1
|
Raza A, Raina J, Sahu SK, Wadhwa P. Genetic mutations in kinases: a comprehensive review on marketed inhibitors and unexplored targets in Parkinson's disease. Neurol Sci 2025; 46:1509-1524. [PMID: 39760821 DOI: 10.1007/s10072-024-07970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
This comprehensive review navigates the landscape of genetic mutations in kinases, offering a thorough examination of both marketed inhibitors and unexplored targets in the context of Parkinson's Disease (PD). Although existing treatments for PD primarily center on symptom management, progress in comprehending the molecular foundations of the disease has opened avenues for targeted therapeutic approaches. This review encompasses an in-depth analysis of four key kinases-PINK1, LRRK2, GAK, and PRKRA-revealing that LRRK2 has garnered the most attention with a plethora of marketed inhibitors. However, the study underscores notable gaps in the exploration of inhibitors for PINK1, GAK, and a complete absence for PRKRA. The observed scarcity of inhibitors for these kinases emphasizes a significant area of untapped potential in PD therapeutics. By drawing attention to these unexplored targets, the review highlights the urgent need for focused research and drug development efforts to diversify the therapeutic landscape, potentially providing novel interventions for halting or slowing the progression of PD.
Collapse
Affiliation(s)
- Amir Raza
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India.
| |
Collapse
|
2
|
Liu Y, Huang W, Wen J, Xiong X, Xu T, Wang Q, Chen X, Zhao X, Li S, Li X, Yang W. Differential distribution of PINK1 and Parkin in the primate brain implies distinct roles. Neural Regen Res 2025; 20:1124-1134. [PMID: 38989951 PMCID: PMC11438320 DOI: 10.4103/nrr.nrr-d-23-01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/09/2023] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00028/figure1/v/2024-07-06T104127Z/r/image-tiff The vast majority of in vitro studies have demonstrated that PINK1 phosphorylates Parkin to work together in mitophagy to protect against neuronal degeneration. However, it remains largely unclear how PINK1 and Parkin are expressed in mammalian brains. This has been difficult to address because of the intrinsically low levels of PINK1 and undetectable levels of phosphorylated Parkin in small animals. Understanding this issue is critical for elucidating the in vivo roles of PINK1 and Parkin. Recently, we showed that the PINK1 kinase is selectively expressed as a truncated form (PINK1-55) in the primate brain. In the present study, we used multiple antibodies, including our recently developed monoclonal anti-PINK1, to validate the selective expression of PINK1 in the primate brain. We found that PINK1 was stably expressed in the monkey brain at postnatal and adulthood stages, which is consistent with the findings that depleting PINK1 can cause neuronal loss in developing and adult monkey brains. PINK1 was enriched in the membrane-bound fractionations, whereas Parkin was soluble with a distinguishable distribution. Immunofluorescent double staining experiments showed that PINK1 and Parkin did not colocalize under physiological conditions in cultured monkey astrocytes, though they did colocalize on mitochondria when the cells were exposed to mitochondrial stress. These findings suggest that PINK1 and Parkin may have distinct roles beyond their well-known function in mitophagy during mitochondrial damage.
