1
|
Aravindan N, Vitali DG, Breuer J, Oberst J, Zalckvar E, Schuldiner M, Rapaport D. Mpf1 affects the dual distribution of tail-anchored proteins between mitochondria and peroxisomes. EMBO Rep 2025; 26:2622-2653. [PMID: 40175596 PMCID: PMC12116889 DOI: 10.1038/s44319-025-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Most cellular proteins require targeting to a distinct cellular compartment to function properly. A subset of proteins is distributed to two or more destinations in the cell and little is known about the mechanisms controlling the process of dual/multiple targeting. Here, we provide insight into the mechanism of dual targeting of proteins between mitochondria and peroxisomes. We perform a high throughput microscopy screen in which we visualize the location of the model tail-anchored proteins Fis1 and Gem1 in the background of mutants in virtually all yeast genes. This screen identifies three proteins, whose absence results in a higher portion of the tail-anchored proteins in peroxisomes: the two paralogues Tom70, Tom71, and the uncharacterized gene YNL144C that we rename mitochondria and peroxisomes factor 1 (Mpf1). We characterize Mpf1 to be an unstable protein that associates with the cytosolic face of the mitochondrial outer membrane. Furthermore, our study uncovers a unique contribution of Tom71 to the regulation of dual targeting. Collectively, our study reveals, for the first time, factors that influence the dual targeting of proteins between mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Daniela G Vitali
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Julia Breuer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jessica Oberst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Hu S, Wang Z, Ding X, Yao D, Du Y, Kong X. The roles of IDH2 and glutathione metabolism in cetuximab resistance in head and neck squamous cell carcinoma investigated by metabolomics and transcriptomics. Cell Signal 2025; 127:111620. [PMID: 39842530 DOI: 10.1016/j.cellsig.2025.111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/29/2024] [Accepted: 01/19/2025] [Indexed: 01/24/2025]
Abstract
Cetuximab resistance is a significant challenge in the treatment of head and neck squamous cell carcinoma (HNSCC). In this study, cetuximab-resistant HNSCC cell lines were established, and untargeted metabolomics was used to detect differences in metabolite profiles between sensitive and resistant cell lines. It was found that glutathione metabolism significantly differed between the sensitive and resistant lines. Combining these findings with transcriptome data, correlation analysis of metabolites revealed that IDH2 regulated glutathione metabolism and contributed to cetuximab resistance in FaDu cells. In vitro experiments showed that IDH2 was highly expressed in FaDu-CR cells, and IDH2 knockdown significantly enhanced the sensitivity of FaDu and FaDu-CR cells to cetuximab. IDH2 knockdown reduced GSH levels and GPX4 expression in FaDu and FaDu-CR cells under cetuximab treatment, while increasing lipid ROS levels. In vivo experiments demonstrated that IDH2 knockdown decreased the tumorigenic ability of FaDu-CR cells in nude mice treated with cetuximab, as well as reduced GPX4 and Ki67 levels in tumor tissues. In conclusion, IDH2 regulated glutathione metabolism and contributed to cetuximab resistance in HNSCC. This study explores strategies to ameliorate cetuximab resistance in HNSCC preclinical models, providing new insights for reversing cetuximab resistance in HNSCC.
Collapse
Affiliation(s)
- Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zian Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xu Ding
- Department of Otolaryngology Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoke Yao
- Department of Anesthesiology and Perioperative Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Kong
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Bäcker N, Ast J, Martorana D, Renicke C, Berger J, Mais CN, Christ M, Stehlik T, Heimerl T, Wernet V, Taxis C, Pané-Farré J, Bölker M, Klatt JM, Sandrock B, Schink KO, Bange G, Freitag J. Peroxisomal core structures segregate diverse metabolic pathways. Nat Commun 2025; 16:1802. [PMID: 39979331 PMCID: PMC11842775 DOI: 10.1038/s41467-025-57053-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/30/2025] [Indexed: 02/22/2025] Open
Abstract
Peroxisomes are single membrane-bounded oxidative organelles with various metabolic functions including β-oxidation of fatty acids. Peroxisomes of many species confine certain metabolic enzymes into sub-compartments sometimes visible as electron dense cores. Why these structures form is largely unknown. Here, we report that in the smut fungus Ustilago maydis detergent resistant core structures are enriched for different enzymes excluding several key enzymes of the β-oxidation pathway. This confinement contributes to generation of peroxisome subpopulations that differ in their enzyme content. We identify short amino acid motifs necessary and sufficient for protein self-assembly into aggregates in vitro. The motifs trigger enrichment in cores in vivo and are active in mammalian cells. Perturbation of core assembly via variation of such motifs affects peroxisome function in U. maydis strains challenged with fatty acids. Thus, protein core structures serve to compartmentalize the lumen of peroxisomes thereby preventing interference of biochemical reactions. Metabolic compartmentalization of peroxisomes via assembly of specific proteins may occur in other organisms as well.
