1
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci. mSphere 2024; 9:e0077123. [PMID: 38319113 PMCID: PMC10900908 DOI: 10.1128/msphere.00771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example is the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium without human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight Streptococcus species individually and found saliva to positively benefit growth rates while negatively influencing biofilm biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese leading to an advantage over its opponent. Our report highlights observable changes in microbial behaviors through leveraging environmental- and host-supplied resources over their competitors. IMPORTANCE Dental caries (tooth decay) is the most prevalent disease for both children and adults nationwide. Caries are initiated from demineralization of the enamel due to organic acid production through the metabolic activity of oral bacteria growing in biofilm communities attached to the tooth's surface. Mutans group streptococci are closely associated with caries development and initiation of the cariogenic cycle, which decreases the amount of acid-sensitive, health-associated commensal bacteria while selecting for aciduric and acidogenic species that then further drives the disease process. Defining the exchanges that occur between mutans group streptococci and oral commensals in a condition that closely mimics their natural environment is of critical need toward identifying factors that can influence odontopathogen establishment, persistence, and outgrowth. The goal of our research is to develop strategies, potentially through manipulation of microbial interactions characterized here, that prevent the emergence of mutans group streptococci while keeping the protective flora intact.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
2
|
Radman K, Jelić Matošević Z, Žilić D, Crnolatac I, Bregović N, Kveder M, Piantanida I, Fernandes PA, Ašler IL, Bertoša B. Structural and dynamical changes of the Streptococcus gordonii metalloregulatory ScaR protein induced by Mn 2+ ion binding. Int J Biol Macromol 2023; 253:127572. [PMID: 37866578 DOI: 10.1016/j.ijbiomac.2023.127572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Divalent metal ions are essential micronutrients for many intercellular reactions. Maintaining their homeostasis is necessary for the survival of bacteria. In Streptococcus gordonii, one of the primary colonizers of the tooth surface, the cellular concentration of manganese ions (Mn2+) is regulated by the manganese-sensing transcriptional factor ScaR which controls the expression of proteins involved in manganese homeostasis. To resolve the molecular mechanism through which the binding of Mn2+ ions increases the binding affinity of ScaR to DNA, a variety of computational (QM and MD) and experimental (ITC, DSC, EMSA, EPR, and CD) methods were applied. The computational results showed that Mn2+ binding induces a conformational change in ScaR that primarily affects the position of the DNA binding domains and, consequently, the DNA binding affinity of the protein. In addition, experimental results revealed a 1:4 binding stoichiometry between ScaR dimer and Mn2+ ions, while the computational results showed that the binding of Mn2+ ions in the primary binding sites is sufficient to induce the observed conformational change of ScaR.
Collapse
Affiliation(s)
- Katarina Radman
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Zoe Jelić Matošević
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Dijana Žilić
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| | - Ivo Crnolatac
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| | - Nikola Bregović
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Marina Kveder
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| | - Ivo Piantanida
- Division of Organic Chemistry & Biochemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Ivana Leščić Ašler
- Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia.
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
3
|
Cellier MFM. Slc11 Synapomorphy: A Conserved 3D Framework Articulating Carrier Conformation Switch. Int J Mol Sci 2023; 24:15076. [PMID: 37894758 PMCID: PMC10606218 DOI: 10.3390/ijms242015076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Transmembrane carriers of the Slc11 family catalyze proton (H+)-dependent uptake of divalent metal ions (Me2+) such as manganese and iron-vital elements coveted during infection. The Slc11 mechanism of high-affinity Me2+ cell import is selective and conserved between prokaryotic (MntH) and eukaryotic (Nramp) homologs, though processes coupling the use of the proton motive force to Me2+ uptake evolved repeatedly. Adding bacterial piracy of Nramp genes spread in distinct environmental niches suggests selective gain of function that may benefit opportunistic pathogens. To better understand Slc11 evolution, Alphafold (AF2)/Colabfold (CF) 3D predictions for bacterial sequences from sister clades of eukaryotic descent (MCb and MCg) were compared using both native and mutant templates. AF2/CF model an array of native MCb intermediates spanning the transition from outwardly open (OO) to inwardly open (IO) carriers. In silico mutagenesis targeting (i) a set of (evolutionarily coupled) sites that may define Slc11 function (putative synapomorphy) and (ii) residues from networked communities evolving during MCb transition indicates that Slc11 synapomorphy primarily instructs a Me2+-selective conformation switch which unlocks carrier inner gate and contributes to Me2+ binding site occlusion and outer gate locking. Inner gate opening apparently proceeds from interaction between transmembrane helix (h) h5, h8 and h1a. MCg1 xenologs revealed marked differences in carrier shape and plasticity, owing partly to an altered intramolecular H+ network. Yet, targeting Slc11 synapomorphy also converted MCg1 IO models to an OO state, apparently mobilizing the same residues to control gates. But MCg1 response to mutagenesis differed, with extensive divergence within this clade correlating with MCb-like modeling properties. Notably, MCg1 divergent epistasis marks the emergence of the genus Bordetella-Achromobacter. Slc11 synapomorphy localizes to the 3D areas that deviate least among MCb and MCg1 models (either IO or OO) implying that it constitutes a 3D network of residues articulating a Me2+-selective carrier conformation switch which is maintained in fast-evolving clades at the cost of divergent epistatic interactions impacting carrier shape and dynamics.
