1
|
Reddy D, Lin Z, Ramanathan S, Luo X, Pande R, Tian Y, Side C, Barker JM, Sacan A, Blendy JA, Ajit SK. Morphine-induced hyperalgesia impacts small extracellular vesicle miRNA composition and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.617815. [PMID: 39484599 PMCID: PMC11526852 DOI: 10.1101/2024.10.17.617815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Morphine and other synthetic opioids are widely prescribed to treat pain. Prolonged morphine exposure can paradoxically enhance pain sensitivity in humans and nociceptive behavior in rodents. To better understand the molecular mechanisms underlying opioid-induced hyperalgesia, we investigated changes in miRNA composition of small extracellular vesicles (sEVs) from the serum of mice after a morphine treatment paradigm that induces hyperalgesia. We observed significant differential expression of 18 miRNAs in sEVs from morphine-treated mice of both sexes compared to controls. Several of these miRNAs were bioinformatically predicted to regulate cyclic AMP response element binding protein (CREB), a well-characterized transcription factor implicated in pain and drug addiction. We confirmed the binding and repression of Creb mRNA by miR-155 and miR-10a. We tested if serum-derived sEVs from morphine-treated mice could elicit nociceptive behavior in naïve recipient mice. Intrathecal injection of 1 μg sEVs did not significantly impact basal mechanical and thermal threshold in naïve recipient mice. However, prophylactic 1 μg sEV administration in recipient mice resulted in faster resolution of complete Freund's adjuvant-induced mechanical and thermal inflammatory hypersensitivity. Other behaviors assayed following administration of these sEVs were not impacted including sEV conditioned place preference and locomotor sensitization. These results indicate that morphine regulation of serum sEV composition can contribute to analgesia and suggest a potential for sEVs to be a non-opioid therapeutic intervention strategy to treat pain.
Collapse
Affiliation(s)
- Deepa Reddy
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Equal contributions
| | - Zhucheng Lin
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Equal contributions
| | - Sujay Ramanathan
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Equal contributions
| | - Xuan Luo
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Richa Pande
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Yuzhen Tian
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Christine Side
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Jacqueline M. Barker
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science & Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA, USA
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
2
|
Singh S, Deshetty UM, Ray S, Oladapo A, Horanieh E, Buch S, Periyasamy P. Non-Coding RNAs in HIV Infection, NeuroHIV, and Related Comorbidities. Cells 2024; 13:898. [PMID: 38891030 PMCID: PMC11171711 DOI: 10.3390/cells13110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
NeuroHIV affects approximately 30-60% of people living with HIV-1 (PLWH) and is characterized by varying degrees of cognitive impairments, presenting a multifaceted challenge, the underlying cause of which is chronic, low-level neuroinflammation. Such smoldering neuroinflammation is likely an outcome of lifelong reliance on antiretrovirals coupled with residual virus replication in the brains of PLWH. Despite advancements in antiretroviral therapeutics, our understanding of the molecular mechanism(s) driving inflammatory processes in the brain remains limited. Recent times have seen the emergence of non-coding RNAs (ncRNAs) as critical regulators of gene expression, underlying the neuroinflammatory processes in HIV infection, NeuroHIV, and their associated comorbidities. This review explores the role of various classes of ncRNAs and their regulatory functions implicated in HIV infection, neuropathogenesis, and related conditions. The dysregulated expression of ncRNAs is known to exacerbate the neuroinflammatory responses, thus contributing to neurocognitive impairments in PLWH. This review also discusses the diagnostic and therapeutic potential of ncRNAs in HIV infection and its comorbidities, suggesting their utility as non-invasive biomarkers and targets for modulating neuroinflammatory pathways. Understanding these regulatory roles could pave the way for novel diagnostic strategies and therapeutic interventions in the context of HIV and its comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (S.S.); (U.M.D.); (S.R.); (A.O.); (E.H.)
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; (S.S.); (U.M.D.); (S.R.); (A.O.); (E.H.)
| |
Collapse
|
3
|
Colón Ortiz R, Knerler S, Fridman LB, Mercado A, Price AS, Rosado-Franco JJ, Wilkins H, Flores BR, Orsburn BC, Williams DW. Cocaine regulates antiretroviral therapy CNS access through pregnane-x receptor-mediated drug transporter and metabolizing enzyme modulation at the blood brain barrier. Fluids Barriers CNS 2024; 21:5. [PMID: 38200564 PMCID: PMC10777548 DOI: 10.1186/s12987-023-00507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. METHODS We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. RESULTS We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and 4 kDa FITC-dextran, as well as tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases that are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. CONCLUSION Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.
Collapse
Affiliation(s)
- Rodnie Colón Ortiz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Stephen Knerler
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lisa B Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Alicia Mercado
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Amira-Storm Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Jose J Rosado-Franco
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Hannah Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Bianca R Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Dionna W Williams
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, MD, 21205, USA.
