1
|
Catacalos-Goad C, Chakrabarti M, Salem DH, Camporeale C, Somalraju S, Tegowski M, Singh R, Reid RW, Janies DA, Meyer KD, Janga SC, Hunt AG, Chakrabarti K. Nucleotide-resolution Mapping of RNA N6-Methyladenosine (m6A) modifications and comprehensive analysis of global polyadenylation events in mRNA 3' end processing in malaria pathogen Plasmodium falciparum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631827. [PMID: 39829786 PMCID: PMC11741415 DOI: 10.1101/2025.01.07.631827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Plasmodium falciparum is an obligate human parasite of the phylum Apicomplexa and is the causative agent of the most lethal form of human malaria. Although N6-methyladenosine modification is thought to be one of the major post-transcriptional regulatory mechanisms for stage-specific gene expression in apicomplexan parasites, the precise base position of m6A in mRNAs or noncoding RNAs in these parasites remains unknown. Here, we report global nucleotide-resolution mapping of m6A residues in P. falciparum using DART-seq technology, which quantitatively displayed a stage-specific, dynamic distribution pattern with enrichment near mRNA 3' ends. In this process we identified 894, 788, and 1,762 m6A-modified genes in Ring, Trophozoite and Schizont stages respectively, with an average of 5-7 m6A sites per-transcript at the individual gene level. Notably, several genes involved in malaria pathophysiology, such as KAHRP, ETRAMPs, SERA and stress response genes, such as members of Heat Shock Protein (HSP) family are highly enriched in m6A and therefore could be regulated by this RNA modification. Since we observed preferential methylation at the 3' ends of P. falciparum transcripts and because malaria polyadenylation specificity factor PfCPSF30 harbors an m6A reader 'YTH' domain, we reasoned that m6A might play an important role in 3'-end processing of malaria mRNAs. To investigate this, we used two complementary high-throughput RNA 3'-end mapping approaches, which provided an initial framework to explore potential roles of m6A in the regulation of alternative polyadenylation (APA) during malaria development in human hosts.
Collapse
Affiliation(s)
- Cassandra Catacalos-Goad
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Manohar Chakrabarti
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX
| | - Doaa Hassan Salem
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Carli Camporeale
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Sahiti Somalraju
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ruchi Singh
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| | - Robert W Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Daniel A Janies
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of Biomedical Engineering and Informatics, Luddy School of Informatics, Computing and Engineering, Indiana University Indianapolis (IUI), Indianapolis, Indiana, United States of America
| | - Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA, United States of America
| |
Collapse
|
2
|
Tegowski M, Prater AK, Holley CL, Meyer KD. Single-cell m 6A profiling in the mouse brain uncovers cell type-specific RNA methylomes and age-dependent differential methylation. Nat Neurosci 2024; 27:2512-2520. [PMID: 39317796 PMCID: PMC11614689 DOI: 10.1038/s41593-024-01768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
N6-methyladenosine (m6A) is an abundant mRNA modification in the brain that has important roles in neurodevelopment and brain function. However, because of technical limitations, global profiling of m6A sites within the individual cell types that make up the brain has not been possible. Here, we develop a mouse model that enables transcriptome-wide m6A detection in any tissue of interest at single-cell resolution. We use these mice to map m6A across different brain regions and within single cells of the mouse cortex and discover a high degree of shared methylation across brain regions and cell types. However, we also identify a small number of differentially methylated mRNAs in neurons that encode important regulators of neuronal signaling, and we discover that microglia have lower levels of m6A than other cell types. Finally, we perform single-cell m6A mapping in aged mice and identify many transcripts with age-dependent changes in m6A.
Collapse
Affiliation(s)
- Matthew Tegowski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Anna K Prater
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Christopher L Holley
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Herbert C, Valesyan S, Kist J, Limbach PA. Analysis of RNA and Its Modifications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:47-68. [PMID: 38594935 PMCID: PMC11605427 DOI: 10.1146/annurev-anchem-061622-125954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Ribonucleic acids (RNAs) are key biomolecules responsible for the transmission of genetic information, the synthesis of proteins, and modulation of many biochemical processes. They are also often the key components of viruses. Synthetic RNAs or oligoribonucleotides are becoming more widely used as therapeutics. In many cases, RNAs will be chemically modified, either naturally via enzymatic systems within a cell or intentionally during their synthesis. Analytical methods to detect, sequence, identify, and quantify RNA and its modifications have demands that far exceed requirements found in the DNA realm. Two complementary platforms have demonstrated their value and utility for the characterization of RNA and its modifications: mass spectrometry and next-generation sequencing. This review highlights recent advances in both platforms, examines their relative strengths and weaknesses, and explores some alternative approaches that lie at the horizon.
