1
|
Skowronek MF, Pietroroia S, Silvera D, Ford M, Cassina A, Lecumberry F, Sapiro R. Morphometric analysis of the sperm midpiece during capacitation. Tissue Cell 2025; 95:102866. [PMID: 40157222 DOI: 10.1016/j.tice.2025.102866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
In mammalian sperm, mitochondria are very densely packed and form a helical sheath in the midpiece of the flagellum. Mitochondria from somatic cells can rapidly change shape to adapt to environmental conditions. During capacitation, mammalian spermatozoa undergo morphological and physiological changes to acquire fertilization ability, evidenced by changes in sperm motility patterns (hyperactivation) and the ability to perform the acrosome reaction. Whether there are changes in sperm mitochondrial morphology during capacitation is unknown. This work aimed to quantify morphometric changes in the sperm midpiece during capacitation. Using mitochondrial fluorescent probes and a combination of freely available software, we quantified the dimensions and fluorescence intensity of the midpiece. After capacitation, the area occupied by the mitochondria decreased due to a reduction in the width but not the length of the midpiece. The decrease in the area of the midpiece occurred in spermatozoa that underwent the acrosome reaction, suggesting a reorganization of the mitochondria during capacitation. Ultrastructural analysis supported these results. The application of image processing to fluorescence microscopy images may help to identify morphological changes during capacitation.
Collapse
Affiliation(s)
- M F Skowronek
- UnidadAcadémica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - S Pietroroia
- UnidadAcadémica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - D Silvera
- Departamento de Procesamiento de Señales, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - M Ford
- UnidadAcadémica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - A Cassina
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - F Lecumberry
- Departamento de Procesamiento de Señales, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - R Sapiro
- UnidadAcadémica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
2
|
Lei L, Li K, Tang YF, Liu YH, Wu SX, Huang GL, Lin HC, Zhang Z, Hong K, Xu WM, Yu XQ, Yu KK. Dual-Parameter Hypoxia Sensing in Spermatozoa: A Transformative Nitroreductase/Viscosity Fluorescent Probe Unravels Metabolic Dysregulation Biomarkers for Andrological Diagnostics. ACS Sens 2025. [PMID: 40492720 DOI: 10.1021/acssensors.5c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
Sperm energy metabolism, including oxidative phosphorylation and glycolysis, is critical for sperm function. Environmental stressors like hypoxia can disrupt metabolic activities, potentially leading to fertilization failure. As an NADH-dependent flavin reductase, altered nitroreductase (NTR) levels may reflect hypoxic metabolic abnormalities. However, no studies have reported the detection of hypoxia conditions in spermatozoa to date. To address this diagnostic gap, we first performed metabolomic analysis on normal and clinically infertile spermatozoa. Hypoxia-mediated metabolic dysregulation in spermatozoa is unveiled as a pivotal mechanism underlying idiopathic male infertility, with clinical metabolomics revealing impaired anaerobic glycolysis (50% lactate reduction, p < 0.0001; 1174-fold PEP accumulation, p < 0.0001 vs controls). Subsequently, to address the critical need for monitoring the hypoxia microenvironment of spermatozoa, we developed PPy, a dual-response fluorescent probe with NTR and viscosity. This first-in-spermatozoa probe demonstrates viscosity-driven near-infrared enhancement at 706 nm (32-fold, Stokes shift >220 nm) and NTR-activated green emission around 562 nm, enabling real-time hypoxia mapping in live systems. Confocal validation in pathological models (H2O2-stressed/infertile spermatozoa) quantified obvious NTR activity loss and diminished capacity for viscosity regulation and successfully established NTR as a diagnostic biomarker (AUC = 0.975, ΔMFI < 12.39% with 100% sensitivity and 90% specificity). Thus, our study introduces innovative tools and actionable biomarkers for clinical andrology settings, which uncover profound hypoxia-induced impairments in spermatozoa of infertile patients, thereby advancing both therapeutic strategies for infertility and mechanistic investigations into fertilization disorders.
Collapse
Affiliation(s)
- Lin Lei
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi-Fei Tang
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Si-Xian Wu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Ge-Lin Huang
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Hao-Cheng Lin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Zhe Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Kai Hong
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Wen-Ming Xu
- Joint Laboratory of Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Med-Centre for Manufacturing, Sichuan University, Chengdu 610064, China
| | - Xiao-Qi Yu
- Department of Chemistry, Xihua University, Chengdu, Chengdu 610039, China
| | - Kang-Kang Yu
- Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Cheng J, Dong Q, Nie S, Hao X, Mo S, Liu Y, Zhu Z, Lu H, Zhang T, Zeng W. G6PD lactylation is involved in regulating redox balance of boar sperm in low glucose extender. Theriogenology 2025; 239:117388. [PMID: 40106924 DOI: 10.1016/j.theriogenology.2025.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Glucose metabolism is an essential pathway that indirectly supports cellular redox homeostasis by providing reducing equivalents, such as NADPH, particularly in the highly specialized sperm. Sperm exhibit higher progressive motility in low glucose extender. However, the underlying mechanisms remain unclear. The objective of the present study was to investigate effect of low glucose on sperm metabolism and lactylation modification. After 3 h of incubation, low glucose had an effect on the redox state of boar semen in vitro, particularly in terms of the concentration of reactive oxygen species (ROS) and reductive products. Furthermore, glucose-6-phosphate dehydrogenase (G6PD) activity was significantly increased at low glucose condition, accompanied by increased lactate accumulation extracellularly. Meanwhile, protein lactylation levels were enhanced, with G6PD identified as one of lactylation proteins. In conclusion, low glucose incubation induced lactylation of G6PD, resulting in increased enzymatic activity that enhanced the pentose phosphate pathway (PPP), which in turn increased antioxidant capacity and maintained sperm motility in a low glucose environment. The research results provide valuable insights into the adaptation mechanisms of sperm to their environment and offer new perspectives and opportunities for reproductive biology research.
