1
|
Griffin AHC, Small AM, Johnson RD, Medina AM, Kollar KT, Nazir RA, McGuire AM, Schumacher JA. Retinoic acid promotes second heart field addition and regulates ventral aorta patterning in zebrafish. Dev Biol 2025; 522:143-155. [PMID: 40147741 DOI: 10.1016/j.ydbio.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 03/09/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Retinoic acid (RA) signaling is used reiteratively during vertebrate heart development. Its earliest known role is to restrict formation of the earlier-differentiating first heart field (FHF) progenitors, while promoting the differentiation of second heart field (SHF) progenitors that give rise to the arterial pole of the ventricle and outflow tract (OFT). However, requirements for RA signaling at later stages of cardiogenesis remain poorly understood. Here, we investigated the role of RA signaling after the later differentiating SHF cells have begun to add to the OFT. We found that inhibiting RA production in zebrafish beginning at 26 hours post fertilization (hpf) produced embryos that have smaller ventricles with fewer ventricular cardiomyocytes, and reduced number of smooth muscle cells in the bulbus arteriosus (BA) of the OFT. Our results suggest that the deficiency of the ventricular cardiomyocytes is due to reduced SHF addition to the arterial pole. In contrast to smaller ventricles and BA, later RA deficiency also results in a dramatically elongated posterior branch of the adjacent ventral aorta, which is surrounded by an increased number of smooth muscle cells. Altogether, our results reveal that RA signaling is required during the period of SHF addition to promote addition of ventricular cardiomyocytes, partition smooth muscle cells onto the BA and posterior ventral aorta, and to establish proper ventral aorta anterior-posterior patterning.
Collapse
Affiliation(s)
| | - Allison M Small
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Riley D Johnson
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Anna M Medina
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Kiki T Kollar
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | - Ridha A Nazir
- Department of Biology, Miami University, Oxford, OH, 45056, USA
| | | | - Jennifer A Schumacher
- Department of Biology, Miami University, Oxford, OH, 45056, USA; Department of Biological Sciences, Miami University, Hamilton, OH, 45011, USA.
| |
Collapse
|
2
|
Jacobs K, Langenbach GEJ, Docter D, Cordewener PAM, van de Beek BJ, Korfage JAM, Visser SC, Peters JJ, Hagoort J, Lobbezoo F, de Bakker BS. Imaging the development of the human craniofacial arterial system - an experimental study. Pediatr Radiol 2025; 55:721-732. [PMID: 39254856 PMCID: PMC11982102 DOI: 10.1007/s00247-024-06044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND The process of vascular development is essential for shaping complex craniofacial structures. Investigating the interplay between vascular development and orofacial morphogenesis holds critical importance in clinical practice and contributes to advancing our comprehension of (vascular) developmental biology. New insights into specific vascular developmental pathways will have far-reaching implications across various medical disciplines, enhancing clinical understanding, refining surgical techniques, and elucidating the origins of congenital abnormalities. Embryonic development of the craniofacial vasculature remains, however, under-exposed in the current literature. We imaged and created 3-dimensional (D) reconstructed images of the craniofacial arterial system from two early-stage human embryonic samples. OBJECTIVE The aim of this study was to investigate the vascular development of the craniofacial region in early-stage human embryos, with a focus on understanding the interplay between vascular development and orofacial morphogenesis. MATERIALS AND METHODS Reconstructions (3-D) were generated from high-resolution diffusible iodine-based contrast-enhanced computed tomography (diceCT) images, enabling visualization of the orofacial arterial system in human embryonic samples of Carnegie stages (CS) 14 and 18 from the Dutch Fetal Biobank, corresponding to weeks 7 and 8.5 of gestation. RESULTS From two human embryonic samples (ages CS 14 and 18), the vascular development of the orofacial region at two different stages of development was successfully stained with B-Lugol and imaged using a micro-computed tomography (micro-CT) scanner with resolutions of 2.5-μm and 9-μm voxel sizes, respectively. Additionally, educational 3-D reconstructions of the orofacial vascular system were generated using AMIRA 2021.2 software. CONCLUSION Micro-CT imaging is an effective strategy for high-resolution visualization of vascular development of the orofacial region in human embryonic samples. The generated interactive 3-D educational models facilitate better understanding of the development of orofacial structures.
Collapse
Affiliation(s)
- K Jacobs
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands.
