1
|
Ng TSC, Liu M, Robertson M, Könik A, Cheng SC, Bakht MK, Harrington K, Wolanski A, Gilbert L, Preston M, Mossanen M, Beltran H, Hirsch MS, Sonpavde G, Jacene HA. A pilot study of [ 18F]F-fluciclovine positron emission tomography/computed tomography for staging muscle invasive bladder cancer preceding radical cystectomy. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07287-y. [PMID: 40257614 DOI: 10.1007/s00259-025-07287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
AIM To assess the ability of [18F]F-fluciclovine-PET/CT to stage muscle invasive bladder cancer (MIBC) before radical cystectomy. METHODS This single-site prospective pilot study enrolled patients with MIBC and T2-T4, N0 disease on CT/MRI slated to undergo radical cystectomy (RC). Dynamic and static [18F]F-fluciclovine-PET/CT images were acquired. Clinical readers assessed for confirmation of the primary bladder lesion on imaging and the presence of pelvic nodal metastases. Findings were compared to pathology at RC. Kinetic parameters from dynamic PET/CT were compared across bladder lesions of different clinical stages. RESULTS The study enrolled sixteen patients (median age: 73 years, range: 57-88 years, 11 males, 5 females), twelve receiving neoadjuvant chemotherapy before RC. There was high specificity amongst all three readers for detecting lymph node metastases (overall specificity: 0.91, 95%CI: 0.81-1.00) with good overall agreement rate with pathology (0.67, 95%CI: 0.44-0.83). The overall PPV for all readers for identifying node-positive disease was 0.4 (95%CI: 0-1.00), and the overall sensitivity was 0.13 (95%CI: 0-0.44). The overall PPV for detecting the primary tumor was 0.69 (95%CI: 0.47-0.88), and the sensitivity was 0.89 (95%CI: 0.78-1.00), with NPV and specificity being 0.70 (95%CI: 0.33, 1.00) and 0.39 (95%CI: 0.33, 0.50), respectively. Compartmental analysis of the primary bladder tumor revealed that k1 and vb parameters significantly differentiated between low (pT0-pT1) and high (pT2-pT4) risk disease (p < 0.05). Immunohistochemical assessment showed no significant correlation of tumor [18F]F-fluciclovine uptake nor kinetic parameter with amino acid transporter expression. CONCLUSIONS [18F]F-fluciclovine demonstrates good specificity and agreement rate for MIBC staging, with sensitivity like CT/MRI. Kinetic parameters such as k1 was able to delineate higher-stage ( ≥ = pT2) primary lesions. Heterogeneous amino acid transporter expression can be seen across lesions. Further studies are warranted to understand [18F]F-fluciclovine PET/CT use in the context of other imaging modalities in this disease. CLINICAL TRIAL REGISTRATION NCT04018053 Registered 2/26/2020.
Collapse
Affiliation(s)
- Thomas S C Ng
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA, USA.
- Joint Program in Nuclear Medicine, Harvard Medical School, Boston, MA, USA.
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Present/Permanent Address, 55 Fruit St, Boston, MA, 02115, USA.