Collapse
Affiliation(s)
- Yanting Liu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Jinan University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Liu H, Song Y, Wang H, Zhou Y, Xu M, Xian J. Deciphering the Power of Resveratrol in Mitophagy: From Molecular Mechanisms to Therapeutic Applications. Phytother Res 2025; 39:1319-1343. [PMID: 39754508 DOI: 10.1002/ptr.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Resveratrol (RES), a natural polyphenolic compound, has garnered significant attention for its therapeutic potential in various pathological conditions. This review explores how RES modulates mitophagy-the selective autophagic degradation of mitochondria essential for maintaining cellular homeostasis. RES promotes the initiation and execution of mitophagy by enhancing PINK1/Parkin-mediated mitochondrial clearance, reducing reactive oxygen species production, and mitigating apoptosis, thereby preserving mitochondrial integrity. Additionally, RES regulates mitophagy through the activation of key molecular targets such as AMP-activated protein kinase (AMPK), the mechanistic target of rapamycin (mTOR), deacetylases (SIRT1 and SIRT3), and mitochondrial quality control (MQC) pathways, demonstrating substantial therapeutic effects in multiple disease models. We provide a detailed account of the biosynthetic pathways, pharmacokinetics, and metabolic characteristics of RES, focusing on its role in mitophagy modulation and implications for medical applications. Potential adverse effects associated with its clinical use are also discussed. Despite its promising therapeutic properties, the clinical application of RES is limited by issues of bioavailability and pharmacokinetic profiles. Future research should concentrate on enhancing RES bioavailability and developing derivatives that precisely modulate mitophagy, thereby unlocking new avenues for disease therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yixuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min Xu
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jiaxun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| |
Collapse
|
4
|
Tripodi G, Lombardo M, Kerav S, Aiello G, Baldelli S. Nitric Oxide in Parkinson's Disease: The Potential Role of Dietary Nitrate in Enhancing Cognitive and Motor Health via the Nitrate-Nitrite-Nitric Oxide Pathway. Nutrients 2025; 17:393. [PMID: 39940251 PMCID: PMC11819985 DOI: 10.3390/nu17030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND/OBJECTIVES Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as tremor, rigidity, and bradykinesia. The pathological hallmarks of PD include Lewy bodies and mechanisms like oxidative/nitrosative stress, chronic inflammation, and mitochondrial dysfunction. Nitric oxide (NO), produced by nitric oxide synthase (NOS) isoforms, plays a dual role in neuroprotection and neurodegeneration. Excessive NO production exacerbates neuroinflammation and oxidative/nitrosative damage, contributing to dopaminergic cell death. This review explores NO's role in PD pathogenesis and investigates dietary nitrate as a therapeutic strategy to regulate NO levels. METHODS A literature review of studies addressing the role of NO in PD was conducted using major scientific databases, including PubMed, Scopus, and Web of Science, using keywords such as "nitric oxide", "NOSs", "Parkinson's disease", and "nitrate neuroprotection in PD". Studies on nitrate metabolism via the nitrate-nitrite-NO pathway and its effects on PD hallmarks were analyzed. Studies regarding the role of nitrosamine formation in PD, which are mainly formed during the nitrification process of amines (nitrogen-containing compounds), often due to chemical reactions in the presence of nitrite or nitrate, were also examined. In particular, nitrate has been shown to induce oxidative stress, affect the mitochondrial function, and contribute to inflammatory phenomena in the brain, another factor closely related to the pathogenesis of PD. RESULTS Excessive NO production, particularly from iNOS and nNOS, was strongly associated with neuroinflammation and oxidative/nitrosative stress, amplifying neuronal damage in PD. Dietary nitrate was shown to enhance NO bioavailability through the nitrate-nitrite-NO pathway, mitigating inflammation and oxidative/nitrosative damage. CONCLUSIONS Dysregulated NO production contributes significantly to PD progression via inflammatory and oxidative/nitrosative pathways. Dietary nitrate, by modulating NO levels, offers a promising therapeutic strategy to counteract these pathological mechanisms. Further clinical trials are warranted to establish its efficacy and optimize its use in PD management.
Collapse
Affiliation(s)
- Gianluca Tripodi
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (G.T.); (M.L.); (G.A.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (G.T.); (M.L.); (G.A.)
| | - Sercan Kerav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Türkiye;
| | - Gilda Aiello
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (G.T.); (M.L.); (G.A.)
| | - Sara Baldelli
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy; (G.T.); (M.L.); (G.A.)