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - G E J Langenbach
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - D Docter
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pediatric Surgery, Emma Children's Hospital, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - P A M Cordewener
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - B J van de Beek
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - J A M Korfage
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - S C Visser
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - J J Peters
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
| | - J Hagoort
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Amsterdam UMC, location AMC, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - F Lobbezoo
- Department of Oral Pain and Disfunction, Section Orofacial Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081LA, Amsterdam, The Netherlands
| | - B S de Bakker
- Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC, location AMC, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Cabrera A FJ, Delgado-Ruilova EM, Sáenz C, Ordoñez BA. Persistent Fourth Right Aortic Arch in a White-Tailed Deer (Odocoileus virginianus ustus). Anat Histol Embryol 2025; 54:e70032. [PMID: 40087910 DOI: 10.1111/ahe.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Persistent Fourth Right Aortic Arch (PRAA) with retention of the left ductus arteriosus constitutes the most prevalent clinically significant form of vascular ring anomalies in both dogs and cats, accounting for approximately 95% of aortic arch developmental anomalies. This anomaly causes oesophageal compression in weaned animals, leading to restricted passage of solid food, postprandial regurgitation, and potential development of acquired megaoesophagus. Notably, neonatal or lactating animals usually do not exhibit these consequences. While PRAA is well documented in dogs and cats, its occurrence in wild or domesticated ungulates is a rare and intriguing phenomenon, shedding light on congenital cardiovascular anomalies in such species. In this case, a female neonate white-tailed deer, weighing 2 kg, was delivered to the TUERI Wildlife Hospital. Despite receiving substitute feeding and fluid therapy, the specimen faced challenges in milk transit to the abomasum, resulting in postprandial regurgitation. Forelimbs' muscle contractions hindered imaging aimed at elucidating the cause of regurgitation. Nonetheless, these procedures facilitated a presumptive diagnosis of secondary megaoesophagus attributed to a PRAA. The specimen was euthanized, and the carcass underwent necropsy, revealing a PRAA with distinctive anatomical features, including oesophageal dilation, tracheal stenosis, and a constricting vascular ring surrounding both the oesophagus and trachea. This unique case underscores the importance of considering congenital anomalies in wildlife health assessments and contributes to our understanding of cardiovascular anomalies in wildlife species.
Collapse
Affiliation(s)
- F J Cabrera A
- Universidad San Francisco de Quito|Escuela de Medicina Veterinaria|Instituto de Biodiversidad Tropical|Laboratorio de Salud Animal, Quito, Pichincha, Ecuador
| | - E M Delgado-Ruilova
- Universidad San Francisco de Quito|Escuela de Medicina Veterinaria, Quito, Pichincha, Ecuador
| | - C Sáenz
- Universidad San Francisco de Quito|Escuela de Medicina Veterinaria|Instituto de Biodiversidad Tropical|Hospital de Fauna Silvestre TUERI, Quito, Pichincha, Ecuador
| | - B A Ordoñez
- Universidad San Francisco de Quito|Escuela de Medicina Veterinaria|Instituto de Biodiversidad Tropical|Hospital de Fauna Silvestre TUERI, Quito, Pichincha, Ecuador
| |
Collapse
|
4
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
5
|
Rusu MC, Jianu AM, Vrapciu AD, Manta MD. Persisting carotid duct and proximal external carotid artery agenesis in an adult. Anat Cell Biol 2024; 57:328-331. [PMID: 38233064 PMCID: PMC11184432 DOI: 10.5115/acb.23.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/21/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
The carotid duct (CD) is a transient embryological structure connecting the 3rd and 4th aortic arches. We found a persisting CD in an adult female case, by studying the computed tomography angiogram. On the left side, the proximal external carotid artery (ECA) agenesis was noted. The CD was inserted into the left subclavian artery and continued upwards to reach the level of the atlas, and then it descended to connect to a normally configured segment of that ECA. It could be speculated that the CD-to-ECA connection was possible via unregressed 1st and/or 2nd aortic arches. The segmental ECA agenesis is extremely rare, while its supply via a persisting patent CD was not reported previously to the authors' knowledge. The variants are extremely important during neck surgery because damaging the CD could determine hemorrhage, as well as ischemia in the ECA territory.
Collapse
Affiliation(s)
- Mugurel Constantin Rusu
- Division of Anatomy, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adelina Maria Jianu
- Department of Anatomy, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Alexandra Diana Vrapciu
- Division of Anatomy, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Ophthalmology, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Mihaela Daniela Manta
- Department of Anatomy, Faculty of Medicine, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| |
Collapse
|
6
|
Zubrzycki M, Schramm R, Costard-Jäckle A, Grohmann J, Gummert JF, Zubrzycka M. Cardiac Development and Factors Influencing the Development of Congenital Heart Defects (CHDs): Part I. Int J Mol Sci 2024; 25:7117. [PMID: 39000221 PMCID: PMC11241401 DOI: 10.3390/ijms25137117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries.
