1
|
Abstract
Cell and organ metabolism is organized through various signaling mechanisms, including redox, Ca2+, kinase and electrochemical pathways. Redox signaling operates at multiple levels, from interactions between individual molecules in their microenvironment to communication among subcellular organelles, single cells, organs, and the entire organism. Redox communication is a dynamic and ongoing spatiotemporal process. This article focuses on hydrogen peroxide (H2O2), a key second messenger that targets redox-active protein cysteine thiolates. H2O2 gradients across cell membranes are controlled by peroxiporins, specialized aquaporins. Redox-active endosomes, known as redoxosomes, form at the plasma membrane. Cell-to-cell redox communication involves direct contacts, such as per gap junctions that connect cells for transfer of molecules via connexons. Moreover, signaling occurs through the release of redox-active molecules and enzymes into the surrounding space, as well as through various types of extracellular vesicles (EVs) that transport these signals to nearby or distant target cells.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
2
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Collado-Arenal AM, Exposito-Rodriguez M, Mullineaux PM, Olmedilla A, Romero-Puertas MC, Sandalio LM. Cadmium exposure induced light/dark- and time-dependent redox changes at subcellular level in Arabidopsis plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135164. [PMID: 39032180 DOI: 10.1016/j.jhazmat.2024.135164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals for plants and humans. Reactive oxygen species (ROS) are some of the primary signaling molecules produced after Cd treatment in plants but the contribution of different organelles and specific cell types, together with the impact of light is unknown. We used Arabidopsis lines expressing GRX1-roGFP2 (glutaredoxin1-roGFP) targeted to different cell compartments and analysed changes in redox state over 24 h light/dark cycle in Cd-treated leaf discs. We imaged redox state changes in peroxisomes and chloroplasts in leaf tissue. Chloroplasts and peroxisomes were the most affected organelles in the dark and blocking the photosynthetic electron transport chain (pETC) by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) promotes higher Cd-dependent oxidation in all organelles. Peroxisomes underwent the most rapid changes in redox state in response to Cd and DCMU and silencing chloroplastic NTRC (NADPH thioredoxin reductase C) considerably increases peroxisome oxidation. Total NAD(P)H and cytosolic NADH decreased during exposure to Cd, while Ca+2 content in chloroplasts and cytosol increased in the dark period. Our results demonstrate a Cd-, time- and light-dependent increase of oxidation of all organelles analysed, that could be in part triggered by disturbances in pETC and photorespiration, the decrease of NAD(P)H availability, and differential antioxidants expression at subcellular level.
Collapse
Affiliation(s)
- Aurelio M Collado-Arenal
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | | | - Philip M Mullineaux
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| | - Adela Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - María C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| | - Luisa M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada 18008, Spain.
| |
Collapse
|
4
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 PMCID: PMC11921270 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M. The peroxisome: an update on mysteries 3.0. Histochem Cell Biol 2024; 161:99-132. [PMID: 38244103 PMCID: PMC10822820 DOI: 10.1007/s00418-023-02259-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/22/2024]
Abstract
Peroxisomes are highly dynamic, oxidative organelles with key metabolic functions in cellular lipid metabolism, such as the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as the regulation of cellular redox balance. Loss of peroxisomal functions causes severe metabolic disorders in humans. Furthermore, peroxisomes also fulfil protective roles in pathogen and viral defence and immunity, highlighting their wider significance in human health and disease. This has sparked increasing interest in peroxisome biology and their physiological functions. This review presents an update and a continuation of three previous review articles addressing the unsolved mysteries of this remarkable organelle. We continue to highlight recent discoveries, advancements, and trends in peroxisome research, and address novel findings on the metabolic functions of peroxisomes, their biogenesis, protein import, membrane dynamics and division, as well as on peroxisome-organelle membrane contact sites and organelle cooperation. Furthermore, recent insights into peroxisome organisation through super-resolution microscopy are discussed. Finally, we address new roles for peroxisomes in immune and defence mechanisms and in human disorders, and for peroxisomal functions in different cell/tissue types, in particular their contribution to organ-specific pathologies.