Collapse
Affiliation(s)
- Nils Bäcker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Julia Ast
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | | - Christian Renicke
- Department of Biology, Philipps-University Marburg, Marburg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jil Berger
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Cristopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Marvin Christ
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - Christof Taxis
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Health and Medical University Erfurt, Erfurt, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Michael Bölker
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Judith M Klatt
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Microcosm Earth Center, Philipps-University Marburg & Max-Planck-Institute for terrestrial Microbiology, Marburg, Germany
| | - Björn Sandrock
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Kay Oliver Schink
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway.
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany.
- Max-Planck-Institute for terrestrial Microbiology, Molecular Physiology of Microbes, Marburg, Germany.
| | - Johannes Freitag
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
- Department of Biology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
4
|
Aravindan N, Rapaport D. A modified procedure for separating yeast peroxisomes from mitochondria. Methods Enzymol 2024; 706:37-57. [PMID: 39455225 DOI: 10.1016/bs.mie.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria and peroxisomes are mutually dependent organelles that share several membrane proteins that carry out the same function in both organelles. To study the unique features of these dually localized proteins in each of the two organelles, it is essential to separate mitochondria from peroxisomes. Isolating organelles from cells of Baker's yeast, Saccharomyces cerevisiae, is crucial for our understanding of the biogenesis and functions of proteins. Traditionally, subcellular fractionation and isolation of individual organelles by differential centrifugation benefit from the specific and unique density of each organelle. However, when yeast cells are grown under normal conditions, certain organelles like mitochondria and peroxisomes share strikingly similar densities. This similarity challenges the separation of these organelles from one another. In this chapter, we describe an optimized procedure to address this task. We depict growth conditions that would favor stimulation of peroxisomes to increase their number and density, and portray organellar isolation followed by gradient centrifugation, enabling an improved separation of both organelles. Additionally, we illustrate the advantage of the procedure to study the dual localization of the membrane protein Fis1.
Collapse
Affiliation(s)
- Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
5
|
Launay N, Lopez-Erauskin J, Bianchi P, Guha S, Parameswaran J, Coppa A, Torreni L, Schlüter A, Fourcade S, Paredes-Fuentes AJ, Artuch R, Casasnovas C, Ruiz M, Pujol A. Imbalanced mitochondrial dynamics contributes to the pathogenesis of X-linked adrenoleukodystrophy. Brain 2024; 147:2069-2084. [PMID: 38763511 DOI: 10.1093/brain/awae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 05/21/2024] Open
Abstract
The peroxisomal disease adrenoleukodystrophy (X-ALD) is caused by loss of the transporter of very-long-chain fatty acids (VLCFAs), ABCD1. An excess of VLCFAs disrupts essential homeostatic functions crucial for axonal maintenance, including redox metabolism, glycolysis and mitochondrial respiration. As mitochondrial function and morphology are intertwined, we set out to investigate the role of mitochondrial dynamics in X-ALD models. Using quantitative 3D transmission electron microscopy, we revealed mitochondrial fragmentation in corticospinal axons in Abcd1- mice. In patient fibroblasts, an excess of VLCFAs triggers mitochondrial fragmentation through the redox-dependent phosphorylation of DRP1 (DRP1S616). The blockade of DRP1-driven fission by the peptide P110 effectively preserved mitochondrial morphology. Furthermore, mRNA inhibition of DRP1 not only prevented mitochondrial fragmentation but also protected axonal health in a Caenorhabditis elegans model of X-ALD, underscoring DRP1 as a potential therapeutic target. Elevated levels of circulating cell-free mtDNA in patients' CSF align this leukodystrophy with primary mitochondrial disorders. Our findings underscore the intricate interplay between peroxisomal dysfunction, mitochondrial dynamics and axonal integrity in X-ALD, shedding light on potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Nathalie Launay
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Jone Lopez-Erauskin
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Patrizia Bianchi
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Physiology and Immunology, Facultat de Medicina, Institut de Neurociències and Department of Cell Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sanjib Guha
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Nautilus Biotechnology, San Carlos, CA 94070, USA