Collapse
Affiliation(s)
- Marek Zubrzycki
- Department of Surgery for Congenital Heart Defects, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Rene Schramm
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Angelika Costard-Jäckle
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Jochen Grohmann
- Department of Congenital Heart Disease/Pediatric Cardiology, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany;
| | - Jan F. Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, University Hospital, Ruhr-University Bochum, Georgstr. 11, 32545 Bad Oeynhausen, Germany; (R.S.); (A.C.-J.); (J.F.G.)
| | - Maria Zubrzycka
- Department of Clinical Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
7
|
Jensen B, Chang YH, Bamforth SD, Mohun T, Sedmera D, Bartos M, Anderson RH. The changing morphology of the ventricular walls of mouse and human with increasing gestation. J Anat 2024; 244:1040-1053. [PMID: 38284175 PMCID: PMC11095311 DOI: 10.1111/joa.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024] Open
Abstract
That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
| | - Yun Hee Chang
- Department of Medical Biology, Amsterdam Cardiovascular SciencesUniversity of Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
| | - Simon D. Bamforth
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| | | | - David Sedmera
- Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Martin Bartos
- Institute of Anatomy, First Faculty of MedicineCharles UniversityPragueCzech Republic
- Institute of Dental Medicine, First Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Robert H. Anderson
- Biosciences Institute, Faculty of Medical SciencesNewcastle UniversityNewcastleUK
| |
Collapse
|
8
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Buffering Mechanism in Aortic Arch Artery Formation and Congenital Heart Disease. Circ Res 2024; 134:e112-e132. [PMID: 38618720 PMCID: PMC11081845 DOI: 10.1161/circresaha.123.322767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.
Collapse
Affiliation(s)
- AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Christina A. Vyzas
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Kevin Eng
- Department of Statistics, Rutgers University, School of Arts and Sciences, Piscataway, NJ 08854
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
9
|
Nedelcu AH, Lupu A, Moraru MC, Tarniceriu CC, Stan CI, Partene Vicoleanu SA, Haliciu AM, Statescu G, Ursaru M, Danielescu C, Ioniuc I, Tepordei RT, Lupu VV. Morphological Aspects of the Aberrant Right Subclavian Artery-A Systematic Review of the Literature. J Pers Med 2024; 14:335. [PMID: 38672962 PMCID: PMC11051064 DOI: 10.3390/jpm14040335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The aberrant origin of the right subclavian artery (ARSA), also known as the lusoria artery, is a congenital malformation with an incidence of 0.5-4.4%. Most cases are incidental due to minimal clinical manifestations. Computer tomography (CT) is important in diagnosing and evaluating these patients. MATERIALS AND METHODS We conduct a computerized search in two databases, PubMed and EMBASE, for articles published between 1 January 2022 and 31 December 2023, PROSPERO code: CRD42024511791. Eligible for inclusion were case reports and case series that presented the aberrant origin of the right subclavian artery. The main outcome was the highlighting of the morphological types of ARSA. In this context, we proposed a new classification system of this anomaly. The secondary outcome was the evaluation of the demographic distribution of the lusoria artery. RESULTS Our search identified 47 articles describing 51 patients with ARSA. The typical course for ARSA is retroesophageal, being registered in 49 out of 51 patients. This malformation is frequently associated with Kommerell diverticulum (15 out of 51), troncus bicaroticus (7 out of 51), and aberrant origins of the right vertebral artery (7 out of 51). We observed a higher incidence of the condition among women (32 out of 51) compared to men (19 out of 51). From a demographic point of view, ARSA is more frequent in the "44 to 57 years" and "58 to 71 years" age ranges. CONCLUSIONS ARSA is a congenital malformation resulting from a defect in the development of the aortic arches. The imaging studies such as computer tomography play a defined diagnostic role.
Collapse
Affiliation(s)
- Alin Horatiu Nedelcu
- Department of Morpho-Functional Science I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.H.N.); (C.C.T.); (C.I.S.); (S.A.P.V.); (A.M.H.); (G.S.); (R.T.T.)
- Radiology Clinic, Recovery Hospital, 700661 Iasi, Romania
| | - Ancuta Lupu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (I.I.); (V.V.L.)
| | - Marius Constantin Moraru
- Department of Morpho-Functional Science I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.H.N.); (C.C.T.); (C.I.S.); (S.A.P.V.); (A.M.H.); (G.S.); (R.T.T.)
| | - Cristina Claudia Tarniceriu
- Department of Morpho-Functional Science I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.H.N.); (C.C.T.); (C.I.S.); (S.A.P.V.); (A.M.H.); (G.S.); (R.T.T.)
| | - Cristinel Ionel Stan
- Department of Morpho-Functional Science I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.H.N.); (C.C.T.); (C.I.S.); (S.A.P.V.); (A.M.H.); (G.S.); (R.T.T.)
| | - Simona Alice Partene Vicoleanu
- Department of Morpho-Functional Science I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.H.N.); (C.C.T.); (C.I.S.); (S.A.P.V.); (A.M.H.); (G.S.); (R.T.T.)
| | - Ana Maria Haliciu
- Department of Morpho-Functional Science I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.H.N.); (C.C.T.); (C.I.S.); (S.A.P.V.); (A.M.H.); (G.S.); (R.T.T.)
| | - Gabriel Statescu
- Department of Morpho-Functional Science I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.H.N.); (C.C.T.); (C.I.S.); (S.A.P.V.); (A.M.H.); (G.S.); (R.T.T.)
| | - Manuela Ursaru
- Department of Surgical Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.U.); (C.D.)