Collapse
Affiliation(s)
- Mathieu F M Cellier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, QC H7V 1B7, Canada
| |
Collapse
|
4
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human Saliva Modifies Growth, Biofilm Architecture and Competitive Behaviors of Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554151. [PMID: 37662325 PMCID: PMC10473590 DOI: 10.1101/2023.08.21.554151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example are the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium that was absent of human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight streptococci species individually, and found saliva to positively benefit growth rates while negatively influencing biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese to give it an advantage over its opponent. Our report highlights observable changes in microbial behaviors via leveraging environmental- and host-supplied resources over their competitors.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Daniel I Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
5
|
Liu S, Zhang L, Luo N, Wang M, Tang C, Jing J, Chen H, Hu Q, Tan L, Ma X, Zou Y. Metal mixture exposure and the risk for immunoglobulin A nephropathy: Evidence from weighted quantile sum regression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87783-87792. [PMID: 37434053 DOI: 10.1007/s11356-023-28706-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common type of glomerulonephritis in adults worldwide. Environmental metal exposure has been reported to be involved in the pathogenic mechanisms of kidney diseases, yet no further epidemiological study has been conducted to assess the effects of metal mixture exposure on IgAN risk. In this study, we conducted a matched case‒control design with three controls for each patient to investigate the association between metal mixture exposure and IgAN risk. A total of 160 IgAN patients and 480 healthy controls were matched for age and sex. Plasma levels of arsenic, lead, chromium, manganese, cobalt, copper, zinc, and vanadium were measured using inductively coupled plasma mass spectrometry. We used a conditional logistic regression model to assess the association between individual metals and IgAN risk, and a weighted quantile sum (WQS) regression model to analyze the effects of metal mixtures on IgAN risk. Restricted cubic splines were used to evaluate overall associations between plasma metal concentrations and estimated glomerular filtration rate (eGFR) levels. We observed that except for Cu, all the metals analyzed were nonlinearly associated with decreased eGFR, and higher concentrations of arsenic and lead were associated with elevated IgAN risk in both single-metal [3.29 (1.94, 5.57), 6.10 (3.39, 11.0), respectively] and multiple-metal [3.04 (1.66, 5.57), 4.70 (2.47, 8.97), respectively] models. Elevated manganese [1.76 (1.09, 2.83)] levels were associated with increased IgAN risk in the single-metal model. Copper was inversely related to IgAN risk in both single-metal [0.392 (0.238, 0.645)] and multiple-metal [0.357 (0.200, 0.638)] models. The WQS indices in both positive [2.04 (1.68, 2.47)] and negative [0.717 (0.603, 0.852)] directions were associated with IgAN risk. Lead, arsenic, and vanadium contributed significant weights (0.594, 0.195, and 0.191, respectively) in the positive direction; copper, cobalt, and chromium carried significant weights (0.538, 0.253, and 0.209, respectively). In conclusion, metal exposure was related to IgAN risk. Lead, arsenic, and copper were all significantly weighted factors of IgAN development, which may require further investigation.
Collapse
Affiliation(s)
- Shaohui Liu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Li'e Zhang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Na Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Nutriology, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, China
| | - Mingjun Wang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chuanqiao Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiajun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qiuhua Hu
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lina Tan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
7
|
Wildeman AS, Patel NK, Cormack BP, Culotta VC. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. PLoS Pathog 2023; 19:e1011478. [PMID: 37363924 PMCID: PMC10328360 DOI: 10.1371/journal.ppat.1011478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Metals such as Fe, Cu, Zn, and Mn are essential trace nutrients for all kingdoms of life, including microbial pathogens and their hosts. During infection, the mammalian host attempts to starve invading microbes of these micronutrients through responses collectively known as nutritional immunity. Nutritional immunity for Zn, Fe and Cu has been well documented for fungal infections; however Mn handling at the host-fungal pathogen interface remains largely unexplored. This work establishes the foundation of fungal resistance against Mn associated nutritional immunity through the characterization of NRAMP divalent metal transporters in the opportunistic fungal pathogen, Candida albicans. Here, we identify C. albicans Smf12 and Smf13 as two NRAMP transporters required for cellular Mn accumulation. Single or combined smf12Δ/Δ and smf13Δ/Δ mutations result in a 10-80 fold reduction in cellular Mn with an additive effect of double mutations and no losses in cellular Cu, Fe or Zn. As a result of low cellular Mn, the mutants exhibit impaired activity of mitochondrial Mn-superoxide dismutase 2 (Sod2) and cytosolic Mn-Sod3 but no defects in cytosolic Cu/Zn-Sod1 activity. Mn is also required for activity of Golgi mannosyltransferases, and smf12Δ/Δ and smf13Δ/Δ mutants show a dramatic loss in cell surface phosphomannan and in glycosylation of proteins, including an intracellular acid phosphatase and a cell wall Cu-only Sod5 that is key for oxidative stress resistance. Importantly, smf12Δ/Δ and smf13Δ/Δ mutants are defective in formation of hyphal filaments, a deficiency rescuable by supplemental Mn. In a disseminated mouse model for candidiasis where kidney is the primary target tissue, we find a marked loss in total kidney Mn during fungal invasion, implying host restriction of Mn. In this model, smf12Δ/Δ and smf13Δ/Δ C. albicans mutants displayed a significant loss in virulence. These studies establish a role for Mn in Candida pathogenesis.
Collapse
Affiliation(s)
- Asia S Wildeman
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Naisargi K Patel
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|