Collapse
Grants
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- European Union’s Horizon 2020 research and innovation programme
- Deutsches Zentrum für Herz-Kreislaufforschung
- German Research Foundation
- Medical Faculty Mannheim, University of Heidelberg
Collapse
Affiliation(s)
- Rechal Kumar
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, University of Heidelberg, 68167, Mannheim, Germany
| | - Harley Worthy
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Ruth Carmichael
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Michael Schrader
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
6
|
Fransen M, Lismont C. Peroxisomal hydrogen peroxide signaling: A new chapter in intracellular communication research. Curr Opin Chem Biol 2024; 78:102426. [PMID: 38237354 DOI: 10.1016/j.cbpa.2024.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Hydrogen peroxide (H2O2), a natural metabolite commonly found in aerobic organisms, plays a crucial role in numerous cellular signaling processes. One of the key organelles involved in the cell's metabolism of H2O2 is the peroxisome. In this review, we first provide a concise overview of the current understanding of H2O2 as a molecular messenger in thiol redox signaling, along with the role of peroxisomes as guardians and modulators of cellular H2O2 balance. Next, we direct our focus toward the recently identified primary protein targets of H2O2 originating from peroxisomes, emphasizing their importance in unraveling the complex interplay between peroxisomal H2O2 and cell signaling. We specifically focus on three areas: signaling through peroxiredoxin redox relay complexes, calcium signaling, and phospho-signaling. Finally, we highlight key research directions that warrant further investigation to enhance our comprehension of the molecular and biochemical mechanisms linking alterations in peroxisomal H2O2 metabolism with disease.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Herestraat 49 Box 901, 3000 Leuven, Belgium.
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Signaling, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Herestraat 49 Box 901, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Knoke LR, Leichert LI. Global approaches for protein thiol redox state detection. Curr Opin Chem Biol 2023; 77:102390. [PMID: 37797572 DOI: 10.1016/j.cbpa.2023.102390] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Due to its nucleophilicity, the thiol group of cysteine is chemically very versatile. Hence, cysteine often has important functions in a protein, be it as the active site or, in extracellular proteins, as part of a structural disulfide. Within the cytosol, cysteines are typically reduced. But the nucleophilicity of its thiol group makes it also particularly prone to post-translational oxidative modifications. These modifications often lead to an alteration of the function of the affected protein and are reversible in vivo, e.g. by the thioredoxin and glutaredoxin system. The in vivo-reversible nature of these modifications and their genesis in the presence of localized high oxidant levels led to the paradigm of thiol-based redox regulation, the adaptation, and modulation of the cellular metabolism in response to oxidative stimuli by thiol oxidation in regulative proteins. Consequently, the proteomic study of these oxidative posttranslational modifications of cysteine plays an indispensable role in redox biology.
Collapse
Affiliation(s)
- Lisa R Knoke
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Lars I Leichert
- Ruhr University Bochum, Institute of Biochemistry and Pathobiochemistry, Microbial Biochemistry, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
8
|
Li H, Lismont C, Costa CF, Hussein MAF, Baes M, Fransen M. Enhanced Levels of Peroxisome-Derived H2O2 Do Not Induce Pexophagy but Impair Autophagic Flux in HEK-293 and HeLa Cells. Antioxidants (Basel) 2023; 12:antiox12030613. [PMID: 36978861 PMCID: PMC10045779 DOI: 10.3390/antiox12030613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Peroxisomes are functionally specialized organelles that harbor multiple hydrogen peroxide (H2O2)-producing and -degrading enzymes. Given that this oxidant functions as a major redox signaling agent, peroxisomes have the intrinsic ability to mediate and modulate H2O2-driven processes, including autophagy. However, it remains unclear whether changes in peroxisomal H2O2 (po-H2O2) emission impact the autophagic process and to which extent peroxisomes with a disturbed H2O2 metabolism are selectively eliminated through a process called “pexophagy”. To address these issues, we generated and validated HEK-293 and HeLa pexophagy reporter cell lines in which the production of po-H2O2 can be modulated. We demonstrate that (i) po-H2O2 can oxidatively modify multiple selective autophagy receptors and core autophagy proteins, (ii) neither modest nor robust levels of po-H2O2 emission act as a prime determinant of pexophagy, and (iii) high levels of po-H2O2 impair autophagic flux by oxidative inhibition of enzymes involved in LC3II formation. Unexpectedly, our analyses also revealed that the autophagy receptor optineurin can be recruited to peroxisomes, thereby triggering pexophagy. In summary, these findings lend support to the idea that, during cellular and organismal aging, peroxisomes with enhanced H2O2 release can escape pexophagy and downregulate autophagic activity, thereby perpetuating the accumulation of damaged and toxic cellular debris.
