1
|
Genc S, Cicek B. Examination of PDK1/AKT/mTOR transcription and exosomal mRNA levels in human glioblastoma cell line treated with a combination of temozolomide and hesperidin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04137-4. [PMID: 40372477 DOI: 10.1007/s00210-025-04137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/01/2025] [Indexed: 05/16/2025]
Abstract
The most malignant type of tumor in the brain is high-grade gliomas. Glioblastoma (GB), a grade 4 glioma, has the lowest 5-year survival rate and is associated with poor prognosis. An important signaling pathway involved in the pathogenesis of GB is the mammalian target of rapamycin (mTOR). Therefore, our study aimed to investigate how exosomes obtained from GB cells applied with different doses of hesperidin (HSP) affect miR- 9 and change the PDK1/AKT/mTOR pathway. For this purpose, T98G cells were treated with different doses (5, 10, 25, and 50 µg/mL) of HSP in combination with temozolomide (TMZ- 10 µg/mL). At the end of 24 h, cell viability, flow cytometry, and biochemical tests were performed. Additionally, exosomes were isolated from cells belonging to the control, TMZ, and high-concentration TMZ-HSP groups. miR- 9, PDK1, PTEN, AKT- 1, Bax, Bcl- 2, and Caspase 3 genes were expressed in both application groups and exosomes belonging to these groups. HSP was found to reduce the viability of GB cells significantly. The viability was significantly reduced, especially in the TMZ-HSP 50 µg/mL group. Depending on the dose, there was a significant increase in the LDH level and oxidative stress level. The apoptosis level was approximately 26% in the TMZ-HSP 50 µg/mL group. Along with all this, gene expressions changed at the exosomal level, and miR- 9 and miR- 146 levels increased. Similarly, it changed the expression of proteins related to the PDK1/AKT/mTOR signaling pathway at the exosomal level (p < 0.05). In conclusion, the TMZ-HSP combination showed anticancer effects in T98G cells, influenced exosome profiles, and appeared non-toxic and potentially beneficial to healthy cells, highlighting its potential therapeutic value.
Collapse
Affiliation(s)
- Sidika Genc
- Faculty of Medicine, Department of Medical Pharmacology, Bilecik Şeyh Edebali University, Bilecik, 11230, Turkey.
| | - Betul Cicek
- Faculty of Medicine, Department of Physiology, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| |
Collapse
|
2
|
Borlongan MC, Rodriguez T, Putthanbut N, Wang H, Lee JY. Modeling of cancer stem cells and the tumor microenvironment Via NT2/D1 cells to probe pathology and treatment for cancer and beyond. Discov Oncol 2025; 16:605. [PMID: 40272656 PMCID: PMC12022208 DOI: 10.1007/s12672-025-02158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/17/2025] [Indexed: 04/27/2025] Open
Abstract
INTRODUCTION Unique from the other tumor cells, tumorigenic cancer stem cells (CSCs) manifest as a subpopulation of cells within the tumor that exhibit genetic and phenotypic features and signaling processes, which escape traditional anti-oncogenic treatments, thereby triggering metastases and relapses of cancers. Critical to cancer biology is the crosstalk between CSCs and tumor microenvironment (TME), implicating a CSC-based cancer immunotherapy. Cognizant of CSCs' significant role in cancer pathology and treatment, finding a biological model that recapitulates CSCs and TME may allow a better understanding of tumor onset and progression for testing CSC-based therapies. In this review paper, we examined the CSC and TME characteristics of the human embryonal carcinoma NTERA-2 clonal cell line called NTERA-2 cl.D1 or NT2/D1 cells and discussed their potential utility for research and development of treatments for cancer and central nervous system (CNS) disorders. METHODS To probe our hypotheses that NT2/D1 cells display CSC and TME properties key to tumor development, which can serve as a screening platform to test cancer and CNS therapeutics, we conducted a literature review over a 10-year period (2014-2024), focusing on PUBMED and Science Direct published articles on cellular models of cancer, with emphasis on milestone research discoveries on NT2/D1 cells relevant to CSCs and TME. We categorized the studies under pre-clinical and clinical investigations in supporting the existence of CSC and TME features in NT2/D1 cells and providing a laboratory-to-clinic translational basis for cancer and CNS therapeutics. CONCLUSIONS NT2/D1 cells stand as a feasible biological model that recapitulates the crosstalk of CSCs and TME, which may critically contribute to our understanding of cancer and CNS biology and therapeutics. Designing therapeutics against CSCs' distinct self-renewal and differentiation capacities within the TME opens new avenues for treating cancers and CNS disorders.