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
5
|
Cervellati F, Benedusi M, Casoni A, Trinchera G, Vallese A, Ferrara F, Pietrogrande MC, Valacchi G. Effect of Cu- and Fe- Isolated from Environmental Particulate Matter on Mitochondrial Dynamics in Human Colon CaCo-2 Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04497-7. [PMID: 39738852 DOI: 10.1007/s12011-024-04497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Atmospheric particulate matter (PM) is one of the most dangerous air pollutants of anthropogenic origin; it consists of a heterogeneous mixture of inorganic and organic components, including transition metals and polycyclic aromatic hydrocarbons. Although previous studies have focused on the effects of exposure to highly concentrated PM on the respiratory and cardiovascular systems, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) tract by linking exposure to external stressors with conditions such as appendicitis, colorectal cancer, and inflammatory bowel disease. In general, it has been hypothesized that the main mechanism involved in PM toxicity consists of an inflammatory response and this has also been suggested for the GI tract. In the present study, we analyzed the effect of specific redox-active PM components, such as copper (Cu) and iron (Fe), in human intestinal cells focusing on ultrastructural integrity, redox homeostasis, and modulation of some mitochondrial-related markers. According to our results, exposure to Cu- and Fe-PM components and their combination induced ultrastructural alterations in the endoplasmic reticulum and in the mitochondria with an additive effect when combined. The increase in ROS and the loss of the mitochondrial mass in the cells exposed to PM indicates that mitochondria are a target of acute metal exposure. Furthermore, the gene expression and the protein levels of mitochondria dynamics markers were affected by the PM exposure. In particular, OPA1 increases at both gene and protein levels in all conditions while Mitofusin1 decreases significantly only in the presence of Fe. The increase in PINK expression is modulated by Fe, while Cu seems to affect mainly Parkin. Finally, a significant decrease in trans-epithelial resistance was also observed. In general, our study can confirm the correlation observed between pollution exposure areas and increased incidence of GI tract conditions.
Collapse
Affiliation(s)
- Franco Cervellati
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy.
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alice Casoni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Giulia Trinchera
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Andrea Vallese
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Chiara Pietrogrande
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Animal Science, North Carolina State University, Plants for Human Health Institute, NC Research Campus, Kannapolis, NC, USA.
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
6
|
Schaaf ZA, Ning S, Leslie AR, Sharifi M, Gao RY, Maine JP, Lou W, Lombard AP, Liu C, Yu AM, Mitsiades N, Gao AC. PINK1-Mediated Mitochondrial Activity Confers Olaparib Resistance in Prostate Cancer Cells. CANCER RESEARCH COMMUNICATIONS 2024; 4:2976-2985. [PMID: 39440945 PMCID: PMC11577557 DOI: 10.1158/2767-9764.crc-24-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
SIGNIFICANCE Olaparib, a PARP inhibitor, is effective against various cancers, including prostate cancer. However, resistance to olaparib poses a significant challenge. This study uncovers that mitochondrial alterations and PINK1 gene overexpression contribute to this resistance in prostate cancer cells. Enhanced mitochondrial functionality and increased PINK1 expression in olaparib-resistant cells underscore the importance of targeting mitochondrial dynamics and PINK1 to develop more effective treatments for overcoming olaparib resistance in prostate cancer.
Collapse
Affiliation(s)
- Zachary A. Schaaf
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Amy R. Leslie
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Richard Y. Gao
- Division of Hematology and Oncology, University of California Davis, Davis, California
| | - James P. Maine
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Wei Lou
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Alan P. Lombard
- Department of Urologic Surgery, University of California Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Chengfei Liu
- Department of Urologic Surgery, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Nicholas Mitsiades
- Division of Hematology and Oncology, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Allen C. Gao
- Department of Urologic Surgery, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
7
|
Ramazi S, Dadzadi M, Darvazi M, Seddigh N, Allahverdi A. Protein modification in neurodegenerative diseases. MedComm (Beijing) 2024; 5:e674. [PMID: 39105197 PMCID: PMC11298556 DOI: 10.1002/mco2.674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Posttranslational modifications play a crucial role in governing cellular functions and protein behavior. Researchers have implicated dysregulated posttranslational modifications in protein misfolding, which results in cytotoxicity, particularly in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and Huntington disease. These aberrant posttranslational modifications cause proteins to gather in certain parts of the brain that are linked to the development of the diseases. This leads to neuronal dysfunction and the start of neurodegenerative disease symptoms. Cognitive decline and neurological impairments commonly manifest in neurodegenerative disease patients, underscoring the urgency of comprehending the posttranslational modifications' impact on protein function for targeted therapeutic interventions. This review elucidates the critical link between neurodegenerative diseases and specific posttranslational modifications, focusing on Tau, APP, α-synuclein, Huntingtin protein, Parkin, DJ-1, and Drp1. By delineating the prominent aberrant posttranslational modifications within Alzheimer disease, Parkinson disease, and Huntington disease, the review underscores the significance of understanding the interplay among these modifications. Emphasizing 10 key abnormal posttranslational modifications, this study aims to provide a comprehensive framework for investigating neurodegenerative diseases holistically. The insights presented herein shed light on potential therapeutic avenues aimed at modulating posttranslational modifications to mitigate protein aggregation and retard neurodegenerative disease progression.