Collapse
Affiliation(s)
- Jia Cheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Qinba Mountain Area Collaborative Innovation Center of Bio-resources Comprehensive Development, Shaanxi, Hanzhong, 723000, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi, Hanzhong, 723000, China.
| | - Qiqi Dong
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China
| | - Saiya Nie
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China
| | - Xu Hao
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China
| | - Sha Mo
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Hanzhong Vocational and Technical College, Shaanxi, Hanzhong, 723000, China
| | - Yixing Liu
- Shaanxi Shunxin Breeding Pig Selection Co., Shaanxi, Hanzhong, 723000, China
| | - Zhendong Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Shandong, Qingdao, 266109, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Qinba Mountain Area Collaborative Innovation Center of Bio-resources Comprehensive Development, Shaanxi, Hanzhong, 723000, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi, Hanzhong, 723000, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Qinba Mountain Area Collaborative Innovation Center of Bio-resources Comprehensive Development, Shaanxi, Hanzhong, 723000, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi, Hanzhong, 723000, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Shaanxi, Hanzhong, 723000, China; Qinba Mountain Area Collaborative Innovation Center of Bio-resources Comprehensive Development, Shaanxi, Hanzhong, 723000, China; Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi, Hanzhong, 723000, China.
| |
Collapse
|
4
|
Peris‐Frau P, Sanchez‐Rodriguez A, Velázquez R, Toledano‐Díaz A, Castaño C, Roldan ERS, Santiago‐Moreno J. Capacitation of ram spermatozoa promotes changes in energy metabolism and aquaporin 3 and is affected by individual testosterone variations. Andrology 2025; 13:921-933. [PMID: 39238428 PMCID: PMC12006880 DOI: 10.1111/andr.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Recently, the metabolic pathways involved in energy production and the role of aquaglyceroporins in capacitation-associated events have been studied in humans and mice. However, little is known about these in ram spermatozoa. OBJECTIVE The present study investigated bioenergetic and aquaglyceroporin 3 variations during in vitro capacitation of ram spermatozoa. In addition, differences in testosterone levels between males were examined to determine their influence on capacitation-like changes. MATERIALS AND METHODS Spermatozoa obtained from nine rams (ejaculates = 36) were incubated for 180 min in three different media (control, capacitating, and aquaglyceroporin-inhibitor media) at 38.5°C. At 0 and 180 min of incubation in each medium, sperm viability, kinetics, chlortetracycline patterns, adenosine triphosphate concentration, lactate excretion (final subproduct of glycolysis), and immunolocalization of aquaporin 3 were evaluated. RESULTS The increment of the capacitated spermatozoa-chlortetracycline pattern and the hyperactivated-like movement characterized by the highest curvilinear velocity and amplitude of lateral head displacement and the lowest linearity was only recorded after 180 min in the capacitating medium. At this time and conditions, adenosine triphosphate content and lactate excretion decreased, whereas the aquaglyceroporin 3 location in the midpiece and principal piece increased compared to 0 min. Such changes were not observed in the control medium over time. Incubation in the aquaglyceroporin-inhibitor medium for 180 min reduced drastically sperm motility and adenosine triphosphate content compared to the other media. Testosterone analysis revealed a significant individual variability, which was also present in all sperm parameters evaluated. Furthermore, testosterone was negatively correlated with adenosine triphosphate content but positively correlated with lactate excretion levels, sperm viability, motility, capacitated sperm-chlortetracycline pattern, and aquaglyceroporin 3 immunolabeling in the midpiece and principal piece. CONCLUSION Despite individual differences, capacitation of ram spermatozoa increases adenosine triphosphate consumption, energy metabolism, and aquaglyceroporin 3 location in the midpiece and principal piece, which seems to be related to the acquisition of hyperactivated-like motility. Furthermore, testosterone levels may serve as a valuable tool to select those males with a greater sperm metabolism rate and fertilizing capacity.
Collapse
Affiliation(s)
- Patricia Peris‐Frau
- Departament of Animal ReproductionNational Institute for Agricultural and Food Research and Technology (CSIC)MadridSpain
| | - Ana Sanchez‐Rodriguez
- Department of Biodiversity and Evolutionary BiologyNational Museum of Natural Sciences (CSIC)MadridSpain
| | - Rosario Velázquez
- Departament of Animal ReproductionNational Institute for Agricultural and Food Research and Technology (CSIC)MadridSpain
| | - Adolfo Toledano‐Díaz
- Departament of Animal ReproductionNational Institute for Agricultural and Food Research and Technology (CSIC)MadridSpain
| | - Cristina Castaño
- Departament of Animal ReproductionNational Institute for Agricultural and Food Research and Technology (CSIC)MadridSpain
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary BiologyNational Museum of Natural Sciences (CSIC)MadridSpain
| | - Julián Santiago‐Moreno
- Departament of Animal ReproductionNational Institute for Agricultural and Food Research and Technology (CSIC)MadridSpain
| |
Collapse
|
5
|
Simonik O, Bryndova B, Sur VP, Ded L, Cockova Z, Benda A, Qasemi M, Pecina P, Pecinova A, Spevakova D, Hradec T, Skrobanek P, Ezrova Z, Kratka Z, Kren R, Jeseta M, Boublikova L, Zamecnik L, Büchler T, Neuzil J, Postlerova P, Komrskova K. Bioenergetics of human spermatozoa in patients with testicular germ cell tumours. Mol Hum Reprod 2025; 31:gaaf005. [PMID: 40053689 DOI: 10.1093/molehr/gaaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Indexed: 03/09/2025] Open
Abstract
In patients with testicular germ cell tumours (TGCT), sperm cryopreservation prior to anti-cancer treatment represents the main fertility preservation approach. However, it is associated with a low sperm recovery rate after thawing. Since sperm is a high-energy demanding cell, which is supplied by glycolysis and oxidative phosphorylation (OXPHOS), mitochondrial dysfunctionality can directly result in sperm anomalies. In this study, we investigated the bioenergetic pattern of cryopreserved sperm of TGCT patients in comparison with normozoospermic samples using two state-of-the-art methods: the Extracellular Flux Analyzer (XF Analyzer) and two-photon fluorescence lifetime imaging microscopy (2P-FLIM), in order to assess the contributions of OXPHOS and glycolysis to energy provision. A novel protocol for the combined measurement of OXPHOS (oxygen consumption rate: OCR) and glycolysis (extracellular acidification rate: ECAR) using the XF Analyzer was developed together with a unique customized AI-based approach for semiautomated processing of 2P-FLIM images. Our study delivers optimized low-HEPES modified human tubal fluid media (mHTF) for sperm handling during pre-analytical and analytical phases, to maintain sperm physiological parameters and optimal OCR, equivalent to OXPHOS. The negative effect of cryopreservation was signified by the deterioration of both bioenergetic pathways represented by modified OCR and ECAR curves and the derived parameters. This was true for normozoospermic as well as samples from TGCT patients, which showed even stronger damage within the respiratory chain compared to the level of glycolytic activity impairment. The impact of cryopreservation and pathology are supported by 2P-FLIM analysis, showing a significant decrease in bound NADH in contrast to unbound NAD(P)H, which reflects decreased metabolic activity in samples from TGCT patients. Our study provides novel insights into the impact of TGCT on sperm bioenergetics and delivers a verified protocol to be used for the assessment of human sperm metabolic activity, which can be a valuable tool for further research and clinical andrology.