Collapse
Affiliation(s)
- Mia C Borlongan
- California Northstate University College of Medicine, Elk Grove, CA, 95757, USA
| | - Thomas Rodriguez
- Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Napasiri Putthanbut
- Center of Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL, 33612, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Hongbin Wang
- California Northstate University College of Pharmacy, Elk Grove, CA, 95757, USA
| | - Jea-Young Lee
- Center of Aging and Brain Repair, Department of Neurosurgery, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
3
|
Obisi JN, Abimbola ANJ, Babaleye OA, Atidoglo PK, Usin SG, Nwanaforo EO, Patrick-Inezi FS, Fasogbon IV, Chimezie J, Dare CA, Kuti OO, Uti DE, Omeoga HC. Unveiling the future of cancer stem cell therapy: a narrative exploration of emerging innovations. Discov Oncol 2025; 16:373. [PMID: 40120008 PMCID: PMC11929669 DOI: 10.1007/s12672-025-02102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer stem cells (CSCs), are a critical subpopulation within tumours, and are defined by their capacity for self-renewal, differentiation, and tumour initiation. These unique traits contribute to tumour progression, metastasis, and resistance to conventional treatments like chemotherapy and radiotherapy, often resulting in cancer recurrence and poor patient outcomes. As such, CSCs have become focal points in developing advanced cancer therapies. This review highlights progress in CSC-targeted treatments, including chimeric antigen receptor T-cell (CAR-T) therapy, immunotherapy, molecular targeting, and nanoparticle-based drug delivery systems. Plant-derived compounds and gene-editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR), are explored for their potential to enhance precision and minimize side effects. Metabolic pathways integral to CSC survival, such as mitochondrial dynamics, mitophagy (regulated by dynamin-related protein 1 [DRP1] and the PINK1/Parkin pathway), one-carbon metabolism, amino acid metabolism (involving enzymes like glutaminase (GLS) and glutamate dehydrogenase (GDH]), lipid metabolism, and hypoxia-induced metabolic reprogramming mediated by hypoxia-inducible factors (HIF-1α and HIF-2α), are examined as therapeutic targets. The adaptability of CSCs through autophagy, metabolic flexibility, and epigenetic regulation by metabolites like α-ketoglutarate, succinate, and fumarate is discussed. Additionally, extracellular vesicles and nicotinamide adenine dinucleotide (NAD⁺) metabolism are identified as pivotal in redox balance, DNA repair, and epigenetic modifications. Addressing challenges such as tumour heterogeneity, immune evasion, and treatment durability requires interdisciplinary collaboration. Advancing CSC-targeted therapies is essential for overcoming drug resistance and preventing cancer relapse, paving the way for transformative cancer treatments. This review underscores the importance of leveraging innovative technologies and fostering collaboration to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | | | - Oluwasegun Adesina Babaleye
- Center for Human Virology and Genomics, Department of Microbiology, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Peter Kwame Atidoglo
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Saviour God'swealth Usin
- Cancer Research and Molecular Biology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Eudora Obioma Nwanaforo
- Environmental Health Science Department, School of Heath Technology, Federal University of Technology Owerri, Owerri, Nigeria
| | | | | | - Joseph Chimezie
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Daniel Ejim Uti
- Department of Biochemistry/Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria.