Collapse
Affiliation(s)
- Hongli Li
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Celien Lismont
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Cláudio F. Costa
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Mohamed A. F. Hussein
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Asyut 71515, Egypt
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-330114
| |
Collapse
|
9
|
Lismont C, Revenco I, Costa CF, Li H, Hussein MAF, Van Veldhoven PP, Derua R, Fransen M. Identification of Peroxisome-Derived Hydrogen Peroxide-Sensitive Target Proteins Using a YAP1C-Based Genetic Probe. Methods Mol Biol 2023; 2643:161-181. [PMID: 36952185 DOI: 10.1007/978-1-0716-3048-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
As the reversible oxidation of protein cysteine thiols is an important mechanism in signal transduction, it is essential to have access to experimental approaches that allow for spatiotemporal indexing of the cellular sulfenome in response to local changes in H2O2 levels. Here, we provide a step-by-step guide for enriching and identifying the sulfenome of mammalian cells at the subcellular level in response to peroxisome-derived H2O2 by the combined use of (i) a previously developed cell line in which peroxisomal H2O2 production can be induced in a time- and dose-dependent manner; (ii) YAP1C, a genetically encoded yeast AP-1-like transcription factor-based probe that specifically reacts with S-sulfenylated cysteines and traps them through mixed disulfide bonds; and (iii) mass spectrometry. Given that this approach includes differential labeling of reduced and reversibly oxidized cysteine residues, it can also provide additional information on the positions of the modified cysteines. Gaining more in-depth insight into the complex nature of how alterations in peroxisomal H2O2 metabolism modulate the cellular sulfenome is key to our understanding of how these organelles act as redox signaling hubs in health and disease.
Collapse
Affiliation(s)
- Celien Lismont
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium.
| | - Iulia Revenco
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Cláudio F Costa
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Hongli Li
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Mohamed A F Hussein
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Paul P Van Veldhoven
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | - Marc Fransen
- Department of Cellular and Molecular Medicine, Laboratory of Peroxisome Biology and Intracellular Communication, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Kors S, Kurian SM, Costello JL, Schrader M. Controlling contacts-Molecular mechanisms to regulate organelle membrane tethering. Bioessays 2022; 44:e2200151. [PMID: 36180400 DOI: 10.1002/bies.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
In recent years, membrane contact sites (MCS), which mediate interactions between virtually all subcellular organelles, have been extensively characterized and shown to be essential for intracellular communication. In this review essay, we focus on an emerging topic: the regulation of MCS. Focusing on the tether proteins themselves, we discuss some of the known mechanisms which can control organelle tethering events and identify apparent common regulatory hubs, such as the VAP interface at the endoplasmic reticulum (ER). We also highlight several currently hypothetical concepts, including the idea of tether oligomerization and redox regulation playing a role in MCS formation. We identify gaps in our current understanding, such as the identity of the majority of kinases/phosphatases involved in tether modification and conclude that a holistic approach-incorporating the formation of multiple MCS, regulated by interconnected regulatory modulators-may be required to fully appreciate the true complexity of these fascinating intracellular communication systems.
Collapse
Affiliation(s)
- Suzan Kors
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Smija M Kurian
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Joseph L Costello
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|