Collapse
Affiliation(s)
- Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Barbora Bryndova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vishma Pratap Sur
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Lukas Ded
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Zuzana Cockova
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Ales Benda
- Imaging Methods Core Facility at BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic
| | - Maryam Qasemi
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Petr Pecina
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Pecinova
- Laboratory of Bioenergetics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Daniela Spevakova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Tomas Hradec
- Department of Urology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Zuzana Ezrova
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zuzana Kratka
- Laboratory of Immunology, IVF Clinic GENNET, Prague, Czech Republic
| | - Radomir Kren
- Laboratory of Embryology, IVF Clinic GENNET, Prague, Czech Republic
| | - Michal Jeseta
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Ludmila Boublikova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Libor Zamecnik
- Department of Urology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Büchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
- Department of Oncology, Second Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Roldan ERS, Tourmente M, Sanchez-Rodriguez A, Rial E. Bioenergetics of Rodent Spermatozoa. Methods Mol Biol 2025; 2897:267-288. [PMID: 40202642 DOI: 10.1007/978-1-0716-4406-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
All cells rely on ATP to perform their basic functions. However, the maintenance of active motility imposes particularly high ATP demands on spermatozoa. Energy demands vary during the life of the sperm cell and they are crucial when spermatozoa travel in the female tract and undergo processes essential for fertilization, such as capacitation, hyperactivation, and acrosomal exocytosis. Spermatozoa produce ATP via glycolysis and/or oxidative phosphorylation (OXPHOS) and each of these pathways are localized to different regions of the sperm flagellum. Species vary in their use of these two pathways for ATP production, and these can change during the different life stages. Here, we present methods to characterize bioenergetics of spermatozoa. A protocol is given to quantify ATP levels by using a bioluminescence assay kit in extracts from sperm cells incubated under non-capacitating or capacitating conditions. An assay to measure lactate excreted to the incubation medium, using colorimetric/fluorometric kit, is given to infer the potential contribution of the glycolytic pathway. Lastly, we present the protocol to analyze the energy metabolism of live sperm, which can be used to determine the relative contributions of glycolysis and OXPHOS, based on extracellular flux analysis.
Collapse
Affiliation(s)
- Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
| | - Maximiliano Tourmente
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN-UNC), Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT-CONICET, UNC), Córdoba, Argentina
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
7
|
Van de Hoek M, Rickard JP, de Graaf SP. Manipulation of metabolism to improve liquid preservation of mammalian spermatozoa. Anim Reprod Sci 2024; 271:107631. [PMID: 39515267 DOI: 10.1016/j.anireprosci.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Reproductive success in mammals hinges on the ability of sperm to generate sufficient energy through cellular metabolism to perform the energy-intensive processes required for fertilisation, including motility, maturation, and oocyte interactions. It is now widely accepted that sperm exhibit metabolic flexibility, utilising a combination of glycolysis and oxidative phosphorylation (supported by the Krebs cycle and other complementary pathways) to meet their energy demands. However, the preferred pathway for energy production varies significantly among species, making it challenging to map species-specific metabolic strategies, particularly in species with high metabolic flexibility, like the ram. Additionally, differences in methodologies used to measure metabolism have led to biased interpretations of species' metabolic strategies, complicating the development of liquid storage methods aimed at preserving spermatozoa by manipulating energy generation based on species-specific requirements. This review examines sperm energy requirements, current methods for assessing metabolic capacity, and the current research on species-specific metabolism. Future research should focus on establishing a standardised approach for determining metabolic preferences to accurately map species-specific strategies, a critical step before developing effective liquid preservation methods. By identifying species-specific regulatory points, strategies can be designed to temporarily inhibit metabolic pathways, conserving resources and reducing the accumulation of metabolic by-products. Alternatively, supplementation with depleted metabolites can be guided by understanding areas of excessive consumption during prolonged metabolism. Applying this knowledge to develop tailored preservation techniques will help minimise sperm damage and improve survival during in vitro processing and liquid storage, ultimately enhancing the success of artificial breeding programs.
Collapse
Affiliation(s)
| | | | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW 2006, Australia
| |
Collapse
|
8
|
Li C, Liang J, Allai L, Badaoui B, Shao Q, Ouyang Y, Wu G, Quan G, Lv C. Integrating proteomics and metabolomics to evaluate impact of semen collection techniques on the quality and cryotolerance of goat semen. Sci Rep 2024; 14:29489. [PMID: 39604559 PMCID: PMC11603158 DOI: 10.1038/s41598-024-80556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Results of artificial insemination (AI) are affected by changes in sperm quality and the function throughout collection and preservation procedures. Proteome and metabolome alterations of sperm treated with the different procedures in goat, however, aren't fully understood. To this end, we sought to investigate the impacts of rectal probe electrostimulation (EE) and artificial vagina (AV) semen collection methods on the quality and the cryotolerance of goat sperm, with additional focus on proteomic and metabolomic analyses. Semen samples were collected from Yunshang black goats and categorized into four groups: fresh sperm collected via AV (XAZ), fresh sperm collected via EE (XEZ), frozen sperm post-AV collection (DAZ) and frozen sperm post-EE collection (DEZ). Four comparisons (XAZ vs. XEZ, DAZ vs. XAZ, DEZ vs. XEZ, DAZ vs. DEZ) were performed, respectively. This study first evaluated sperm motility, acrosome integrity, plasma membrane integrity, mitochondrial activity, and reactive oxygen species (ROS) levels. The results indicated that there were no significant differences in fresh sperm quality parameters between the EE and AV methods. However, notable differences emerged post-cryopreservation. Specifically, the AV method proved more advantageous in preserving the motility, integrities of acrosome and plasma membrane, mitochondrial activity of frozen sperm compared to the EE method. Through the multi-omics approaches, a total of 210 differentially abundant proteins (DAPs) related to sperm characteristics and function were identified across the four comparations. Moreover, 32 differentially abundant metabolites (DAMs) were detected. Comprehensive bioinformatics analysis underscored significant molecular pathways in the co-enrichment of DAPs and DAMs, particularly focusing on the citrate cycle, ROS, oxidative phosphorylation, and glycine, serine, and threonine metabolism etc. We elucidated the differential impacts of AV and EE collection methods on the quality and cryotolerance of goat semen from omics perspectives, which offer a critical foundation for further exploration into optimizing semen collection and cryopreservation techniques in goat breeding program.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Larbi Allai
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | | | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming, 650224, China.