| | | |
Collapse
|
4
|
Spoerer TM, Larey AM, Asigri W, Daga KR, Marklein RA. High throughput morphological screening identifies chemically defined media for mesenchymal stromal cells that enhances proliferation and supports maintenance of immunomodulatory function. Stem Cell Res Ther 2025; 16:125. [PMID: 40055728 PMCID: PMC11889916 DOI: 10.1186/s13287-025-04206-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/30/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND While mesenchymal stromal cell (MSC) therapies show promise for treating several indications due to their regenerative and immunomodulatory capacity, clinical translation has yet to be achieved due to a lack of robust, scalable manufacturing practices. Expansion using undefined fetal bovine serum (FBS) or human platelet lysate contributes to MSC functional heterogeneity and limits control of product quality. The need for tunable and consistent media has thus motivated development of chemically defined media (CDM). However, CDM development strategies are often limited in their screening approaches and unable to reliably assess the impact of media on MSC function, often neglecting high-level interactions of media components such as growth factors. Given that MSC morphology has been shown to predict their immunomodulatory function, we employed a high throughput screening (HTS) approach to elucidate effects of growth factor compositions on MSC phenotype and proliferation in a custom CDM. METHODS HTS of eight growth factors in a chemically defined basal medium (CDBM) was conducted via a two-level, full factorial design using adipose-derived MSCs. Media hits were identified leveraging cell counts and morphological profiles. After validating phenotypic responses to hits across multiple donors, MSCs were cultured over three passages in serum-containing medium (SCM) and CDM hits and assayed for growth and immunomodulatory function. Finally, growth factor concentrations in one hit were further refined, and MSC growth and function was assessed. RESULTS Our HTS approach led to the discovery of several CDM formulations that enhanced MSC proliferation and demonstrated wide ranging impacts on MSC immunomodulation. Notably, two hits showed 4X higher growth compared to SCM over 3 passages without compromising immunomodulatory function. Refinement of one CDM hit formulation reduced growth factor concentrations by as much as 90% while maintaining superior growth and similar function to SCM. Altogether, distinct MSC morphological profiles observed from screening were indicative of differential MSC quality that allowed for development of an effective CDM for MSC expansion. CONCLUSIONS Overall, this highlights how our HTS approach led to the development of CDM formulations for robust MSC expansion and serves as a generalizable tool for improvement of MSC manufacturing processes.
Collapse
Affiliation(s)
- Thomas M Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Winifred Asigri
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- College of Arts & Sciences, Georgetown University, Washington, D. C., USA
| | - Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
5
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
6
|
Ahmadi Y, Faiq T, Abolhasani S. Impact of G1 phase kinetics on the acquisition of stemness in cancer cells: the critical role of cyclin D. Mol Biol Rep 2025; 52:230. [PMID: 39951181 DOI: 10.1007/s11033-025-10351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/07/2025] [Indexed: 05/09/2025]
Abstract
Cancer stem cells (CSCs) represent a unique subpopulation of cells with the ability to self-renew and differentiate, thereby sustaining tumor growth and contributing to disease recurrence. Although CSCs predominantly reside in the G0 phase, their stem-like properties, such as the expression of specific CD markers, self-renewal, differentiation potential, tumor initiation, drug resistance, and increased invasive and metastatic potential, manifest during their active proliferative phase. Rapidly dividing cells exhibit alterations in their cell cycle, often characterized by shortened or bypassed G1 phases, a phenomenon observed in both embryonic stem cells and cancerous cells. Dysregulation of cell cycle control is a hallmark of cancer, leading to uncontrolled cellular proliferation and tumorigenesis. Disruption in key regulatory proteins, signaling pathways, and cell cycle checkpoints-particularly during the G1 phase-enables cancer cells to escape normal proliferation restrictions. The rapid cell-cycle progression can impair the timely degradation of proteins critical for cell cycle regulation, particularly cyclin D, thereby compromising proper cell cycle control. Therefore these proteins may be passed to daughter cells, promoting further rounds of rapid cycles. Additionally, cyclin D is often overexpressed in cancer cells, further exacerbating uncontrolled proliferation. These mechanisms may underpin key properties of CSCs, including rapid proliferation and their stem-like traits. This review examines the relationship between G1 phase kinetics and the acquisition of stem-like characteristics, emphasizing how rapid G1 phase progression and transitions between dormancy and active proliferation contribute to the emergence of CSC traits.
Collapse
Affiliation(s)
- Yasin Ahmadi
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq.
| | - Tahran Faiq
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Kurdistan Region, Iraq
| | - Sakhavat Abolhasani
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran.