| | - Mofei Liu
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew Robertson
- Joint Program in Nuclear Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Arda Könik
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA, USA
- Joint Program in Nuclear Medicine, Harvard Medical School, Boston, MA, USA
| | - Su Chun Cheng
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin K Bakht
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Andrew Wolanski
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lauren Gilbert
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mark Preston
- Division of Urological Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew Mossanen
- Division of Urological Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Guru Sonpavde
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- AdventHealth Cancer Institute, Orlando, FL, USA
| | - Heather A Jacene
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA, USA
- Joint Program in Nuclear Medicine, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Dyachenko EI, Bel’skaya LV. Transmembrane Amino Acid Transporters in Shaping the Metabolic Profile of Breast Cancer Cell Lines: The Focus on Molecular Biological Subtype. Curr Issues Mol Biol 2024; 47:4. [PMID: 39852119 PMCID: PMC11763447 DOI: 10.3390/cimb47010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Amino acid metabolism in breast cancer cells is unique for each molecular biological subtype of breast cancer. In this review, the features of breast cancer cell metabolism are considered in terms of changes in the amino acid composition due to the activity of transmembrane amino acid transporters. In addition to the main signaling pathway PI3K/Akt/mTOR, the activity of the oncogene c-Myc, HIF, p53, GATA2, NF-kB and MAT2A have a direct effect on the amino acid metabolism of cancer cells, their growth and proliferation, as well as the maintenance of homeostatic equilibrium. A distinctive feature of luminal subtypes of breast cancer from TNBC is the ability to perform gluconeogenesis. Breast cancers with a positive expression of the HER2 receptor, in contrast to TNBC and luminal A subtype, have a distinctive active synthesis and consumption of fatty acids. It is interesting to note that amino acid transporters exhibit their activity depending on the pH level inside the cell. In the most aggressive forms of breast cancer or with the gradual progression of the disease, pH will also change, which will directly affect the metabolism of amino acids. Using the cell lines presented in this review, we can trace the characteristic features inherent in each of the molecular biological subtypes of breast cancer and develop the most optimal therapeutic targets.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
3
|
Jain SK, Justin Margret J, Abrams SA, Levine SN, Bhusal K. The Impact of Vitamin D and L-Cysteine Co-Supplementation on Upregulating Glutathione and Vitamin D-Metabolizing Genes and in the Treatment of Circulating 25-Hydroxy Vitamin D Deficiency. Nutrients 2024; 16:2004. [PMID: 38999752 PMCID: PMC11243476 DOI: 10.3390/nu16132004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vitamin D receptors are expressed in many organs and tissues, which suggests that vitamin D (VD) affects physiological functions beyond its role in maintaining bone health. Deficiency or inadequacy of 25(OH)VD is widespread globally. Population studies demonstrate that a positive association exists between a high incidence of VD deficiency and a high incidence of chronic diseases, including dementia, diabetes, and heart disease. However, many subjects have difficulty achieving the required circulating levels of 25(OH)VD even after high-dose VD supplementation, and randomized controlled clinical trials have reported limited therapeutic success post-VD supplementation. Thus, there is a discordance between the benefits of VD supplementation and the prevention of chronic diseases in those with VD deficiency. Why this dissociation exists is currently under debate and is of significant public interest. This review discusses the downregulation of VD-metabolizing genes needed to convert consumed VD into 25(OH)VD to enable its metabolic action exhibited by subjects with metabolic syndrome, obesity, and other chronic diseases. Research findings indicate a positive correlation between the levels of 25(OH)VD and glutathione (GSH) in both healthy and diabetic individuals. Cell culture and animal experiments reveal a novel mechanism through which the status of GSH can positively impact the expression of VD metabolism genes. This review highlights that for better success, VD deficiency needs to be corrected at multiple levels: (i) VD supplements and/or VD-rich foods need to be consumed to provide adequate VD, and (ii) the body needs to be able to upregulate VD-metabolizing genes to convert VD into 25(OH)VD and then to 1,25(OH)2VD to enhance its metabolic action. This review outlines the association between 25(OH)VD deficiency/inadequacy and decreased GSH levels, highlighting the positive impact of combined VD+LC supplementation on upregulating GSH, VD-metabolizing genes, and VDR. These effects have the potential to enhance 25(OH)VD levels and its therapeutic efficacy.
Collapse
Affiliation(s)
- Sushil K. Jain
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Jeffrey Justin Margret
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA;
| | - Steven A. Abrams
- Department of Pediatrics and Dell Pediatric Research Institute, Dell Medical School at the University of Texas at Austin, Austin, TX 78723, USA;
| | - Steven N. Levine
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| | - Kamal Bhusal
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA; (S.N.L.); (K.B.)