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming, 650224, China.
| |
Collapse
|
9
|
Huang F, Niu P, Wang J, Suo J, Zhang L, Wang J, Fang D, Gao Q. Reproductive Tract Mucus May Influence the Sex of Offspring in Cattle: Study in Cows That Have Repeatedly Calved Single-Sex Offspring. Vet Sci 2024; 11:572. [PMID: 39591346 PMCID: PMC11598928 DOI: 10.3390/vetsci11110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate the selective effect of the reproductive tract mucus in cows that have consistently produced offspring of a single sex on X/Y spermatozoa. We collected mucus from the reproductive tract of cows that had given calvings to offspring of the same sex, or alternated between sexes, for more than five consecutive calvings. We evaluated the pH of reproductive tract mucus. Subsequently, we conducted a spermatozoa penetration assay; the proportions of X and Y spermatozoa after penetration were then identified by dual TaqMan qPCR and flow cytometry. This was followed by in vitro fertilization and embryo sex determination experiments. Immediately afterwards, computer-aided spermatozoa analysis was employed to analyze the spermatozoa that had penetrated through different types of mucus in the reproductive tract. The analysis indicated that the reproductive tract mucus of cows consistently producing male or female calves exhibited selectivity towards X/Y spermatozoa. The differences in the pH values of the reproductive tract mucus among cows continuously producing male calves, those continuously producing female calves, and those alternately giving birth to male and female calves were not significant (p ≥ 0.05). The outcome of dual TaqMan qPCR for cows consistently producing male calves was Y: 79.29 ± 4.28% vs. X: 21.67 ± 4.53%; for cows consistently producing female calves, the equation was Y: 25.05 ± 4.88% vs. X: 75.34 ± 5.13%. The results of flow cytometry processing revealed the following proportions: for cows consistently producing male calves: Y: 83.33 ± 5.52% vs. X: 17.23 ± 4.74%; for cows consistently producing female calves: Y: 24.81 ± 4.13% vs. X: 76.64 ± 4.21%. The outcomes of embryo sex determination for cows consistently producing male calves were as follows: male embryos vs. female embryos (79.60 ± 2.87% vs. 21.07 ± 2.51%); for cows consistently producing female calves, the outcomes for male embryos vs. female embryos were 25.58 ± 3.96% vs. 75.63 ± 3.55%. Computer-aided analysis revealed that the concentration of spermatozoa penetrating the reproductive tract mucus in cows alternating between male and female calves (9.09 ± 0.72 million/mL) was significantly higher than that in cows consistently producing male calves (6.01 ± 1.19 million/mL) and cows consistently producing female calves (5.61 ± 0.60 million/mL). There were no significant differences in spermatozoa motility, the proportion of progressive motile spermatozoa, and curvilinear, straight-line, and average path velocities. Collectively, these findings indicate that the reproductive tract mucus of cows consistently producing offspring of a single sex exhibits selectivity towards either X or Y spermatozoa. This finding is of great significance for studying the impact of maternal factors on offspring sex.
Collapse
Affiliation(s)
- Fei Huang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Peng Niu
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Jiajia Suo
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Jie Wang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Di Fang
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
| | - Qinghua Gao
- College of Life Science and Technology, Tarim University, Alar 843300, China; (F.H.); (P.N.); (J.W.); (J.S.)
- College of Animal Science and Technology, Tarim University, Alar 843300, China; (L.Z.); (J.W.); (D.F.)
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production & Construction Corps, Alar 843300, China
| |
Collapse
|
10
|
Abruzzese GA, Sanchez-Rodriguez A, Roldan ERS. Sperm Metabolism. Mol Reprod Dev 2024; 91:e23772. [PMID: 39407445 DOI: 10.1002/mrd.23772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024]
Abstract
Bioenergetics plays a crucial role in sperm functions, including motility, capacitation-related protein modifications, oocyte recognition and interaction, all of which are essential for fertilization. Sperm metabolism is recognized as flexible, responding to environmental cues and energetic demands during ejaculation, the journey along the female tract, and until fertilization. Recent studies suggest that sperm metabolic functions are relevant beyond fertilization and may influence zygote and embryo development, impacting paternal-derived effects on offspring development and health. In recent years, sperm metabolic functions and homeostasis have gained increasing interest in male reproduction research. Given the crucial implications of sperm metabolism on fertility-related processes, this field is of interest not only in human male fertility but also in livestock research, semen conservation, and assisted reproductive techniques. Newly developed assessment tools are allowing a better understanding of sperm metabolism under different conditions and identifying species-specific peculiarities. This review aims to discuss the current knowledge of mammalian sperm metabolism, focusing on species-specific features, changes during the sperm journey, and potential contributions to translational research and reproductive biotechnologies. Furthermore, we propose future perspectives on sperm bioenergetics research.
Collapse
Affiliation(s)
- Giselle Adriana Abruzzese
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Ana Sanchez-Rodriguez
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Cui X, Cai X, Zhang F, Zhang W, Liu H, Mu S, Guo S, Wan H, Zhang H, Zhang Z, Kang X. Comparative Proteomics Elucidates the Potential Mechanism of Sperm Capacitation of Chinese Mitten Crabs ( Eriocheir sinensis). J Proteome Res 2024; 23:1603-1614. [PMID: 38557073 DOI: 10.1021/acs.jproteome.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Sperm capacitation is broadly defined as a suite of biochemical and biophysical changes resulting from the acquisition of fertilization ability. To gain insights into the regulation mechanism of crustacean sperm capacitation, 4D label-free quantitative proteomics was first applied to analyze the changes of sperm in Eriocheir sinensis under three sequential physiological conditions: seminal vesicles (X2), hatched with the seminal receptacle content (X3), and incubated with egg water (X5). In total, 1536 proteins were identified, among which 880 proteins were quantified, with 82 and 224 proteins significantly altered after incubation with the seminal receptacle contents and egg water. Most differentially expressed proteins were attributed to biological processes by Gene Ontology annotation analysis. As the fundamental bioenergetic metabolism of sperm, the oxidative phosphorylation, glycolysis, and the pentose phosphate pathway presented significant changes under the treatment of seminal receptacle contents, indicating intensive regulation for sperm in the seminal receptacle. Additionally, the seminal receptacle contents also significantly increased the oxidation level of sperm, whereas the enhancement of abundance in superoxide dismutase, peroxiredoxin 1, and glutathione S-transferase after incubation with egg water significantly improved the resistance against oxidation. These results provided a new perspective for reproduction studies in crustaceans.