- Radiology Clinic, “Sf Spiridon” County Clinical Emergency Hospital Iasi, 700661 Iasi, Romania
| | - Ciprian Danielescu
- Department of Surgical Sciences I, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (M.U.); (C.D.)
| | - Ileana Ioniuc
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (I.I.); (V.V.L.)
| | - Razvan Tudor Tepordei
- Department of Morpho-Functional Science I, Discipline of Anatomy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (A.H.N.); (C.C.T.); (C.I.S.); (S.A.P.V.); (A.M.H.); (G.S.); (R.T.T.)
| | - Vasile Valeriu Lupu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania; (I.I.); (V.V.L.)
| |
Collapse
|
10
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Identification of novel buffering mechanisms in aortic arch artery development and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530833. [PMID: 38370627 PMCID: PMC10871175 DOI: 10.1101/2023.03.02.530833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Rationale The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease (CHD) arising from defective morphogenesis of pharyngeal arch arteries (PAA) and their derivatives. Objective To uncover mechanisms underlying the robustness of PAA morphogenesis. Methods and Results The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived ECs is regulated by VEGFR2 and Tbx1 . Remarkably, when SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated three-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of one VEGFR2 allele (VEGFR2 SHF-HET ) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2 SHF-KO ) abolishes it. The decrease in SHF-derived ECs in VEGFR2 SHF-HET and VEGFR2 SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2 SHF-KO mutants. Blocking the compensatory response in VEGFR2 SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1 +/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and CHD. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. Conclusions Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling. Nonstandard Abbreviations and Acronyms in Alphabetical Order CHD - congenital heart disease; ECs - endothelial cells; IAA-B - interrupted aortic arch type B; PAA - pharyngeal arch arteries; RERSA - retro-esophageal right subclavian artery; SHF - second heart field; VEGFR2 - Vascular endothelial growth factor receptor 2.
Collapse
|
11
|
Alexander BE, Zhao H, Astrof S. SMAD4: A critical regulator of cardiac neural crest cell fate and vascular smooth muscle development. Dev Dyn 2024; 253:119-143. [PMID: 37650555 PMCID: PMC10842824 DOI: 10.1002/dvdy.652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/07/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND During embryogenesis, cardiac neural crest-derived cells (NCs) migrate into the pharyngeal arches and give rise to the vascular smooth muscle cells (vSMCs) of the pharyngeal arch arteries (PAAs). vSMCs are critical for the remodeling of the PAAs into their final adult configuration, giving rise to the aortic arch and its arteries (AAAs). RESULTS We investigated the role of SMAD4 in NC-to-vSMC differentiation using lineage-specific inducible mouse strains. We found that the expression of SMAD4 in the NC is indelible for regulating the survival of cardiac NCs. Although the ablation of SMAD4 at E9.5 in the NC lineage led to a near-complete absence of NCs in the pharyngeal arches, PAAs became invested with vSMCs derived from a compensatory source. Analysis of AAA development at E16.5 showed that the alternative vSMC source compensated for the lack of NC-derived vSMCs and rescued AAA morphogenesis. CONCLUSIONS Our studies uncovered the requisite role of SMAD4 in the contribution of the NC to the pharyngeal arch mesenchyme. We found that in the absence of SMAD4+ NCs, vSMCs around the PAAs arose from a different progenitor source, rescuing AAA morphogenesis. These findings shed light on the remarkable plasticity of developmental mechanisms governing AAA development.
Collapse
Affiliation(s)
- Brianna E. Alexander
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Molecular Biology, Genetics, and Cancer Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
12
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Semilunar Valve and Aortic Arch Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:777-796. [PMID: 38884748 DOI: 10.1007/978-3-031-44087-8_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The great arteries of the vertebrate carry blood from the heart to the systemic circulation and are derived from the pharyngeal arch arteries. In higher vertebrates, the pharyngeal arch arteries are a symmetrical series of blood vessels that rapidly remodel during development to become the asymmetric aortic arch arteries carrying oxygenated blood from the left ventricle via the outflow tract. At the base of the aorta, as well as the pulmonary trunk, are the semilunar valves. These valves each have three leaflets and prevent the backflow of blood into the heart. During development, the process of aortic arch and valve formation may go wrong, resulting in cardiovascular defects, and these may, at least in part, be caused by genetic mutations. In this chapter, we will review models harboring genetic mutations that result in cardiovascular defects affecting the great arteries and the semilunar valves.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK
| | - Simon D Bamforth
- Newcastle University Biosciences Institute, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Gill E, Bamforth SD. Molecular Pathways and Animal Models of Truncus Arteriosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:853-865. [PMID: 38884754 DOI: 10.1007/978-3-031-44087-8_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In normal cardiovascular development in birds and mammals, the outflow tract of the heart is divided into two distinct channels to separate the oxygenated systemic blood flow from the deoxygenated pulmonary circulation. When the process of outflow tract septation fails, a single common outflow vessel persists resulting in a serious clinical condition known as persistent truncus arteriosus or common arterial trunk. In this chapter, we will review molecular pathways and the cells that are known to play a role in the formation and development of the outflow tract and how genetic manipulation of these pathways in animal models can result in common arterial trunk.