| |
Collapse
|
4
|
Feng Z, Fang C, Ma Y, Chang J. Obesity-induced blood-brain barrier dysfunction: phenotypes and mechanisms. J Neuroinflammation 2024; 21:110. [PMID: 38678254 PMCID: PMC11056074 DOI: 10.1186/s12974-024-03104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity, a burgeoning global health issue, is increasingly recognized for its detrimental effects on the central nervous system, particularly concerning the integrity of the blood-brain barrier (BBB). This manuscript delves into the intricate relationship between obesity and BBB dysfunction, elucidating the underlying phenotypes and molecular mechanisms. We commence with an overview of the BBB's critical role in maintaining cerebral homeostasis and the pathological alterations induced by obesity. By employing a comprehensive literature review, we examine the structural and functional modifications of the BBB in the context of obesity, including increased permeability, altered transport mechanisms, and inflammatory responses. The manuscript highlights how obesity-induced systemic inflammation and metabolic dysregulation contribute to BBB disruption, thereby predisposing individuals to various neurological disorders. We further explore the potential pathways, such as oxidative stress and endothelial cell dysfunction, that mediate these changes. Our discussion culminates in the summary of current findings and the identification of knowledge gaps, paving the way for future research directions. This review underscores the significance of understanding BBB dysfunction in obesity, not only for its implications in neurodegenerative diseases but also for developing targeted therapeutic strategies to mitigate these effects.
Collapse
Affiliation(s)
- Ziying Feng
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yinzhong Ma
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| | - Junlei Chang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
5
|
Li Y, Guo Y, Bröer A, Dai L, Brӧer S, Yan R. Cryo-EM structure of the human Asc-1 transporter complex. Nat Commun 2024; 15:3036. [PMID: 38589439 PMCID: PMC11001984 DOI: 10.1038/s41467-024-47468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
The Alanine-Serine-Cysteine transporter 1 (Asc-1 or SLC7A10) forms a crucial heterodimeric transporter complex with 4F2hc (SLC3A2) through a covalent disulfide bridge. This complex enables the sodium-independent transport of small neutral amino acids, including L-Alanine (L-Ala), Glycine (Gly), and D-Serine (D-Ser), within the central nervous system (CNS). D-Ser and Gly are two key endogenous glutamate co-agonists that activate N-methyl-d-aspartate (NMDA) receptors by binding to the allosteric site. Mice deficient in Asc-1 display severe symptoms such as tremors, ataxia, and seizures, leading to early postnatal death. Despite its physiological importance, the functional mechanism of the Asc-1-4F2hc complex has remained elusive. Here, we present cryo-electron microscopy (cryo-EM) structures of the human Asc-1-4F2hc complex in its apo state, D-Ser bound state, and L-Ala bound state, resolved at 3.6 Å, 3.5 Å, and 3.4 Å, respectively. Through detailed structural analysis and transport assays, we uncover a comprehensive alternating access mechanism that underlies conformational changes in the complex. In summary, our findings reveal the architecture of the Asc-1 and 4F2hc complex and provide valuable insights into substrate recognition and the functional cycle of this essential transporter complex.
Collapse
Affiliation(s)
- Yaning Li
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yingying Guo
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Angelika Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Lu Dai
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Renhong Yan
- Department of Biochemistry, Key University Laboratory of Metabolism and Health of Guangdong, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| |
Collapse
|
6
|
Rullo-Tubau J, Martinez-Molledo M, Bartoccioni P, Puch-Giner I, Arias Á, Saen-Oon S, Stephan-Otto Attolini C, Artuch R, Díaz L, Guallar V, Errasti-Murugarren E, Palacín M, Llorca O. Structure and mechanisms of transport of human Asc1/CD98hc amino acid transporter. Nat Commun 2024; 15:2986. [PMID: 38582862 PMCID: PMC10998858 DOI: 10.1038/s41467-024-47385-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Recent cryoEM studies elucidated details of the structural basis for the substrate selectivity and translocation of heteromeric amino acid transporters. However, Asc1/CD98hc is the only neutral heteromeric amino acid transporter that can function through facilitated diffusion, and the only one that efficiently transports glycine and D-serine, and thus has a regulatory role in the central nervous system. Here we use cryoEM, ligand-binding simulations, mutagenesis, transport assays, and molecular dynamics to define human Asc1/CD98hc determinants for substrate specificity and gain insights into the mechanisms that govern substrate translocation by exchange and facilitated diffusion. The cryoEM structure of Asc1/CD98hc is determined at 3.4-3.8 Å resolution, revealing an inward-facing semi-occluded conformation. We find that Ser 246 and Tyr 333 are essential for Asc1/CD98hc substrate selectivity and for the exchange and facilitated diffusion modes of transport. Taken together, these results reveal the structural bases for ligand binding and transport features specific to human Asc1.
