out airway organoid using a biochemically defined hybrid hydrogel system. During human nasal epithelial progenitor cells (hNEPCs) differentiation, the gel gradually degrade, leading to the organoid apical surfaces facing outward. The expression and activity of ECM-degrading enzymes, matrix metalloproteinases (MMP7, MMP9, MMP10 and MMP13) increases during organoid differentiation, where inhibition of MMPs significantly suppresses the normal ciliation, resulting in increased goblet cell proportion. Moreover, a decrease of MMPs is found in goblet cell hyperplastic epithelium in inflammatory mucosa. This system reveals essential roles of epithelial-derived MMPs on epithelial cell fate determination, and provides an applicable platform enabling further study for ECM in regulating airway development in health and diseases.
Collapse
Affiliation(s)
- Liyue Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyi Jiao
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Feng
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhang Yuan
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqian Yang
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Dong Jiang
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hexin Chen
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxiang Meng
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou First People's Hospital, Guangzhou, China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Bixing Fang
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenhua Luo
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ye
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yue Hong
- School of Life Sciences, Hainan University, Haikou, China
| | - Chun Liu
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Chunwei Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Klabukov ID, Baranovskii DS, Shegay PV, Kaprin AD. Pitfalls and promises of bile duct alternatives: There is plenty of room in the regenerative surgery. World J Gastroenterol 2023; 29:4701-4705. [PMID: 37662863 PMCID: PMC10472900 DOI: 10.3748/wjg.v29.i30.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
Current abdominal surgery has several approaches for biliary reconstruction. However, the creation of functional and clinically applicable bile duct substitutes still represents an unmet need. In the paper by Miyazawa and colleagues, approaches to the creation of bile duct alternatives were summarized, and the reasons for the lack of development in this area were explained. The history of bile duct surgery since the nineteenth century was also traced, leading to the conclusion that the use of bioabsorbable materials holds promise for the creation of bile duct substitutes in the future. We suggest three ideas that may stimulate progress in the field of bile duct substitute creation. First, a systematic analysis of the causative factors leading to failure or success in the creation of bile duct substitutes may help to develop more effective approaches. Second, the regeneration of a bile duct is delicately balanced between epithelialization and subsequent submucosal maturation within limited time frames, which may be more apparent when using quantitative models to estimate outcomes. Third, the utilization of the organism's endogenous regeneration abilities may enhance the creation of bile duct substitutes. We are convinced that an interdisciplinary approach, including quantitative methods, machine learning, and deep retrospective analysis of the causes that led to success and failure in studies on the creation of bile duct substitutes, holds great value. Additionally, more attention should be directed towards the balance of epithelialization and submucosal maturation rates, as well as induced angiogenesis. These ideas deserve further investigation to pave the way for bile duct restoration with physiologically relevant outcomes.
Collapse
Affiliation(s)
- Ilya D Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - Denis S Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - Peter V Shegay
- Center for Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - Andrey D Kaprin
- Center for Innovative Radiological and Regenerative Technologies, National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| |
Collapse
|
10
|
Gredler ML, Zallen JA. Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm. Dev Cell 2023:S1534-5807(23)00134-X. [PMID: 37080203 DOI: 10.1016/j.devcel.2023.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal-epithelial transitions are fundamental drivers of development and disease, but how these behaviors generate epithelial structure is not well understood. Here, we show that mesenchymal-epithelial transitions promote epithelial organization in the mouse node and notochordal plate through the assembly and radial intercalation of three-dimensional rosettes. Axial mesoderm rosettes acquire junctional and apical polarity, develop a central lumen, and dynamically expand, coalesce, and radially intercalate into the surface epithelium, converting mesenchymal-epithelial transitions into higher-order tissue structure. In mouse Par3 mutants, axial mesoderm rosettes establish central tight junction polarity but fail to form an expanded apical domain and lumen. These defects are associated with altered rosette dynamics, delayed radial intercalation, and formation of a small, fragmented surface epithelial structure. These results demonstrate that three-dimensional rosette behaviors translate mesenchymal-epithelial transitions into collective radial intercalation and epithelial formation, providing a strategy for building epithelial sheets from individual self-organizing units in the mammalian embryo.
Collapse
Affiliation(s)
- Marissa L Gredler
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
11
|
Boueid MJ, Mikdache A, Lesport E, Delespierre B, Loisel-Duwattez J, Degerny C, Tawk M. Pals1a and aPKCλ are not essential for Schwann cell migration, division or myelination in zebrafish. Dev Dyn 2023; 252:145-155. [PMID: 36284447 DOI: 10.1002/dvdy.547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) are specialized glial cells of the peripheral nervous system that produce myelin and promote fast action potential propagation. In order to myelinate, SCs engage in a series of events that include migration and division along axons, followed by extensive cytoskeletal rearrangements that ensure axonal ensheathment and myelination. SCs are polarized and extend their processes along an abaxonal-adaxonal axis. Here, we investigate the role of the apical polarity proteins, Pals1a, and aPKCλ, in SC behavior during zebrafish development. RESULTS We analyzed zebrafish nok and has mutants deficient for pals1a and aPKCλ function respectively. Using live imaging, transmission electron microscopy and whole mount immunostaining, we show that SCs can migrate and divide appropriately, exhibit normal radial sorting, express myelin markers and ensheath axons on time in has and nok mutants. CONCLUSIONS Pals1a and aPKCλ are not essential for SC migration, division or myelination in zebrafish.
Collapse
Affiliation(s)
| | - Aya Mikdache
- U1195, Inserm, University Paris-Saclay, Le Kremlin Bicêtre, France
| | - Emilie Lesport
- U1195, Inserm, University Paris-Saclay, Le Kremlin Bicêtre, France
| | | | | | - Cindy Degerny
- U1195, Inserm, University Paris-Saclay, Le Kremlin Bicêtre, France
| | - Marcel Tawk
- U1195, Inserm, University Paris-Saclay, Le Kremlin Bicêtre, France
| |
Collapse
|