Collapse
Affiliation(s)
- Xiaodong Cui
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Xueqian Cai
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Fenghao Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Huan Liu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Han Zhang
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Zhaohui Zhang
- Department of Reproductive Medicine, Baoding First Central Hospital, Baoding 071000, China
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding 071000, China
| |
Collapse
|
12
|
Qasemi M, Sur VP, Simonik O, Postlerova P, Skrobanek P, Hradec T, Boublikova L, Zamecnik L, Buchler T, Neuzil J, Komrskova K. Sperm mitochondria dysfunction in response to testicular cancer. Eur J Clin Invest 2024; 54:e14146. [PMID: 38069497 DOI: 10.1111/eci.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
Testicular cancer is the most common form of cancer in young men of reproductive age and its incidence is increasing globally. With the currently successful treatment and 95% survival rate, there is a need for deeper understanding of testicular cancer-related infertility. Most patients with testicular cancer experience semen abnormalities prior to cancer therapy. However, the exact mechanism of the effect of testicular cancer on sperm anomalies is not known. Mitochondria are organelles that play a crucial role in both tumorigenesis and spermatogenesis and their malfunction may be an important factor resulting in sperm abnormalities in testicular cancer patients. Within the scope of this review, we will discuss current knowledge of testicular cancer-related alterations in the ATP production pathway, a possible pathophysiological switch from oxidative phosphorylation (OXPHOS) to glycolysis, as well as the role of oxidative stress promoting sperm dysfunction. In this regard, the review provides a summary of the impact of testicular cancer on sperm quality as a possible consequence of impaired mitochondrial function including the energy metabolic pathways that are known to be altered in the sperm of testicular cancer patients.
Collapse
Affiliation(s)
- Maryam Qasemi
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Vishma Pratap Sur
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Tomas Hradec
- Department of Urology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Boublikova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Libor Zamecnik
- Department of Urology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
- Department of Oncology, Second Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Jiri Neuzil
- Laboratory of Molecular Therapy, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
13
|
Irigoyen P, Mansilla S, Castro L, Cassina A, Sapiro R. Mitochondrial function and reactive oxygen species production during human sperm capacitation: Unraveling key players. FASEB J 2024; 38:e23486. [PMID: 38407497 DOI: 10.1096/fj.202301957rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Sperm capacitation is a critical process for male fertility. It involves a series of biochemical and physiological changes that occur in the female reproductive tract, rendering the sperm competent for successful fertilization. The precise mechanisms and, specifically, the role of mitochondria, in sperm capacitation remain incompletely understood. Previously, we revealed that in mouse sperm mitochondrial activity (e.g., oxygen consumption, membrane potential, ATP/ADP exchange, and mitochondrial Ca2+ ) increases during capacitation. Herein, we studied mitochondrial function by high-resolution respirometry (HRR) and reactive oxygen species production in capacitated (CAP) and non-capacitated (NC) human spermatozoa. We found that in capacitated sperm from normozoospermic donors, the respiratory control ratio increased by 36%, accompanied by a double oxygen consumption rate (OCR) in the presence of antimycin A. Extracellular hydrogen peroxide (H2 O2 ) detection was three times higher in CAP than in NC sperm cells. To confirm that H2 O2 production depends on mitochondrial superoxide (O 2 · - $$ {\mathrm{O}}_2^{\cdotp -} $$ ) formation, we evaluated mitochondrial aconitase (ACO2) amount, activity, and role in the metabolic flux from the sperm tricarboxylic acid cycle. We estimated that CAP cells produce, on average by individual, (59 ± 22)% moreO 2 · - $$ {\mathrm{O}}_2^{\cdotp -} $$ in the steady-state compared to NC cells. Finally, we analyzed two targets of oxidative stress: lipid peroxidation by western blot against 4-hydroxynonenal and succinate dehydrogenase (SDH) activity by HRR. We did not observe modifications in lipoperoxidation nor the activity of SDH, suggesting that during capacitation, the increase in mitochondrial H2 O2 production does not damage sperm and it is necessary for the normal CAP process.
Collapse
Affiliation(s)
- Pilar Irigoyen
- Unidad Académica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mansilla
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Castro
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rossana Sapiro
- Unidad Académica Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
14
|
Takei GL. Molecular mechanisms of mammalian sperm capacitation, and its regulation by sodium-dependent secondary active transporters. Reprod Med Biol 2024; 23:e12614. [PMID: 39416520 PMCID: PMC11480905 DOI: 10.1002/rmb2.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Background Mammalian spermatozoa have to be "capacitated" to be fertilization-competent. Capacitation is a collective term for the physiological and biochemical changes in spermatozoa that occur within the female body. However, the regulatory mechanisms underlying capacitation have not been fully elucidated. Methods Previously published papers on capacitation, especially from the perspective of ions/channels/transporters, were extracted and summarized. Results Capacitation can be divided into two processes: earlier events (membrane potential hyperpolarization, intracellular pH rise, intracellular Ca2+ rise, etc.) and two major later events: hyperactivation and the acrosome reaction. Earlier events are closely interconnected with each other. Various channels/transporters are involved in the regulation of them, which ultimately lead to the later events. Manipulating the extracellular K+ concentration based on the oviductal concentration modifies membrane potential; however, the later events and fertilization are not affected, suggesting the uninvolvement of membrane potential in capacitation. Hyperpolarization is a highly conserved phenomenon among mammalian species, indicating its importance in capacitation. Therefore, the physiological importance of hyperpolarization apart from membrane potential is suggested. Conclusion The hypotheses are (1) hyperpolarizing Na+ dynamics (decrease in intracellular Na+) and Na+-driven secondary active transporters play a vital role in capacitation and (2) the sperm-specific potassium channel Slo3 is involved in volume and/or morphological regulation.