Collapse
Affiliation(s)
- Shahin Ramazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Maedeh Dadzadi
- Department of BiotechnologyFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mona Darvazi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Nasrin Seddigh
- Department of BiochemistryFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Abdollah Allahverdi
- Department of BiophysicsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
8
|
Clausen L, Okarmus J, Voutsinos V, Meyer M, Lindorff-Larsen K, Hartmann-Petersen R. PRKN-linked familial Parkinson's disease: cellular and molecular mechanisms of disease-linked variants. Cell Mol Life Sci 2024; 81:223. [PMID: 38767677 PMCID: PMC11106057 DOI: 10.1007/s00018-024-05262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Parkinson's disease (PD) is a common and incurable neurodegenerative disorder that arises from the loss of dopaminergic neurons in the substantia nigra and is mainly characterized by progressive loss of motor function. Monogenic familial PD is associated with highly penetrant variants in specific genes, notably the PRKN gene, where homozygous or compound heterozygous loss-of-function variants predominate. PRKN encodes Parkin, an E3 ubiquitin-protein ligase important for protein ubiquitination and mitophagy of damaged mitochondria. Accordingly, Parkin plays a central role in mitochondrial quality control but is itself also subject to a strict protein quality control system that rapidly eliminates certain disease-linked Parkin variants. Here, we summarize the cellular and molecular functions of Parkin, highlighting the various mechanisms by which PRKN gene variants result in loss-of-function. We emphasize the importance of high-throughput assays and computational tools for the clinical classification of PRKN gene variants and how detailed insights into the pathogenic mechanisms of PRKN gene variants may impact the development of personalized therapeutics.
Collapse
Affiliation(s)
- Lene Clausen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
| | - Vasileios Voutsinos
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230, Odense, Denmark
- Department of Neurology, Odense University Hospital, 5000, Odense, Denmark
- Department of Clinical Research, BRIDGE, Brain Research Inter Disciplinary Guided Excellence, University of Southern Denmark, 5230, Odense, Denmark
| | - Kresten Lindorff-Larsen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
9
|
Chen XS, Han R, Liu YT, Huang W, Wang Q, Xiong X, Zhang Y, Zhao JG, Li SH, Li XJ, Yang WL. Comparative analysis of primate and pig cells reveals primate-specific PINK1 expression and phosphorylation. Zool Res 2024; 45:242-252. [PMID: 38287905 PMCID: PMC11017073 DOI: 10.24272/j.issn.2095-8137.2023.241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/12/2023] [Indexed: 01/31/2024] Open
Abstract
PTEN-induced putative kinase 1 (PINK1), a mitochondrial kinase that phosphorylates Parkin and other proteins, plays a crucial role in mitophagy and protection against neurodegeneration. Mutations in PINK1 and Parkin can lead to loss of function and early onset Parkinson's disease. However, there is a lack of strong in vivo evidence in rodent models to support the theory that loss of PINK1 affects mitophagy and induces neurodegeneration. Additionally, PINK1 knockout pigs ( Sus scrofa) do not appear to exhibit neurodegeneration. In our recent work involving non-human primates, we found that PINK1 is selectively expressed in primate brains, while absent in rodent brains. To extend this to other species, we used multiple antibodies to examine the expression of PINK1 in pig tissues. In contrast to tissues from cynomolgus monkeys ( Macaca fascicularis), our data did not convincingly demonstrate detectable PINK1 expression in pig tissues. Knockdown of PINK1 in cultured pig cells did not result in altered Parkin and BAD phosphorylation, as observed in cultured monkey cells. A comparison of monkey and pig striatum revealed more PINK1-phosphorylated substrates in the monkey brain. Consistently, PINK1 knockout in pigs did not lead to obvious changes in the phosphorylation of Parkin and BAD. These findings provide new evidence that PINK1 expression is specific to primates, underscoring the importance of non-human primates in investigating PINK1 function and pathology related to PINK1 deficiency.