Collapse
Affiliation(s)
- Josep Rullo-Tubau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028, Barcelona, Spain
| | - Maria Martinez-Molledo
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, E-28029, Madrid, Spain
| | - Paola Bartoccioni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028, Barcelona, Spain
- The Spanish Center of Rare Diseases (CIBERER U-731), Baldiri Reixac 10, E-08028, Barcelona, Spain
| | - Ignasi Puch-Giner
- Electronic and atomic protein modelling group, Barcelona Supercomputing Center, Plaça d'Eusebi Güell, 1-3, E-08034, Barcelona, Spain
| | - Ángela Arias
- Clinical Biochemistry Department, Sant Joan de Déu Research Institute, Pg. de Sant Joan de Déu, 2, E-08950, Esplugues de Llobregat, Spain
| | - Suwipa Saen-Oon
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, E-08029, Barcelona, Spain
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028, Barcelona, Spain
| | - Rafael Artuch
- The Spanish Center of Rare Diseases (CIBERER U-731), Baldiri Reixac 10, E-08028, Barcelona, Spain
- Clinical Biochemistry Department, Sant Joan de Déu Research Institute, Pg. de Sant Joan de Déu, 2, E-08950, Esplugues de Llobregat, Spain
| | - Lucía Díaz
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, E-08029, Barcelona, Spain
| | - Víctor Guallar
- Electronic and atomic protein modelling group, Barcelona Supercomputing Center, Plaça d'Eusebi Güell, 1-3, E-08034, Barcelona, Spain
- Nostrum Biodiscovery, Av. de Josep Tarradellas, 8-10, E-08029, Barcelona, Spain
| | - Ekaitz Errasti-Murugarren
- The Spanish Center of Rare Diseases (CIBERER U-731), Baldiri Reixac 10, E-08028, Barcelona, Spain.
- Physiological Sciences Department, Genetics Area, School of Medicine and Health Sciences, University of Barcelona, Bellvitge Campus. Feixa Llarga s/n, E-08907, L'Hospitalet de Llobregat, Spain.
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, IDIBELL, Hospital Duran i Reynals, Avd. Gran Via de L'Hospitalet 199, E-08908, L'Hospitalet de Llobregat, Spain.
| | - Manuel Palacín
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028, Barcelona, Spain.
- The Spanish Center of Rare Diseases (CIBERER U-731), Baldiri Reixac 10, E-08028, Barcelona, Spain.
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Av. Diagonal, 643, E-08028, Barcelona, Spain.
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, E-28029, Madrid, Spain.
| |
Collapse
|
7
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
8
|
Jersin RÅ, Sri Priyanka Tallapragada D, Skartveit L, Bjune MS, Muniandy M, Lee-Ødegård S, Heinonen S, Alvarez M, Birkeland KI, André Drevon C, Pajukanta P, McCann A, Pietiläinen KH, Claussnitzer M, Mellgren G, Dankel SN. Impaired Adipocyte SLC7A10 Promotes Lipid Storage in Association With Insulin Resistance and Altered BCAA Metabolism. J Clin Endocrinol Metab 2023; 108:2217-2229. [PMID: 36916878 PMCID: PMC10438883 DOI: 10.1210/clinem/dgad148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
CONTEXT The neutral amino acid transporter SLC7A10/ASC-1 is an adipocyte-expressed gene with reduced expression in insulin resistance and obesity. Inhibition of SLC7A10 in adipocytes was shown to increase lipid accumulation despite decreasing insulin-stimulated uptake of glucose, a key substrate for de novo lipogenesis. These data imply that alternative lipogenic substrates to glucose fuel continued lipid accumulation during insulin resistance in obesity. OBJECTIVE We examined whether increased lipid accumulation during insulin resistance in adipocytes may involve alter flux of lipogenic amino acids dependent on SLC7A10 expression and activity, and whether this is reflected by extracellular and circulating concentrations of marker metabolites. METHODS In adipocyte cultures with impaired SLC7A10, we performed RNA sequencing and relevant functional assays. By targeted metabolite analyses (GC-MS/MS), flux of all amino acids and selected metabolites were measured in human and mouse adipose cultures. Additionally, SLC7A10 mRNA levels in human subcutaneous adipose tissue (SAT) were correlated to candidate metabolites and adiposity phenotypes in 2 independent cohorts. RESULTS SLC7A10 impairment altered expression of genes related to metabolic processes, including branched-chain amino acid (BCAA) catabolism, lipogenesis, and glyceroneogenesis. In 3T3-L1 adipocytes, SLC7A10 inhibition increased fatty acid uptake and cellular content of glycerol and cholesterol. SLC7A10 impairment in SAT cultures altered uptake of aspartate and glutamate, and increased net uptake of BCAAs, while increasing the net release of the valine catabolite 3- hydroxyisobutyrate (3-HIB). In human cohorts, SLC7A10 mRNA correlated inversely with total fat mass, circulating triacylglycerols, BCAAs, and 3-HIB. CONCLUSION Reduced SLC7A10 activity strongly affects flux of BCAAs in adipocytes, which may fuel continued lipogenesis during insulin resistance, and be reflected in increased circulating levels of the valine-derived catabolite 3-HIB.