Collapse
Affiliation(s)
- Eleanor Gill
- Newcastle University Biosciences Institute, Newcastle, UK
| | | |
Collapse
|
14
|
Anderson RH, Graham A, Hikspoors JPJM, Lamers WH, Bamforth SD. The advantages of naming rather than numbering the arteries of the pharyngeal arches. Cardiol Young 2023; 33:2139-2147. [PMID: 37800310 DOI: 10.1017/s1047951123003566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Controversies continue as to how many pharyngeal arches, with their contained arteries, are to be found in the developing human. Resolving these controversies is of significance to paediatric cardiologists since many investigating abnormalities of the extrapericardial arterial pathways interpret their findings on the basis of persistence of a fifth set of such arteries within an overall complement of six sets. The evidence supporting such an interpretation is open to question. In this review, we present the history of the existence of six such arteries, emphasising that the initial accounts of human development had provided evidence for the existence of only five sets. We summarise the current evidence that substantiates these initial findings. We then show that the lesions interpreted on the basis of persistence of the non-existing fifth arch arteries are well described on the basis of the persistence of collateral channels, known to exist during normal development, or alternatively due to remodelling of the aortic sac.
Collapse
Affiliation(s)
- Robert H Anderson
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Anthony Graham
- Developmental Neurobiology, Guys Campus, Kings College, London, UK
| | - Jill P J M Hikspoors
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Wouter H Lamers
- Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Simon D Bamforth
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
15
|
Raja J, Datta Aduri RS, Niyogi SG, Naganur S, Mahajan S. A Rare Case of Giant Atypical Patent Ductus Arteriosus. World J Pediatr Congenit Heart Surg 2023; 14:752-753. [PMID: 37287233 DOI: 10.1177/21501351231176209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A broad window-like patent ductus arteriosus (PDA) arising from the transverse aortic arch proximal to the left subclavian artery and without any associated cardiac anomalies in a one-year-old child is rare. This case is reported for the atypical location and unusually large size of the PDA.
Collapse
Affiliation(s)
- Javid Raja
- Department of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Raja Suman Datta Aduri
- Department of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhrashis Guha Niyogi
- Department of Cardiac Anesthesia, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeev Naganur
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Mahajan
- Department of Cardiothoracic and Vascular Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Graham A, Hikspoors JPJM, Lamers WH, Anderson RH, Bamforth SD. Morphogenetic processes in the development and evolution of the arteries of the pharyngeal arches: their relations to congenital cardiovascular malformations. Front Cell Dev Biol 2023; 11:1259175. [PMID: 37900278 PMCID: PMC10602722 DOI: 10.3389/fcell.2023.1259175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
The heart and aortic arch arteries in amniotes form a double circulation, taking oxygenated blood from the heart to the body and deoxygenated blood to the lungs. These major vessels are formed in embryonic development from a series of paired and symmetrical arteries that undergo a complex remodelling process to form the asymmetric arch arteries in the adult. These embryonic arteries form in the pharyngeal arches, which are symmetrical bulges on the lateral surface of the head. The pharyngeal arches, and their associated arteries, are found in all classes of vertebrates, but the number varies, typically with the number of arches reducing through evolution. For example, jawed vertebrates have six pairs of pharyngeal arch arteries but amniotes, a clade of tetrapod vertebrates, have five pairs. This had led to the unusual numbering system attributed to each of the pharyngeal arch arteries in amniotes (1, 2, 3, 4, and 6). We, therefore, propose that these instead be given names to reflect the vessel: mandibular (1st), hyoid (2nd), carotid (3rd), aortic (4th) and pulmonary (most caudal). Aberrant arch artery formation or remodelling leads to life-threatening congenital cardiovascular malformations, such as interruption of the aortic arch, cervical origin of arteries, and vascular rings. We discuss why an alleged fifth arch artery has erroneously been used to interpret congenital cardiac lesions, which are better explained as abnormal collateral channels, or remodelling of the aortic sac.