Collapse
Affiliation(s)
- Xiu-Sheng Chen
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rui Han
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yan-Ting Liu
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wei Huang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qi Wang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xin Xiong
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jian-Guo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Hua Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Wei-Li Yang
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
10
|
Lazzeri G, Biagioni F, Ferrucci M, Puglisi-Allegra S, Lenzi P, Busceti CL, Giannessi F, Fornai F. The Relevance of Autophagy within Inner Ear in Baseline Conditions and Tinnitus-Related Syndromes. Int J Mol Sci 2023; 24:16664. [PMID: 38068993 PMCID: PMC10706730 DOI: 10.3390/ijms242316664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Stefano Puglisi-Allegra
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Francesco Giannessi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| |
Collapse
|
11
|
Yu L, Yu S, He Y, Deng G, Li Q. High Autophagy Patterns in Swelling Platelets During Apheresis Platelet Storage. Indian J Hematol Blood Transfus 2023; 39:670-678. [PMID: 37790743 PMCID: PMC10542436 DOI: 10.1007/s12288-023-01638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
Platelets undergo remarkable morphological changes during storage. Platelets change into different sizes and densities and differ in their biochemistry and functions. However, the correlation between structural heterogeneity and platelet autophagy is largely unknown. The aim of this study was to investigate the autophagy process in vitro, such as routine storage of platelets, and explore the role of reactive oxygen species (ROS) involved in the regulation of platelet autophagy. The ROS and autophagy levels of platelet concentrates from apheresis platelets were evaluated through flow cytometry. The expression levels of autophagy-associated proteins (LC3I, LC3II, Beclin1, Parkin, and PINK1) were measured via Western blot. All biomarkers were dynamically monitored for seven days. Moreover, the morphological characteristics of platelet morphology during storage were analyzed through transmission electron microscopy (TEM). Flow cytometry showed that the levels of total cell ROS and mitochondria ROS increased in the stored platelets. Together with the increase in mitochondrial ROS, the autophagy signal LC3 in the platelets was strongly amplified. The number of swollen platelets (large platelets) considerably increased, and that of autophagy signal LC3 was remarkably higher than that of the normal platelets. Western blot revealed that the expression levels of Beclin1 and LC3 II/LC3 I ratio were enhanced, whereas those of Parkin and PINK1 almost did not change during the seven days of storage. The existence of autophagosomes or autophagolysosomes in the platelets at the middle stage of platelet storage was observed via TEM. Our data demonstrated that the subpopulation of large (swollen) platelets exhibited different autophagy patterns. Furthermore, increased platelet autophagy was associated with mitochondrial ROS. These preliminary results suggest that swelling platelets have a higher autophagy pattern than normal platelets during storage.