- Sarab School of Medical Sciences and Health Services, Sarab, East Azerbaijan, Iran.
| |
Collapse
|
7
|
Amissah HA, Antwi MH, Amissah TA, Combs SE, Shevtsov M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells 2025; 14:204. [PMID: 39936995 PMCID: PMC11817126 DOI: 10.3390/cells14030204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
The epichaperome, a dynamic and integrated network of chaperone proteins, extends its roles beyond basic protein folding to protein stabilization and intracellular signal transduction to orchestrating a multitude of cellular processes critical for tumor survival. In this review, we explore the multifaceted roles of the epichaperome, delving into its diverse cellular locations, factors that modulate its formation and function, its liquid-liquid phase separation, and the key signaling and crosstalk pathways it regulates, including cellular metabolism and intracellular signal transduction. We further highlight techniques for isolating and identifying epichaperome networks, pitfalls, and opportunities. Further, we review the profound implications of the epichaperome for cancer treatment and therapy design, underscoring the need for strategic engineering that hinges on a comprehensive insight into the comprehensive structure and workings of the epichaperome across the heterogeneous cell subpopulations in the tumor milieu. By presenting a holistic view of the epichaperome's functions and mechanisms, we aim to underscore its potential as a key target for novel anti-cancer strategies, revealing that the epichaperome is not merely a piece of protein folding machinery but a mastermind that facilitates the malignant phenotype.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Biotechnology, School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, Winneba CE-122-2486, Central Region, Ghana
| | - Maxwell Hubert Antwi
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana; (M.H.A.); (T.A.A.)
| | - Tawfeek Ahmed Amissah
- Department of Medical Laboratory Science, Faculty of Health and Allied Sciences, Koforidua Technical University, Koforidua EN-112-3991, Eastern Region, Ghana; (M.H.A.); (T.A.A.)
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), Saint Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia
| |
Collapse
|
8
|
Mengistu BA, Tsegaw T, Demessie Y, Getnet K, Bitew AB, Kinde MZ, Beirhun AM, Mebratu AS, Mekasha YT, Feleke MG, Fenta MD. Comprehensive review of drug resistance in mammalian cancer stem cells: implications for cancer therapy. Cancer Cell Int 2024; 24:406. [PMID: 39695669 DOI: 10.1186/s12935-024-03558-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer remains a significant global challenge, and despite the numerous strategies developed to advance cancer therapy, an effective cure for metastatic cancer remains elusive. A major hurdle in treatment success is the ability of cancer cells, particularly cancer stem cells (CSCs), to resist therapy. These CSCs possess unique abilities, including self-renewal, differentiation, and repair, which drive tumor progression and chemotherapy resistance. The resilience of CSCs is linked to certain signaling pathways. Tumors with pathway-dependent CSCs often develop genetic resistance, whereas those with pathway-independent CSCs undergo epigenetic changes that affect gene regulation. CSCs can evade cytotoxic drugs, radiation, and apoptosis by increasing drug efflux transporter activity and activating survival mechanisms. Future research should prioritize the identification of new biomarkers and signaling molecules to better understand drug resistance. The use of cutting-edge approaches, such as bioinformatics, genomics, proteomics, and nanotechnology, offers potential solutions to this challenge. Key strategies include developing targeted therapies, employing nanocarriers for precise drug delivery, and focusing on CSC-targeted pathways such as the Wnt, Notch, and Hedgehog pathways. Additionally, investigating multitarget inhibitors, immunotherapy, and nanodrug delivery systems is critical for overcoming drug resistance in cancer cells.
Collapse
Affiliation(s)
- Bemrew Admassu Mengistu
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia.
