1
|
Jashnsaz H, Neuert G. Phenotypic consequences of logarithmic signaling in MAPK stress response. iScience 2025; 28:111625. [PMID: 39886462 PMCID: PMC11780147 DOI: 10.1016/j.isci.2024.111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/04/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
How cells respond to dynamic environmental changes is crucial for understanding fundamental biological processes and cell physiology. In this study, we developed an experimental and quantitative analytical framework to explore how dynamic stress gradients that change over time regulate cellular volume, signaling activation, and growth phenotypes. Our findings reveal that gradual stress conditions substantially enhance cell growth compared to conventional acute stress. This growth advantage correlates with a minimal reduction in cell volume dependent on the dynamic of stress. We explain the growth phenotype with our finding of a logarithmic signal transduction mechanism in the yeast mitogen-activated protein kinase (MAPK) osmotic stress response pathway. These insights into the interplay between gradual environments, cell volume change, dynamic cell signaling, and growth, advance our understanding of fundamental cellular processes in gradual stress environments.
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Leasure CS, Neuert G. Modelling patient drug exposure profiles in vitro to narrow the valley of death. NATURE REVIEWS BIOENGINEERING 2024; 2:196-197. [PMID: 38873361 PMCID: PMC11175168 DOI: 10.1038/s44222-024-00160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Catherine S. Leasure
- The Office of Biomedical Research Education and Training, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, United States
- Department of Pharmacology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
Witmond M, Keizer E, Kiffen B, Huck WTS, van Buggenum JAGL. Dynamic hydrogen peroxide levels reveal a rate-dependent sensitivity in B-cell lymphoma signaling. Sci Rep 2024; 14:4265. [PMID: 38383739 PMCID: PMC10882005 DOI: 10.1038/s41598-024-54871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
Although in vivo extracellular microenvironments are dynamic, most in vitro studies are conducted under static conditions. Here, we exposed diffuse large B-cell lymphoma (DLBCL) cells to gradient increases in the concentration of hydrogen peroxide (H2O2), thereby capturing some of the dynamics of the tumour microenvironment. Subsequently, we measured the phosphorylation response of B-cell receptor (BCR) signalling proteins CD79a, SYK and PLCγ2 at a high temporal resolution via single-cell phospho-specific flow cytometry. We demonstrated that the cells respond bimodally to static extracellular H2O2, where the percentage of cells that respond is mainly determined by the concentration. Computational analysis revealed that the bimodality results from a combination of a steep dose-response relationship and cell-to-cell variability in the response threshold. Dynamic gradient inputs of varying durations indicated that the H2O2 concentration is not the only determinant of the signalling response, as cells exposed to more shallow gradients respond at lower H2O2 levels. A minimal model of the proximal BCR network qualitatively reproduced the experimental findings and uncovered a rate-dependent sensitivity to H2O2, where a lower rate of increase correlates to a higher sensitivity. These findings will bring us closer to understanding how cells process information from their complex and dynamic in vivo environments.
Collapse
Affiliation(s)
- Melde Witmond
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Emma Keizer
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bas Kiffen
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands.
| | - Jessie A G L van Buggenum
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Nijmegen, The Netherlands.
- Single Cell Discoveries (SCD), Utrecht, The Netherlands.
| |
Collapse
|
4
|
Samad SS, Schwartz JM, Francavilla C. Functional selectivity of Receptor Tyrosine Kinases regulates distinct cellular outputs. Front Cell Dev Biol 2024; 11:1348056. [PMID: 38259512 PMCID: PMC10800419 DOI: 10.3389/fcell.2023.1348056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Functional selectivity refers to the activation of differential signalling and cellular outputs downstream of the same membrane-bound receptor when activated by two or more different ligands. Functional selectivity has been described and extensively studied for G-protein Coupled Receptors (GPCRs), leading to specific therapeutic options for dysregulated GPCRs functions. However, studies regarding the functional selectivity of Receptor Tyrosine Kinases (RTKs) remain sparse. Here, we will summarize recent data about RTK functional selectivity focusing on how the nature and the amount of RTK ligands and the crosstalk of RTKs with other membrane proteins regulate the specificity of RTK signalling. In addition, we will discuss how structural changes in RTKs upon ligand binding affects selective signalling pathways. Much remains to be known about the integration of different signals affecting RTK signalling specificity to orchestrate long-term cellular outcomes. Recent advancements in omics, specifically quantitative phosphoproteomics, and in systems biology methods to study, model and integrate different types of large-scale omics data have increased our ability to compare several signals affecting RTK functional selectivity in a global, system-wide fashion. We will discuss how such methods facilitate the exploration of important signalling hubs and enable data-driven predictions aiming at improving the efficacy of therapeutics for diseases like cancer, where redundant RTK signalling pathways often compromise treatment efficacy.
Collapse
Affiliation(s)
- Sakim S. Samad
- Division of Molecular and Cellular Functions, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Division of Evolution, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jean-Marc Schwartz
- Division of Evolution, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Chiara Francavilla
- Division of Molecular and Cellular Functions, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Section of Protein Science and Biotherapeutics, Department of Bioengineering and Biomedicine, Danish Technical University, Lyngby, Denmark
| |
Collapse
|
5
|
Jashnsaz H, Neuert G. Phenotypic consequences of logarithmic signaling in MAPK stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570188. [PMID: 38106069 PMCID: PMC10723343 DOI: 10.1101/2023.12.05.570188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
How cells respond to dynamic environmental changes is crucial for understanding fundamental biological processes and cell physiology. In this study, we developed an experimental and quantitative analytical framework to explore how dynamic stress gradients that change over time regulate cellular volume, signaling activation, and growth phenotypes. Our findings reveal that gradual stress conditions substantially enhance cell growth compared to conventional acute stress. This growth advantage correlates with a minimal reduction in cell volume dependent on the dynamic of stress. We explain the growth phenotype with our finding of a logarithmic signal transduction mechanism in the yeast Mitogen-Activated Protein Kinase (MAPK) osmotic stress response pathway. These insights into the interplay between gradual environments, cell volume change, dynamic cell signaling, and growth, advance our understanding of fundamental cellular processes in gradual stress environments.
Collapse
Affiliation(s)
- Hossein Jashnsaz
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232 USA
| | - Gregor Neuert
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, TN 37232 USA
- Lead Contact
| |
Collapse
|