Collapse
Affiliation(s)
- Lu Yu
- The Ningbo Central Blood Station, Ningbo, China
| | - Shifang Yu
- The Department of Transfusion Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yunlei He
- The Ningbo Central Blood Station, Ningbo, China
| | - Gang Deng
- The Ningbo Central Blood Station, Ningbo, China
| | - Qiang Li
- The Department of Laboratory Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
杨 丹, 王 刚, 杨 丽, 段 壬, 陈 显. [Effect of ligustrazine on hypoxic-ischemic encephalopathy in neonatal rats by regulating autophagy through the PINK1/Parkin pathway]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:751-758. [PMID: 37529959 PMCID: PMC10414166 DOI: 10.7499/j.issn.1008-8830.2302026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 08/03/2023]
Abstract
OBJECTIVES To study the effect of ligustrazine injection on mitophagy in neonatal rats with hypoxic-ischemic encephalopathy (HIE) and its molecular mechanism. METHODS Neonatal Sprague-Dawley rats, aged 7 days, were randomly divided into a sham-operation group with 8 rats, a model group with 12 rats, and a ligustrazine group with 12 rats. The rats in the model group and the ligustrazine group were used to establish a neonatal rat model of HIE by ligation of the left common carotid artery followed by hypoxia treatment, and blood vessels were exposed without any other treatment for the rats in the sham-operation group. The rats in the ligustrazine group were intraperitoneally injected with ligustrazine (20 mg/kg) daily after hypoxia-ischemia, and those in the sham-operation group and the model group were intraperitoneally injected with an equal volume of normal saline daily. Samples were collected after 7 days of treatment. Hematoxylin and eosin staining and Nissl staining were used to observe the pathological changes of neurons in brain tissue; immunohistochemical staining was used to observe the positive expression of PINK1 and Parkin in the hippocampus and cortex; TUNEL staining was used to measure neuronal apoptosis; Western blotting was used to measure the expression levels of the mitophagy pathway proteins PINK1 and Parkin and the autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3), and ubiquitin-binding protein (P62). RESULTS Compared with the sham-operation group, the model group had a significant reduction in the number of neurons, an increase in intercellular space, loose arrangement, lipid vacuolization, and a reduction in Nissl bodies. The increased positive expression of PINK1 and Parkin, apoptosis rate of neurons, and protein expression levels of PINK1, Parkin, Beclin1 and LC3 (P<0.05) and the decreased protein expression level of P62 in the hippocampus were also observed in the model group (P<0.05). Compared with the model group, the ligustrazine group had a significant increase in the number of neurons with ordered arrangement and an increase in Nissl bodies, significant reductions in the positive expression of PINK1 and Parkin, the apoptosis rate of neurons, and the protein expression levels of PINK1, Parkin, Beclin1, and LC3 (P<0.05), and a significant increase in the protein expression level of P62 (P<0.05). CONCLUSIONS Ligustrazine can alleviate hypoxic-ischemic brain damage and inhibit neuronal apoptosis in neonatal rats to a certain extent, possibly by inhibiting PINK1/Parkin-mediated autophagy.
Collapse
|
13
|
Rappe A, McWilliams TG. Mitophagy in the aging nervous system. Front Cell Dev Biol 2022; 10:978142. [PMID: 36303604 PMCID: PMC9593040 DOI: 10.3389/fcell.2022.978142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2024] Open
Abstract
Aging is characterised by the progressive accumulation of cellular dysfunction, stress, and inflammation. A large body of evidence implicates mitochondrial dysfunction as a cause or consequence of age-related diseases including metabolic disorders, neuropathies, various forms of cancer and neurodegenerative diseases. Because neurons have high metabolic demands and cannot divide, they are especially vulnerable to mitochondrial dysfunction which promotes cell dysfunction and cytotoxicity. Mitophagy neutralises mitochondrial dysfunction, providing an adaptive quality control strategy that sustains metabolic homeostasis. Mitophagy has been extensively studied as an inducible stress response in cultured cells and short-lived model organisms. In contrast, our understanding of physiological mitophagy in mammalian aging remains extremely limited, particularly in the nervous system. The recent profiling of mitophagy reporter mice has revealed variegated vistas of steady-state mitochondrial destruction across different tissues. The discovery of patients with congenital autophagy deficiency provokes further intrigue into the mechanisms that underpin neural integrity. These dimensions have considerable implications for targeting mitophagy and other degradative pathways in age-related neurological disease.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|