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road NE, 30322, Atlanta, Georgia.
| |
Collapse
|
4
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
5
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
6
|
Fridman LB, Knerler S, Price AS, Ortiz RC, Mercado A, Wilkins H, Flores BR, Orsburn BC, Williams DW. Cocaine Regulates Antiretroviral Therapy CNS Access Through Pregnane-X Receptor-Mediated Drug Transporter and Metabolizing Enzyme Modulation at the Blood Brain Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551042. [PMID: 37546800 PMCID: PMC10402182 DOI: 10.1101/2023.07.28.551042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background Appropriate interactions between antiretroviral therapies (ART) and drug transporters and metabolizing enzymes at the blood brain barrier (BBB) are critical to ensure adequate dosing of the brain to achieve HIV suppression. These proteins are modulated by demographic and lifestyle factors, including substance use. While understudied, illicit substances share drug transport and metabolism pathways with ART, increasing the potential for adverse drug:drug interactions. This is particularly important when considering the brain as it is relatively undertreated compared to peripheral organs and is vulnerable to substance use-mediated damage. Methods We used an in vitro model of the human BBB to determine the extravasation of three first-line ART drugs, emtricitabine (FTC), tenofovir (TFV), and dolutegravir (DTG), in the presence and absence of cocaine, which served as our illicit substance model. The impact of cocaine on BBB integrity and permeability, drug transporters, metabolizing enzymes, and their master transcriptional regulators were evaluated to determine the mechanisms by which substance use impacted ART central nervous system (CNS) availability. Results We determined that cocaine had a selective impact on ART extravasation, where it increased FTC's ability to cross the BBB while decreasing TFV. DTG concentrations that passed the BBB were below quantifiable limits. Interestingly, the potent neuroinflammatory modulator, lipopolysaccharide, had no effect on ART transport, suggesting a specificity for cocaine. Unexpectedly, cocaine did not breach the BBB, as permeability to albumin and tight junction proteins and adhesion molecules remained unchanged. Rather, cocaine selectively decreased the pregnane-x receptor (PXR), but not constitutive androstane receptor (CAR). Consequently, drug transporter expression and activity decreased in endothelial cells of the BBB, including p-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4). Further, cytochrome P450 3A4 (CYP3A4) enzymatic activity increased following cocaine treatment that coincided with decreased expression. Finally, cocaine modulated adenylate kinases are required to facilitate biotransformation of ART prodrugs to their phosphorylated, pharmacologically active counterparts. Conclusion Our findings indicate that additional considerations are needed in CNS HIV treatment strategies for people who use cocaine, as it may limit ART efficacy through regulation of drug transport and metabolizing pathways at the BBB.
Collapse
Affiliation(s)
- Lisa B. Fridman
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Stephen Knerler
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Amira-Storm Price
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Rodnie Colón Ortiz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Alicia Mercado
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Hannah Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Bianca R. Flores
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Benjamin C. Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Dionna W. Williams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
- Department of Molecular Microbiology & Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205
| |
Collapse
|
7
|
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8:217. [PMID: 37231000 PMCID: PMC10212980 DOI: 10.1038/s41392-023-01481-w] [Citation(s) in RCA: 429] [Impact Index Per Article: 214.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Blood-brain barrier (BBB) is a natural protective membrane that prevents central nervous system (CNS) from toxins and pathogens in blood. However, the presence of BBB complicates the pharmacotherapy for CNS disorders as the most chemical drugs and biopharmaceuticals have been impeded to enter the brain. Insufficient drug delivery into the brain leads to low therapeutic efficacy as well as aggravated side effects due to the accumulation in other organs and tissues. Recent breakthrough in materials science and nanotechnology provides a library of advanced materials with customized structure and property serving as a powerful toolkit for targeted drug delivery. In-depth research in the field of anatomical and pathological study on brain and BBB further facilitates the development of brain-targeted strategies for enhanced BBB crossing. In this review, the physiological structure and different cells contributing to this barrier are summarized. Various emerging strategies for permeability regulation and BBB crossing including passive transcytosis, intranasal administration, ligands conjugation, membrane coating, stimuli-triggered BBB disruption, and other strategies to overcome BBB obstacle are highlighted. Versatile drug delivery systems ranging from organic, inorganic, and biologics-derived materials with their synthesis procedures and unique physio-chemical properties are summarized and analyzed. This review aims to provide an up-to-date and comprehensive guideline for researchers in diverse fields, offering perspectives on further development of brain-targeted drug delivery system.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|
8
|
Ma R, Kutchy NA, Wang Z, Hu G. Extracellular vesicle-mediated delivery of anti-miR-106b inhibits morphine-induced primary ciliogenesis in the brain. Mol Ther 2023; 31:1332-1345. [PMID: 37012704 PMCID: PMC10188913 DOI: 10.1016/j.ymthe.2023.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Repeated use of opioids such as morphine causes changes in the shape and signal transduction pathways of various brain cells, including astrocytes and neurons, resulting in alterations in brain functioning and ultimately leading to opioid use disorder. We previously demonstrated that extracellular vesicle (EV)-induced primary ciliogenesis contributes to the development of morphine tolerance. Herein, we aimed to investigate the underlying mechanisms and potential EV-mediated therapeutic approach to inhibit morphine-mediated primary ciliogenesis. We demonstrated that miRNA cargo in morphine-stimulated-astrocyte-derived EVs (morphine-ADEVs) mediated morphine-induced primary ciliogenesis in astrocytes. CEP97 is a target of miR-106b and is a negative regulator of primary ciliogenesis. Intranasal delivery of ADEVs loaded with anti-miR-106b decreased the expression of miR-106b in astrocytes, inhibited primary ciliogenesis, and prevented the development of tolerance in morphine-administered mice. Furthermore, we confirmed primary ciliogenesis in the astrocytes of opioid abusers. miR-106b-5p in morphine-ADEVs induces primary ciliogenesis via targeting CEP97. Intranasal delivery of ADEVs loaded with anti-miR-106b ameliorates morphine-mediated primary ciliogenesis and prevents morphine tolerance. Our findings bring new insights into the mechanisms underlying primary cilium-mediated morphine tolerance and pave the way for developing ADEV-mediated small RNA delivery strategies for preventing substance use disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901- 8525, USA
| | - Zhongbin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|