Collapse
Affiliation(s)
- Gen L. Takei
- Department of Pharmacology and ToxicologyDokkyo Medical UniversityTochigiJapan
| |
Collapse
|
15
|
O’Callaghan E, Navarrete-Lopez P, Štiavnická M, Sánchez JM, Maroto M, Pericuesta E, Fernández-González R, O’Meara C, Eivers B, Kelleher MM, Evans RD, Mapel XM, Lloret-Villas A, Pausch H, Balastegui-Alarcón M, Avilés M, Sanchez-Rodriguez A, Roldan ERS, McDonald M, Kenny DA, Fair S, Gutiérrez-Adán A, Lonergan P. Adenylate kinase 9 is essential for sperm function and male fertility in mammals. Proc Natl Acad Sci U S A 2023; 120:e2305712120. [PMID: 37812723 PMCID: PMC10589668 DOI: 10.1073/pnas.2305712120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 10/11/2023] Open
Abstract
Despite passing routine laboratory tests for semen quality, bulls used in artificial insemination exhibit significant variation in fertility. Routine analysis of fertility data identified a dairy bull with extreme subfertility (10% pregnancy rate). To characterize the subfertility phenotype, a range of in vitro, in vivo, and molecular assays were carried out. Sperm from the subfertile bull exhibited reduced motility and severely reduced caffeine-induced hyperactivation compared to controls. Ability to penetrate the zona pellucida, cleavage rate, cleavage kinetics, and blastocyst yield after IVF or AI were significantly lower than in control bulls. Whole-genome sequencing from semen and RNA sequencing of testis tissue revealed a critical mutation in adenylate kinase 9 (AK9) that impaired splicing, leading to a premature termination codon and a severely truncated protein. Mice deficient in AK9 were generated to further investigate the function of the gene; knockout males were phenotypically indistinguishable from their wild-type littermates but produced immotile sperm that were incapable of normal fertilization. These sperm exhibited numerous abnormalities, including a low ATP concentration and reduced motility. RNA-seq analysis of their testis revealed differential gene expression of components of the axoneme and sperm flagellum as well as steroid metabolic processes. Sperm ultrastructural analysis showed a high percentage of sperm with abnormal flagella. Combined bovine and murine data indicate the essential metabolic role of AK9 in sperm motility and/or hyperactivation, which in turn affects sperm binding and penetration of the zona pellucida. Thus, AK9 has been found to be directly implicated in impaired male fertility in mammals.
Collapse
Affiliation(s)
- Elena O’Callaghan
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - Paula Navarrete-Lopez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Miriama Štiavnická
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, LimerickV94 T9PX, Ireland
| | - José M. Sánchez
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Maria Maroto
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Raul Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Ciara O’Meara
- National Cattle Breeding Centre, County KildareW91 WF59, Ireland
| | - Bernard Eivers
- National Cattle Breeding Centre, County KildareW91 WF59, Ireland
| | - Margaret M. Kelleher
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County CorkP31 D452, Ireland
| | - Ross D. Evans
- Irish Cattle Breeding Federation, Link Road, Ballincollig, County CorkP31 D452, Ireland
| | - Xena M. Mapel
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Audald Lloret-Villas
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Hubert Pausch
- Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Zürich8092, Switzerland
| | - Miriam Balastegui-Alarcón
- Departamento de Biología Celular e Histología, Universidad de Murcia-Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, Murcia30120, Spain
| | - Manuel Avilés
- Departamento de Biología Celular e Histología, Universidad de Murcia-Instituto Murciano de Investigación Biosanitaria Pascual Parrilla, Murcia30120, Spain
| | - Ana Sanchez-Rodriguez
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Eduardo R. S. Roldan
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid28006, Spain
| | - Michael McDonald
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| | - David A. Kenny
- Animal and Bioscience Department, Teagasc, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, County MeathC15 PW93, Ireland
| | - Sean Fair
- Department of Biological Sciences, Bernal Institute, Faculty of Science and Engineering, University of Limerick, LimerickV94 T9PX, Ireland
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Centro Nacional integrado en la Agencia Estatal Consejo Superior de Investigaciones Científicas, Madrid28040, Spain
| | - Patrick Lonergan
- Animal and Crop Sciences, School of Agriculture and Food Science, University College Dublin, Belfield, DublinD04 V1W8, Ireland
| |
Collapse
|
16
|
Prieto OB, Algieri C, Spinaci M, Trombetti F, Nesci S, Bucci D. Cell bioenergetics and ATP production of boar spermatozoa. Theriogenology 2023; 210:162-168. [PMID: 37517301 DOI: 10.1016/j.theriogenology.2023.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Cellular metabolism is an important feature of spermatozoa that deserves more insights to be fully understood, in particular in porcine semen physiology. The present study aims to characterize the balance between glycolytic and oxidative metabolism in boar sperm cells. Agilent Seahorse technology was used to assess both oxygen consumption rate (OCR), as an oxidative metabolism index, and extracellular acidification rate (ECAR), as a glycolytic index. Different metabolic parameters were studied on freshly ejaculated sperm cells (identified as day zero sample, d0) and after one day of storage at 17 °C in Androhep extender (d1). Mitochondrial ATP production rate (MitoATP) was higher than the glycolytic ATP production rate (glycoATP) at both d0 and d1 while at d1 the amount of ATP production decreased, in particular, due to OXPHOS reduction. Conversely, glycoATP was not significantly different between d0 and d1. Interestingly, OCR profile showed no different bioenergetic parameters (i.e. ATP turnover, basal or maximal respiration, and spare respiration) between d0 and d1, thus indicating that sperm cell metabolism was reversibly decreased by preservation conditions. Other metabolic parameters showed the same trend, irrespective of the storage time: under stressed conditions (oligomycin plus FCCP), spermatozoa showed an increase in mitochondrial respiration while the metabolic potential of glycolysis did not undergo variations when compared to baseline metabolism. The rate of oxidation of fuel substrates - glucose, fatty acids, and glutamine - showed that sperm reliance on glucose oxidation to maintain baseline respiration was higher than fatty acids or glutamine. Interestingly spermatozoa demonstrated to have a low "capacity" parameter, which indicates that they cannot use only a single fuel substrate to produce energy. This feature of sperm metabolism to be unable to increase oxidation of a particular fuel to compensate for inhibition of alternative fuel pathway(s) was demonstrated by the negative value of "flexibility". Our results showed that ATP production in boar sperm cells relied on mitochondrial oxidative metabolism in freshly ejaculated cells, while, under liquid storage conditions, their oxidative metabolism decreased while the glycolysis remained constant. These results open new fields of research in the preservation techniques of boar sperm cells.