Collapse
Affiliation(s)
- Regine Å Jersin
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Divya Sri Priyanka Tallapragada
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Linn Skartveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mona S Bjune
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Maheswary Muniandy
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Sindre Lee-Ødegård
- Department of Transplantation Medicine, The University of Oslo, Institute of Clinical Medicine, and Oslo University Hospital, N-0372 Oslo, Norway
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kåre Inge Birkeland
- Department of Transplantation Medicine, The University of Oslo, Institute of Clinical Medicine, and Oslo University Hospital, N-0372 Oslo, Norway
| | - Christian André Drevon
- Department of Nutrition, The University of Oslo, Institute of Basic Medical Sciences, N-0372 Oslo, Norway
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adrian McCann
- Bevital A/S, Laboratoriebygget, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
- Obesity Center, Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, FIN-00014 Helsinki, Finland
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
9
|
Vámos A, Arianti R, Vinnai BÁ, Alrifai R, Shaw A, Póliska S, Guba A, Csősz É, Csomós I, Mocsár G, Lányi C, Balajthy Z, Fésüs L, Kristóf E. Human abdominal subcutaneous-derived active beige adipocytes carrying FTO rs1421085 obesity-risk alleles exert lower thermogenic capacity. Front Cell Dev Biol 2023; 11:1155673. [PMID: 37416800 PMCID: PMC10321670 DOI: 10.3389/fcell.2023.1155673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction: White adipocytes store lipids, have a large lipid droplet and few mitochondria. Brown and beige adipocytes, which produce heat, are characterized by high expression of uncoupling protein (UCP) 1, multilocular lipid droplets, and large amounts of mitochondria. The rs1421085 T-to-C single-nucleotide polymorphism (SNP) of the human FTO gene interrupts a conserved motif for ARID5B repressor, resulting in adipocyte type shift from beige to white. Methods: We obtained abdominal subcutaneous adipose tissue from donors carrying FTO rs1421085 TT (risk-free) or CC (obesity-risk) genotypes, isolated and differentiated their preadipocytes into beige adipocytes (driven by the PPARγ agonist rosiglitazone for 14 days), and activated them with dibutyryl-cAMP for 4 hours. Then, either the same culture conditions were applied for additional 14 days (active beige adipocytes) or it was replaced by a white differentiation medium (inactive beige adipocytes). White adipocytes were differentiated by their medium for 28 days. Results and Discussion: RNA-sequencing was performed to investigate the gene expression pattern of adipocytes carrying different FTO alleles and found that active beige adipocytes had higher brown adipocyte content and browning capacity compared to white or inactive beige ones when the cells were obtained from risk-free TT but not from obesity-risk CC genotype carriers. Active beige adipocytes carrying FTO CC had lower thermogenic gene (e.g., UCP1, PM20D1, CIDEA) expression and thermogenesis measured by proton leak respiration as compared to TT carriers. In addition, active beige adipocytes with CC alleles exerted lower expression of ASC-1 neutral amino acid transporter (encoded by SLC7A10) and less consumption of Ala, Ser, Cys, and Gly as compared to risk-free carriers. We did not observe any influence of the FTO rs1421085 SNP on white and inactive beige adipocytes highlighting its exclusive and critical effect when adipocytes were activated for thermogenesis.