Collapse
Affiliation(s)
- Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Satenik Valesyan
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Jennifer Kist
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA;
| |
Collapse
|
4
|
Witzenberger M, Schwartz S. Directing RNA-modifying machineries towards endogenous RNAs: opportunities and challenges. Trends Genet 2024; 40:313-325. [PMID: 38350740 DOI: 10.1016/j.tig.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Over 170 chemical modifications can be naturally installed on RNA, all of which are catalyzed by dedicated machineries. These modifications can alter RNA sequence structure, stability, and translation as well as serving as quality control marks that record aspects of RNA processing. The diverse roles played by RNAs within cells has motivated endeavors to exogenously introduce RNA modifications at target sites for diverse purposes ranging from recording RNA:protein interactions to therapeutic applications. Here, we discuss these applications and the approaches that have been employed to engineer RNA-modifying machineries, and highlight persisting challenges and perspectives.
Collapse
Affiliation(s)
- Monika Witzenberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| |
Collapse
|
5
|
Sheehan CJ, Marayati BF, Bhatia J, Meyer K. In situ visualization of m6A sites in cellular mRNAs. Nucleic Acids Res 2023; 51:e101. [PMID: 37811887 PMCID: PMC10639046 DOI: 10.1093/nar/gkad787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
N 6-methyladenosine (m6A) is an abundant RNA modification which plays critical roles in RNA function and cellular physiology. However, our understanding of how m6A is spatially regulated remains limited due to a lack of methods for visualizing methylated transcripts of interest in cells. Here, we develop DART-FISH, a method for in situ visualization of specific m6A sites in target RNAs which enables simultaneous detection of both m6A-modified and unmodified transcript copies. We demonstrate the ability of DART-FISH to visualize m6A in a variety of mRNAs across diverse cell types and to provide information on the location and stoichiometry of m6A sites at single-cell resolution. Finally, we use DART-FISH to reveal that m6A is not sufficient for mRNA localization to stress granules during oxidative stress. This technique provides a powerful tool for examining m6A-modified transcript dynamics and investigating methylated RNA localization in individual cells.
Collapse
Affiliation(s)
- Charles J Sheehan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | | | - Janvi Bhatia
- Trinity College of Arts and Sciences, Duke University, Durham, NC, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
6
|
Catacalos C, Krohannon A, Somalraju S, Meyer KD, Janga SC, Chakrabarti K. Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation. PLoS Pathog 2022; 18:e1010972. [PMID: 36548245 PMCID: PMC9778586 DOI: 10.1371/journal.ppat.1010972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
"Epitranscriptomics" is the new RNA code that represents an ensemble of posttranscriptional RNA chemical modifications, which can precisely coordinate gene expression and biological processes. There are several RNA base modifications, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ), etc. that play pivotal roles in fine-tuning gene expression in almost all eukaryotes and emerging evidences suggest that parasitic protists are no exception. In this review, we primarily focus on m6A, which is the most abundant epitranscriptomic mark and regulates numerous cellular processes, ranging from nuclear export, mRNA splicing, polyadenylation, stability, and translation. We highlight the universal features of spatiotemporal m6A RNA modifications in eukaryotic phylogeny, their homologs, and unique processes in 3 unicellular parasites-Plasmodium sp., Toxoplasma sp., and Trypanosoma sp. and some technological advances in this rapidly developing research area that can significantly improve our understandings of gene expression regulation in parasites.
Collapse
Affiliation(s)
- Cassandra Catacalos
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Alexander Krohannon
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Sahiti Somalraju
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
7
|
Choi SH, Flamand MN, Liu B, Zhu H, Hu M, Wang M, Sewell J, Holley CL, Al-Hashimi HM, Meyer KD. RBM45 is an m 6A-binding protein that affects neuronal differentiation and the splicing of a subset of mRNAs. Cell Rep 2022; 40:111293. [PMID: 36044854 PMCID: PMC9472474 DOI: 10.1016/j.celrep.2022.111293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
N6-methyladenosine (m6A) is deposited co-transcriptionally on thousands of cellular mRNAs and plays important roles in mRNA processing and cellular function. m6A is particularly abundant within the brain and is critical for neurodevelopment. However, the mechanisms through which m6A contributes to brain development are incompletely understood. RBM45 acts as an m6A-binding protein that is highly expressed during neurodevelopment. We find that RBM45 binds to thousands of cellular RNAs, predominantly within intronic regions. Rbm45 depletion disrupts the constitutive splicing of a subset of target pre-mRNAs, leading to altered mRNA and protein levels through both m6A-dependent and m6A-independent mechanisms. Finally, we find that RBM45 is necessary for neuroblastoma cell differentiation and that its depletion impacts the expression of genes involved in several neurodevelopmental signaling pathways. Altogether, our findings show a role for RBM45 in controlling mRNA processing and neuronal differentiation, mediated in part by the recognition of methylated RNA. Choi et al. identify RBM45 as an m6A-binding protein enriched in the developing brain. RBM45 binds to thousands of cellular RNAs, primarily within introns, and regulates constitutive splicing of target transcripts. Loss of RBM45 causes altered expression of neurodevelopmental genes and defects in the proliferation and differentiation of neuroblastoma cells.
Collapse
Affiliation(s)
- Seung H Choi
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Mathieu N Flamand
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Huanyu Zhu
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Meghan Hu
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Melanie Wang
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27710, USA
| | - Jonathon Sewell
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA
| | - Christopher L Holley
- Department of Medicine (Cardiology Division), Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham NC 27710, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|