Collapse
Affiliation(s)
- Anthony Graham
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | | | - Wouter H. Lamers
- Department of Anatomy and Embryology, Maastricht University, Maastricht, Netherlands
| | - Robert H. Anderson
- Centre for Life, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D. Bamforth
- Centre for Life, Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Graham A, Hikspoors JPJM, Anderson RH, Lamers WH, Bamforth SD. A revised terminology for the pharyngeal arches and the arch arteries. J Anat 2023; 243:564-569. [PMID: 37248750 PMCID: PMC10485586 DOI: 10.1111/joa.13890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
The pharyngeal arches are a series of bulges found on the lateral surface of the head of vertebrate embryos. In humans, and other amniotes, there are five pharyngeal arches and traditionally these have been labelled from cranial to caudal-1, 2, 3, 4 and 6. This numbering is odd-there is no '5'. Two reasons have been given for this. One is that during development, a 'fifth' arch forms transiently but is not fully realised. The second is that this numbering fits with the evolutionary history of the pharyngeal arches. Recent studies, however, have shown that neither of these justifications have basis. The traditional labelling is problematic as it causes confusion to those trying to understand the development of the pharyngeal arches. In particular, it creates difficulties in the field of congenital cardiac malformations, where it is common to find congenital cardiac lesions interpreted on the basis of persistence of the postulated arteries of the fifth arch. To resolve these problems and to take account of the recent studies that have clarified pharyngeal arch development, we propose a new terminology for the pharyngeal arches. In this revised scheme, the pharyngeal arches are to be labelled as follows-the first, most cranial, the mandibular (M), the second, the hyoid (H), the third, the carotid (C), the fourth, the aortic (A) and the last, most caudal, the pulmonary (P).
Collapse
Affiliation(s)
- Anthony Graham
- Centre for Developmental Neurobiology, King's College LondonLondonUK
| | | | - Robert H. Anderson
- Biosciences Institute, Faculty of Medical SciencesNewcastle University, Centre for LifeNewcastleUK
| | - Wouter H. Lamers
- Department of Anatomy & EmbryologyMaastricht UniversityMaastrichtERThe Netherlands
| | - Simon D. Bamforth
- Biosciences Institute, Faculty of Medical SciencesNewcastle University, Centre for LifeNewcastleUK
| |
Collapse
|
18
|
Bueno HF, Nimchinsky EA. Mapping of Anatomic Variants of the Proximal Vertebral Artery in Relation to Embryology. AJNR Am J Neuroradiol 2023; 44:943-950. [PMID: 37500289 PMCID: PMC10411829 DOI: 10.3174/ajnr.a7942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND AND PURPOSE Variations in the origins and courses of the vertebral arteries are relatively rare but may be clinically meaningful. We hypothesize a relationship between variant origins of the vertebral arteries and their levels of entry to the foramina transversaria. MATERIALS AND METHODS In this retrospective study of CT angiograms, we document the frequency and types of vertebral artery variants, correlating origins with levels of entry to the foramina transversaria. RESULTS Vertebral artery variants were observed in 18.7% of a sample of 460 CT angiograms of the neck. Right-sided variants were less common than left (44.2% versus 68.6%, with 12.8% bilateral) and more common than previously thought. The most common variant on both sides was a variant origin proximal to the normal vertebral artery origin and entry at C5. Most right vertebral arteries originating within 2 cm of the origin of the right subclavian artery and left vertebral arteries originating between the left common carotid and subclavian arteries were "high-entry" variants. Most "low-entry" variants, entering at C7, took origin from the arch just distal to the left subclavian artery or at a common origin with the costocervical trunk. Multiple origins or accessory vertebral arteries were also described, and each moiety followed the same rules described for single origins. A map of vertebral artery origins mirrored the map of aortic arch embryology. CONCLUSIONS Vertebral artery variants follow certain well-defined patterns that correlate with the embryology of the aortic arch and great vessels.
Collapse
Affiliation(s)
- H F Bueno
- From the Department of Radiology, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - E A Nimchinsky
- From the Department of Radiology, Rutgers-New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
19
|
Ruf I, Meng J, Fostowicz-Frelik Ł. Auditory region circulation in Lagomorpha: the internal carotid artery pattern revisited. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220088. [PMID: 37183894 PMCID: PMC10184246 DOI: 10.1098/rstb.2022.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The internal carotid artery (ICA) is one of the major vessels in the cranial circulation. Characters concerning the ICA, such as its course in the auditory region, have been employed frequently in phylogenetic analyses of mammals, including extinct taxa. In lagomorphs, however, our knowledge on vascular features of the auditory region has been based predominantly on living species, mostly on the European rabbit. We present the first survey on 11 out of 12 extant genera and key fossil taxa such as stem lagomorphs and early crown representatives (Archaeolagus and Prolagus). The ICA pattern shows a modified transpromontorial course in stem taxa (Litolagus, Megalagus and Palaeolagus) and Archaeolagus, which we propose as the ancestral character state for Lagomorpha, similar to that for the earliest rodents, plesiadapids and scandentians. The ICA pattern in leporids is perbullar, but shows structural similarities to stem taxa, whereas the extrabullar ICA course in Ochotona is apparently a highly derived condition. Prolagus shows a mixed character state between leporids and Ochotona in its ICA route. The persistence of the transpromontorial ICA course and similarities in the carotid canal structure among stem taxa and crown leporids support morphological conservatism in Lagomorpha, in contrast to their sister clade Rodentia. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, 60325 Frankfurt am Main, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Jin Meng
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Łucja Fostowicz-Frelik
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, 00-818 Warsaw, Poland
| |
Collapse
|
20
|
Ramos-Alicea D, Marcano-Anaya J, Loomis M, Ramirez N, Quiñones-Rodríguez JI. Unusual Vascular Distribution in the Third Segment of the Axillary Artery. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050913. [PMID: 37241145 DOI: 10.3390/medicina59050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
The third segment of the axillary artery (TSAA) is the main vascular supply to the muscles of the upper limb. Numerous studies have reported atypical branching patterns of the TSAA, which can complicate operative interventions involving structures supplied by this segment of the artery. Our current study evaluated a previously undescribed branching pattern in the TSAA, in which the subscapular artery gave rise to an unusual posterior humeral circumflex artery, and a second subscapular artery. In addition, a third variant was found in the origin of the thoracodorsal artery: two collateral horizontal arteries supplying the deep medial surface of the latissimus dorsi muscle. Vascular anatomical variants may affect the classical upper limb interventions requiring modification of the traditional surgical approaches. This case report aims to evaluate these variants from a clinical perspective regarding the management of upper limb trauma, axillary, breast, and muscle flap surgery.