Collapse
Affiliation(s)
- Olga Blanco Prieto
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy.
| | - Diego Bucci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
17
|
Balbach M, Ghanem L, Violante S, Kyaw A, Romarowski A, Cross JR, Visconti PE, Levin LR, Buck J. Capacitation induces changes in metabolic pathways supporting motility of epididymal and ejaculated sperm. Front Cell Dev Biol 2023; 11:1160154. [PMID: 37440924 PMCID: PMC10335746 DOI: 10.3389/fcell.2023.1160154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Mammalian sperm require sufficient energy to support motility and capacitation for successful fertilization. Previous studies cataloging the changes to metabolism in sperm explored ejaculated human sperm or dormant mouse sperm surgically extracted from the cauda epididymis. Due to the differences in methods of collection, it remains unclear whether any observed differences between mouse and human sperm represent species differences or reflect the distinct maturation states of the sperm under study. Here we compare the metabolic changes during capacitation of epididymal versus ejaculated mouse sperm and relate these changes to ejaculated human sperm. Using extracellular flux analysis and targeted metabolic profiling, we show that capacitation-induced changes lead to increased flux through both glycolysis and oxidative phosphorylation in mouse and human sperm. Ejaculation leads to greater flexibility in the ability to use different carbon sources. While epididymal sperm are dependent upon glucose, ejaculated mouse and human sperm gain the ability to also leverage non-glycolytic energy sources such as pyruvate and citrate.
Collapse
Affiliation(s)
- Melanie Balbach
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Lubna Ghanem
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Aye Kyaw
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ana Romarowski
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA, United States
| | - Justin R. Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pablo E. Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA, United States
| | - Lonny R. Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
18
|
Mateo-Otero Y, Madrid-Gambin F, Llavanera M, Gomez-Gomez A, Haro N, Pozo OJ, Yeste M. Sperm physiology and in vitro fertilising ability rely on basal metabolic activity: insights from the pig model. Commun Biol 2023; 6:344. [PMID: 36997604 PMCID: PMC10063579 DOI: 10.1038/s42003-023-04715-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Whether basal metabolic activity in sperm has any influence on their fertilising capacity has not been explored. Using the pig as a model, the present study investigated the relationship of energetic metabolism with sperm quality and function (assessed through computer-assisted sperm analysis and flow cytometry), and fertility (in vitro fertilisation (IVF) outcomes). In semen samples from 16 boars, levels of metabolites related to glycolysis, ketogenesis and Krebs cycle were determined through a targeted metabolomics approach using liquid chromatography-tandem mass spectrometry. High-quality sperm are associated to greater levels of glycolysis-derived metabolites, and oocyte fertilisation and embryo development are conditioned by the sperm metabolic status. Interestingly, glycolysis appears to be the preferred catabolic pathway of the sperm giving rise to greater percentages of embryos at day 6. In conclusion, this study shows that the basal metabolic activity of sperm influences their function, even beyond fertilisation.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Francisco Madrid-Gambin
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM), ES-08003, Barcelona, Spain
| | - Marc Llavanera
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Alex Gomez-Gomez
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM), ES-08003, Barcelona, Spain
| | - Noemí Haro
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM), ES-08003, Barcelona, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, Hospital del Mar Medical Research Institute (IMIM), ES-08003, Barcelona, Spain.
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010, Barcelona, Spain.
| |
Collapse
|
19
|
Vishnyakova P, Nikonova E, Jumaniyazova E, Solovyev I, Kirillova A, Farmakovskaya M, Savitsky A, Shirshin E, Sukhikh G, Fatkhudinov T. Fluorescence lifetime imaging microscopy as an instrument for human sperm assessment. Biochem Biophys Res Commun 2023; 645:10-16. [PMID: 36669422 DOI: 10.1016/j.bbrc.2023.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Mammalian spermatozoa are highly energized cells in which most of the proteins and activated signaling cascades are involved in the metabolic pathways. Flavin adenine dinucleotide (FAD) has one of the most important roles in the correct functional activity of spermatozoa since it acts as a cofactor for flavoenzymes, critical for proper metabolism and predominantly located in mitochondria. Non-invasive, vital and non-traumatic examination of sperm FAD level and microenvironment could be performed by fluorescence lifetime imaging microscopy (FLIM). In this study, we assessed the metabolic status of spermatozoa from healthy donors and found that FLIM could be used to segregate and separate the male germ cells according to the type of metabolic activity which corresponds with spermatozoa motility measured in standard spermogram tests.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Elena Nikonova
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Enar Jumaniyazova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ilya Solovyev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Kirillova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Russia
| | - Maria Farmakovskaya
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Alexander Savitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny Shirshin
- Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; A.P. Avtsyn Research Institute of Human Morphology, Moscow, Russian Federation
| |
Collapse
|
20
|
Bucci D, Spinaci M, Bustamante-Filho IC, Nesci S. The sperm mitochondria: clues and challenges. Anim Reprod 2023; 19:e20220131. [PMID: 36819482 PMCID: PMC9924773 DOI: 10.1590/1984-3143-ar2022-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Sperm cells rely on different substrates to fulfil thei energy demand for different functions and diverse moments of their life. Species specific mechanism involve both energy substrate transport and their utilization: hexose transporters, a protein family of facilitative passive transporters of glucose and other hexose, have been identified in spermatozoa of different species and, within the species, their localization has been identified and, in some cases, linked to specific glycilitic enzyme presence. The catabolism of hexose sources for energy purposes has been studied in various species, and recent advances has been made in the knowledge of metabolic strategies of sperm cells. In particular, the importance of aerobic metabolism has been defined and described in horse, boar and even mouse spermatozoa; bull sperm cells demonstrate to have a good adaptability and capacity to switch between glycolysis and oxidative phosphorylation; finally, dog sperm cells have been demonstrated to have a great plasticity in energy metabolism management, being also able to activate the anabolic pathway of glycogen syntesis. In conclusion, the study of energy management and mitochondrial function in spermatozoa of different specie furnishes important base knowledge to define new media for preservation as well as newbases for reproductive biotechnologies.