| | - Janani Parameswaran
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Andrea Coppa
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Lorenzo Torreni
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Programa de Doctorat en Biomedicina, Universitat de Barcelona, 08193 Barcelona, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Abraham J Paredes-Fuentes
- Division of Inborn Errors of Metabolism-IBC, Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, 08028 Barcelona, Spain
| | - Rafael Artuch
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Neuromuscular Unit, Neurology Department, Bellvitge University Hospital, Universitat de Barcelona, 08907 Lhospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Institute of Neuropathology, IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
6
|
Pedersen MP, Wolters JC, de Boer R, Krikken AM, van der Klei IJ. The Hansenula polymorpha mitochondrial carrier family protein Mir1 is dually localized at peroxisomes and mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119742. [PMID: 38702017 DOI: 10.1016/j.bbamcr.2024.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Peroxisomes are ubiquitous cell organelles involved in various metabolic pathways. In order to properly function, several cofactors, substrates and products of peroxisomal enzymes need to pass the organellar membrane. So far only a few transporter proteins have been identified. We analysed peroxisomal membrane fractions purified from the yeast Hansenula polymorpha by untargeted label-free quantitation mass spectrometry. As expected, several known peroxisome-associated proteins were enriched in the peroxisomal membrane fraction. In addition, several other proteins were enriched, including mitochondrial transport proteins. Localization studies revealed that one of them, the mitochondrial phosphate carrier Mir1, has a dual localization on mitochondria and peroxisomes. To better understand the molecular mechanisms of dual sorting, we localized Mir1 in cells lacking Pex3 or Pex19, two peroxins that play a role in targeting of peroxisomal membrane proteins. In these cells Mir1 only localized to mitochondria, indicating that Pex3 and Pex19 are required to sort Mir1 to peroxisomes. Analysis of the localization of truncated versions of Mir1 in wild-type H. polymorpha cells revealed that most of them localized to mitochondria, but only one, consisting of the transmembrane domains 3-6, was peroxisomal. Peroxisomal localization of this construct was lost in a MIR1 deletion strain, indicating that full-length Mir1 was required for the localization of the truncated protein to peroxisomes. Our data suggest that only full-length Mir1 sorts to peroxisomes, while Mir1 contains multiple regions with mitochondrial sorting information. Data are available via ProteomeXchange with identifier PXD050324.
Collapse
Affiliation(s)
- Marc Pilegaard Pedersen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
7
|
Freitag J, Stehlik T, Bange G. Mitochondria, Peroxisomes and Beyond-How Dual Targeting Regulates Organelle Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241264254. [PMID: 39364173 PMCID: PMC11447717 DOI: 10.1177/25152564241264254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 10/05/2024]
Abstract
Eukaryotic cells feature distinct membrane-enclosed organelles such as mitochondria and peroxisomes, each playing vital roles in cellular function and organization. These organelles are linked at membrane contact sites, facilitating interorganellar molecule and ion exchange. Most contact-forming proteins identified to date are membrane proteins or membrane-associated proteins, which can form very stable contacts. Recent findings suggest additional mechanistically distinct tethering events that arise from dual protein targeting. Proteins bearing targeting signals for multiple organelles, such as an N-terminal signal for mitochondria and a C-terminal signal for peroxisomes, function as tethers, fostering contacts by engaging targeting factors at both organelles. A number of dually targeted membrane proteins can contribute to contact site formation and transit from one organelle to the other as well. These interactions may enable the fine-tuning of organelle proximity, hence, adapting connections to meet varying physiological demands.
Collapse
Affiliation(s)
- Johannes Freitag
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Molecular Physiology of Microbes, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
8
|
Sankaranarayanan S, Kwon S, Heimel K, Feldbrügge M. The RNA world of fungal pathogens. PLoS Pathog 2023; 19:e1011762. [PMID: 38032970 PMCID: PMC10688622 DOI: 10.1371/journal.ppat.1011762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Affiliation(s)
- Srimeenakshi Sankaranarayanan
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Seomun Kwon
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Kai Heimel
- Georg-August University Göttingen, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Michael Feldbrügge
- Heinrich-Heine University Düsseldorf, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| |
Collapse
|