Collapse
Affiliation(s)
- Daniel Ramos-Alicea
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960, USA
| | - Jordan Marcano-Anaya
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960, USA
| | - Mario Loomis
- Department of Clinical Anatomy, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Norman Ramirez
- Department of Anatomy and Cell Biology, School of Medicine, Universidad Central del Caribe, Bayamon, PR 00960, USA
- Department of Pediatric Orthopedic Surgery, Mayaguez Medical Center, Mayaguez, PR 00960, USA
| | - Jailenne I Quiñones-Rodríguez
- Department of Clinical Anatomy, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| |
Collapse
|
21
|
Holroyd NA, Walsh C, Gourmet L, Walker-Samuel S. Quantitative Image Processing for Three-Dimensional Episcopic Images of Biological Structures: Current State and Future Directions. Biomedicines 2023; 11:909. [PMID: 36979887 PMCID: PMC10045950 DOI: 10.3390/biomedicines11030909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Episcopic imaging using techniques such as High Resolution Episcopic Microscopy (HREM) and its variants, allows biological samples to be visualized in three dimensions over a large field of view. Quantitative analysis of episcopic image data is undertaken using a range of methods. In this systematic review, we look at trends in quantitative analysis of episcopic images and discuss avenues for further research. Papers published between 2011 and 2022 were analyzed for details about quantitative analysis approaches, methods of image annotation and choice of image processing software. It is shown that quantitative processing is becoming more common in episcopic microscopy and that manual annotation is the predominant method of image analysis. Our meta-analysis highlights where tools and methods require further development in this field, and we discuss what this means for the future of quantitative episcopic imaging, as well as how annotation and quantification may be automated and standardized across the field.
Collapse
Affiliation(s)
| | - Claire Walsh
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
- Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
| | - Lucie Gourmet
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| | - Simon Walker-Samuel
- Centre for Computational Medicine, University College London, London WC1E 6DD, UK
| |
Collapse
|
22
|
Alexander BE, Zhao H, Astrof S. SMAD4: A Critical Regulator of Cardiac Neural Crest Cell Fate and Vascular Smooth Muscle Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532676. [PMID: 36993156 PMCID: PMC10055180 DOI: 10.1101/2023.03.14.532676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background The pharyngeal arch arteries (PAAs) are precursor vessels which remodel into the aortic arch arteries (AAAs) during embryonic cardiovascular development. Cardiac neural crest cells (NCs) populate the PAAs and differentiate into vascular smooth muscle cells (vSMCs), which is critical for successful PAA-to-AAA remodeling. SMAD4, the central mediator of canonical TGFβ signaling, has been implicated in NC-to-vSMC differentiation; however, its distinct roles in vSMC differentiation and NC survival are unclear. Results Here, we investigated the role of SMAD4 in cardiac NC differentiation to vSMCs using lineage-specific inducible mouse strains in an attempt to avoid early embryonic lethality and NC cell death. We found that with global SMAD4 loss, its role in smooth muscle differentiation could be uncoupled from its role in the survival of the cardiac NC in vivo . Moreover, we found that SMAD4 may regulate the induction of fibronectin, a known mediator of NC-to-vSMC differentiation. Finally, we found that SMAD4 is required in NCs cell-autonomously for NC-to-vSMC differentiation and for NC contribution to and persistence in the pharyngeal arch mesenchyme. Conclusions Overall, this study demonstrates the critical role of SMAD4 in the survival of cardiac NCs, their differentiation to vSMCs, and their contribution to the developing pharyngeal arches.