Collapse
Affiliation(s)
- Diego Bucci
- Department of Veterinay Medical Sciences, University of Bologna, Bologna, Italy
| | - Marcella Spinaci
- Department of Veterinay Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Salvatore Nesci
- Department of Veterinay Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Alkaline Dilution Alters Sperm Motility in Dairy Goat by Affecting sAC/cAMP/PKA Pathway Activity. Int J Mol Sci 2023; 24:ijms24021771. [PMID: 36675287 PMCID: PMC9863640 DOI: 10.3390/ijms24021771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
In dairy goat farming, increasing the female kid rate is beneficial to milk production and is, therefore, economically beneficial to farms. Our previous study demonstrated that alkaline incubation enriched the concentration of X-chromosome-bearing sperm; however, the mechanism by which pH affects the motility of X-chromosome-bearing sperm remains unclear. In this study, we explored this mechanism by incubating dairy goat sperm in alkaline dilutions, examining the pattern of changes in sperm internal pH and Ca2+ concentrations and investigating the role of the sAC/cAMP/PKA pathway in influencing sperm motility. The results showed that adding a calcium channel inhibitor during incubation resulted in a concentration-dependent decrease in the proportion of spermatozoa with forward motility, and the sperm sAC protein activity was positively correlated with the calcium ion concentration (r = 0.9972). The total motility activity, proportion of forward motility, and proportion of X-chromosome-bearing sperm decreased (p < 0.05) when cAMP/PKA protease activity was inhibited. Meanwhile, the enrichment of X-chromosome-bearing sperm by pH did not affect the sperm capacitation state. These results indicate that alkaline dilution incubation reduces Ca2+ entry into X-sperm and the motility was slowed down through the sAC/cAMP/PKA signaling pathway, providing a theoretical foundation for further optimization of the sex control method.
Collapse
|
22
|
Tourmente M, Sansegundo E, Rial E, Roldan ERS. Bioenergetic changes in response to sperm capacitation and two-way metabolic compensation in a new murine model. Cell Mol Life Sci 2023; 80:11. [PMID: 36534181 PMCID: PMC9763147 DOI: 10.1007/s00018-022-04652-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
The acquisition of fertilizing ability by mammalian spermatozoa, known as "capacitation," includes processes that depend on particular metabolic pathways. This has led to the hypothesis that ATP demands might differ between capacitated and non-capacitated cells. Mouse sperm can produce ATP via OXPHOS and aerobic glycolysis, an advantageous characteristic considering that these cells have to function in the complex and variable environment of the female reproductive tract. Nonetheless, despite evidence showing that both metabolic pathways play a role in events associated with mouse sperm capacitation, there is contradictory evidence regarding changes promoted by capacitation in this species. In addition, the vast majority of studies regarding murine sperm metabolism use Mus musculus laboratory strains as model, thus neglecting the wide diversity of sperm traits of other species of Mus. Focus on closely related species with distinct evolutionary histories, which may be the result of different selective pressures, could shed light on diversity of metabolic processes. Here, we analyzed variations in sperm bioenergetics associated with capacitation in spermatozoa of the steppe mouse, Mus spicilegus, a species with high sperm performance. Furthermore, we compared sperm metabolic traits of this species with similar traits previously characterized in M. musculus. We found that the metabolism of M. spicilegus sperm responded to capacitation in a manner similar to that of M. musculus sperm. However, M. spicilegus sperm showed distinct metabolic features, including the ability to perform cross-pathway metabolic compensation in response to either respiratory or glycolytic inhibition, thus revealing a delicate fine-tuning of its metabolic capacities.
Collapse
Affiliation(s)
- Maximiliano Tourmente
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN - UNC), Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT - CONICET, UNC), Córdoba, Argentina.
| | - Ester Sansegundo
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Eduardo Rial
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain.
| |
Collapse
|
23
|
Sanchez-Rodriguez A, Sansegundo E, Tourmente M, Roldan ERS. Effect of High Viscosity on Energy Metabolism and Kinematics of Spermatozoa from Three Mouse Species Incubated under Capacitating Conditions. Int J Mol Sci 2022; 23:ijms232315247. [PMID: 36499575 PMCID: PMC9737050 DOI: 10.3390/ijms232315247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
In order to sustain motility and prepare for fertilization, sperm require energy. The characterization of sperm ATP production and usage in mouse species revealed substantial differences in metabolic pathways that can be differentially affected by capacitation. Moreover, spermatozoa encounter different environments with varying viscoelastic properties in the female reproductive tract. Here, we examine whether viscosity affects sperm ATP levels and kinematics during capacitation in vitro. Sperm from three mouse species (Mus musculus, M. spretus, M. spicilegus) were incubated under capacitating conditions in a modified Tyrode's medium containing bicarbonate, glucose, pyruvate, lactate, and bovine serum albumin (mT-BH) or in a bicarbonate-free medium as a non-capacitating control. Viscosity was increased with the inclusion of polyvinylpyrrolidone. ATP was measured with a bioluminescence kit, and kinematics were examined with a computer-aided sperm analysis system. In M. musculus sperm, ATP declined during capacitation, but no differences were found between non-capacitating and capacitating sperm. In contrast, in M. spretus and M. spicilegus, ATP levels decreased in capacitating sperm. Increasing viscosity in the medium did not modify the timing or proportion of cells undergoing capacitation but did result in additional time- and concentration-dependent decreases in ATP in M. spretus and M. spicilegus under capacitating conditions. Additionally, increased viscosity altered both velocity and trajectory descriptors. The limited impact of capacitation and higher viscosity on M. musculus sperm ATP and kinematics could be related to the low intensity of postcopulatory sexual selection in this species. Responses seen in the other two species could be linked to the ability of their sperm to perform better under enhanced selective pressures.
Collapse
Affiliation(s)
- Ana Sanchez-Rodriguez
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Ester Sansegundo
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | - Maximiliano Tourmente
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (FCEFyN—UNC), Córdoba X5016GCA, Argentina
- Instituto de Investigaciones Biológicas y Tecnológicas, Consejo Nacional de Investigaciones Científicas y Técnicas (IIByT—CONICET, UNC), Córdoba X5016GCA, Argentina
| | - Eduardo R. S. Roldan
- Departmento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
- Correspondence:
| |
Collapse
|