Collapse
Affiliation(s)
- Attila Vámos
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Rini Arianti
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalanbaru, Indonesia
| | - Boglárka Ágnes Vinnai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Rahaf Alrifai
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Abhirup Shaw
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Andrea Guba
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Csomós
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Zoltán Balajthy
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Laboratory of Cell Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Ivanov AV, Popov MA, Metelkin AA, Aleksandrin VV, Agafonov EG, Kruglova MP, Silina EV, Stupin VA, Maslennikov RA, Kubatiev AA. Influence of Coronary Artery Bypass Grafts on Blood Aminothiols in Patients with Coronary Artery Disease. Metabolites 2023; 13:743. [PMID: 37367901 PMCID: PMC10305081 DOI: 10.3390/metabo13060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Coronary artery disease (CAD) and the coronary artery bypass graft (CABG) are associated with a decreased blood glutathione (bGSH) level. Since GSH metabolism is closely related to other aminothiols (homocysteine and cysteine) and glucose, the aim of this study was to reveal the associations of bGSH with glucose and plasma aminothiols in CAD patients (N = 35) before CABG and in the early postoperative period. Forty-three volunteers with no history of cardiovascular disease formed the control group. bGSH and its redox status were significantly lower in CAD patients at admission. CABG had no significant effect on these parameters, with the exception of an increase in the bGSH/hemoglobin ratio. At admission, CAD patients were characterized by negative associations of homocysteine and cysteine with bGSH. All these associations disappeared after CABG. An association was found between an increase in oxidized GSH in the blood in the postoperative period and fasting glucose levels. Thus, CAD is associated with the depletion of the intracellular pool and the redox status of bGSH, in which hyperhomocysteinemia and a decrease in the bioavailability of the extracellular pool of cysteine play a role. The present study indicates that CABG causes disruptions in aminothiol metabolism and induces the synthesis of bGSH. Moreover, glucose becomes an important factor in the dysregulation of GSH metabolism in CABG.
Collapse
Affiliation(s)
- Alexander Vladimirovich Ivanov
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia; (A.A.M.); (V.V.A.); (M.P.K.); (A.A.K.)
| | - Mikhail Aleksandrovich Popov
- Moscow Regional Research and Clinical Institute n.a. M.F. Vladimirskiy, Shchepkin St., 61/2, 129110 Moscow, Russia; (M.A.P.); (E.G.A.); (R.A.M.)
| | - Arkady Andreevich Metelkin
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia; (A.A.M.); (V.V.A.); (M.P.K.); (A.A.K.)
| | - Valery Vasil’evich Aleksandrin
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia; (A.A.M.); (V.V.A.); (M.P.K.); (A.A.K.)
| | - Evgeniy Gennad’evich Agafonov
- Moscow Regional Research and Clinical Institute n.a. M.F. Vladimirskiy, Shchepkin St., 61/2, 129110 Moscow, Russia; (M.A.P.); (E.G.A.); (R.A.M.)
| | - Maria Petrovna Kruglova
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia; (A.A.M.); (V.V.A.); (M.P.K.); (A.A.K.)
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8, 119991 Moscow, Russia;
| | - Ekaterina Vladimirovna Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St., 8, 119991 Moscow, Russia;
| | - Victor Aleksandrovich Stupin
- Department of Hospital Surgery No. 1, Pirogov Russian National Research Medical University, Ostrovityanova St., 1, 117997 Moscow, Russia;
| | - Ruslan Andreevich Maslennikov
- Moscow Regional Research and Clinical Institute n.a. M.F. Vladimirskiy, Shchepkin St., 61/2, 129110 Moscow, Russia; (M.A.P.); (E.G.A.); (R.A.M.)
| | - Aslan Amirkhanovich Kubatiev
- Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia; (A.A.M.); (V.V.A.); (M.P.K.); (A.A.K.)
| |
Collapse
|