Collapse
|
23
|
Teletin M, Mark M, Wendling O, Vernet N, Féret B, Klopfenstein M, Herault Y, Ghyselinck NB. Timeline of Developmental Defects Generated upon Genetic Inhibition of the Retinoic Acid Receptor Signaling Pathway. Biomedicines 2023; 11:biomedicines11010198. [PMID: 36672706 PMCID: PMC9856201 DOI: 10.3390/biomedicines11010198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
It has been established for almost 30 years that the retinoic acid receptor (RAR) signalling pathway plays essential roles in the morphogenesis of a large variety of organs and systems. Here, we used a temporally controlled genetic ablation procedure to precisely determine the time windows requiring RAR functions. Our results indicate that from E8.5 to E9.5, RAR functions are critical for the axial rotation of the embryo, the appearance of the sinus venosus, the modelling of blood vessels, and the formation of forelimb buds, lung buds, dorsal pancreatic bud, lens, and otocyst. They also reveal that E9.5 to E10.5 spans a critical developmental period during which the RARs are required for trachea formation, lung branching morphogenesis, patterning of great arteries derived from aortic arches, closure of the optic fissure, and growth of inner ear structures and of facial processes. Comparing the phenotypes of mutants lacking the 3 RARs with that of mutants deprived of all-trans retinoic acid (ATRA) synthesising enzymes establishes that cardiac looping is the earliest known morphogenetic event requiring a functional ATRA-activated RAR signalling pathway.
Collapse
Affiliation(s)
- Marius Teletin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), F-67000 Strasbourg, France
| | - Manuel Mark
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
- Service de Biologie de la Reproduction, Hôpitaux Universitaires de Strasbourg (HUS), F-67000 Strasbourg, France
- Institut Clinique de la Souris (ICS), Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France
- Correspondence:
| | - Olivia Wendling
- Institut Clinique de la Souris (ICS), Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Nadège Vernet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
| | - Betty Féret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
| | - Muriel Klopfenstein
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
| | - Yann Herault
- Institut Clinique de la Souris (ICS), Université de Strasbourg, CNRS, INSERM, CELPHEDIA, PHENOMIN, 1 Rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| | - Norbert B. Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Sante et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 Rue Laurent Fries, BP-10142, F-67404 Illkirch Graffenstaden, France
| |
Collapse
|
24
|
Interrupted Right Aortic Arch With Anomalous Origin of Left Pulmonary Artery From Ascending Aorta and Isolation of Left Subclavian Artery. Can J Cardiol 2022; 38:1759-1762. [PMID: 35948194 DOI: 10.1016/j.cjca.2022.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
|
25
|
Pandey NN, Nagulakonda S, Arvind B, Kumar S. Separate origin of left external and internal carotid arteries directly from aortic arch in a patient with double outlet right ventricle. J Card Surg 2022; 37:2891-2893. [PMID: 35766014 DOI: 10.1111/jocs.16731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
We report a case of a 1-year-old boy with double outlet right ventricle where computed tomography (CT) angiography incidentally demonstrated the separate origin of the left external and internal carotid arteries directly from the left-sided aortic arch with absence of a left common carotid artery. The case highlights the underlying embryological hypothesis as well as the importance of CT angiography in identifying anomalies of the aortic arch and arch vessels in the setting of complex congenital heart defects.
Collapse
Affiliation(s)
- Niraj Nirmal Pandey
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Sravan Nagulakonda
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Balaji Arvind
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Kumar
- Department of Cardiovascular Radiology & Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Steele RE, Sanders R, Phillips HM, Bamforth SD. PAX Genes in Cardiovascular Development. Int J Mol Sci 2022; 23:7713. [PMID: 35887061 PMCID: PMC9324344 DOI: 10.3390/ijms23147713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/25/2023] Open
Abstract
The mammalian heart is a four-chambered organ with systemic and pulmonary circulations to deliver oxygenated blood to the body, and a tightly regulated genetic network exists to shape normal development of the heart and its associated major arteries. A key process during cardiovascular morphogenesis is the septation of the outflow tract which initially forms as a single vessel before separating into the aorta and pulmonary trunk. The outflow tract connects to the aortic arch arteries which are derived from the pharyngeal arch arteries. Congenital heart defects are a major cause of death and morbidity and are frequently associated with a failure to deliver oxygenated blood to the body. The Pax transcription factor family is characterised through their highly conserved paired box and DNA binding domains and are crucial in organogenesis, regulating the development of a wide range of cells, organs and tissues including the cardiovascular system. Studies altering the expression of these genes in murine models, notably Pax3 and Pax9, have found a range of cardiovascular patterning abnormalities such as interruption of the aortic arch and common arterial trunk. This suggests that these Pax genes play a crucial role in the regulatory networks governing cardiovascular development.
Collapse
Affiliation(s)
| | | | | | - Simon D. Bamforth
- Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Centre for Life, Newcastle NE1 3BZ, UK; (R.E.S.); (R.S.); (H.M.P.)
| |
Collapse
|