| | - Tirunesh Tsegaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yitayew Demessie
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Kalkidan Getnet
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Abebe Belete Bitew
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Mebrie Zemene Kinde
- Department of Biomedical Sciences, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Asnakew Mulaw Beirhun
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon Mebratu
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melaku Getahun Feleke
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Melkie Dagnaw Fenta
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Zhang W, Li M, Zhao Z, Xu J, Liu J, Feng P, Zhang B, Huang Z, Kong QQ, Lin Y. Tetrahedral Framework Nucleic Acid-Loaded Retinoic Acid Promotes Osteosarcoma Stem Cell Clearance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58452-58463. [PMID: 39425646 DOI: 10.1021/acsami.4c14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Metastatic osteosarcoma is a commonly seen malignant tumor in adolescents, with a five year survival rate of approximately 20% and a lack of treatment options. Osteosarcoma cancer stem cells are considered to be important drivers of the metastasis of osteosarcoma, and therefore their clearance is considered a promising strategy for treating metastatic osteosarcoma. In the relevant literature, retinoic acid (ATRA) is considered effective for eliminating osteosarcoma stem cells, but it has some inherent disadvantages, including poor solubility, difficulty in entering cells, and structural instability. Tetrahedral framework nucleic acids (tFNAs) are a type of nanoparticles that can carry small-molecule drugs into cells to exert therapeutic effects. Therefore, we designed and synthesized a nanoparticle named T-ATRA by using tFNAs to load ATRA and studied its effect in a nude mouse model. T-ATRA is more effective than ATRA in the clearance of osteosarcoma stem cells and in inhibiting osteosarcoma cell metastasis via the Wnt signaling pathway, thus prolonging the survival time of nude mice with osteosarcoma.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengqing Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Zhen Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiangshan Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junlin Liu
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Pin Feng
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Bin Zhang
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Zhangheng Huang
- Department of Orthopaedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qing-Quan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Orthopedics Surgery, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Yu L, Zang C, Ye Y, Liu H, Eucker J. Effects of BYL-719 (alpelisib) on human breast cancer stem cells to overcome drug resistance in human breast cancer. Front Pharmacol 2024; 15:1443422. [PMID: 39469631 PMCID: PMC11514072 DOI: 10.3389/fphar.2024.1443422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/06/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Breast cancer continues to be a major health concern and is currently the most commonly diagnosed cancer worldwide. Relapse, metastasis, and therapy resistance are major clinical issues that doctors need to address. We believe BYL-719, which is PI3 kinase p110а inhibitor, could also inhibit the breast cancer stem cell phenotype and epithelial-to-mesenchymal transition (EMT). In addition to the PI3K/AKT signaling pathway, BYL-719 can also inhibit essential cancer-related signaling pathways, all of which would ultimately act on the microenvironment of cancer stem cells, which is quite complicated and regulates the characteristics of tumors. These include the stemness and resistance of malignant tumors, plasticity of cancer stem cells, and anti-apoptotic features. Materials and methods A three-dimensional (3D) mammosphere culture method was used in vitro to culture and collect breast cancer stem cells (BCSCs). MTT, clonogenic, and cell apoptosis assays were used to detect cell viability, self-renewal, and differentiation abilities. A sphere formation assay under 3D conditions was used to detect the mammophore inhibition rate of BYL-719. The subpopulation of CD44+CD24- was detected using flow cytometry analysis while EMT biomarkers and essential signaling pathways were detected using western blotting. All the data were analyzed using GraphPad Prism 9 software. Results BCSC-like cells were obtained by using the 3D cell culture method in vitro. We confirmed that BYL-719 could inhibit BCSC-like cell proliferation in 3D cultures and that the stemness characteristics of BCSC-like cells were inhibited. The PI3K/AKT/mTOR signaling pathway could be inhibited by BYL-719, and the Notch, JAK-STAT and MAPK/ERK signaling pathways which have crosstalk in the tumor microenvironment (TME) are also inhibited. By comparing eribulin-resistant breast cancer cell lines, we confirmed that BYL-719 could effectively overcome drug resistance. Summary/conclusion The 3D cell culture is a novel and highly effective method for enriching BCSCs in vitro. Furthermore, the stemness and EMT of BCSCs were inhibited by BYL-719 by acting on various signaling pathways. Finally, we believe that drug resistance can be overcome by targeting the BCSCs. Conjugation of BYL-719 with other anti-neoplastic agents may be a promising treatment for this in clinic.
Collapse
Affiliation(s)
- Leinan Yu
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Chuanbing Zang
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Yuanchun Ye
- School of Science, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hongyu Liu
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
| | - Jan Eucker
- Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin Charité ‐ Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin, Berlin, Germany
- Department of Oncology, Rheumatology and Gastroenterology, Vivantes Klinikum Spandau, Berlin, Germany
| |
Collapse
|
11
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
12
|
Dasari N, Guntuku GS, Pindiprolu SKSS. Targeting triple negative breast cancer stem cells using nanocarriers. DISCOVER NANO 2024; 19:41. [PMID: 38453756 PMCID: PMC10920615 DOI: 10.1186/s11671-024-03985-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Nagasen Dasari
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India.
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India.
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India.
| | - Girija Sankar Guntuku
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| |
Collapse
|
13
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
14
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
Quintero JC, Díaz NF, Rodríguez-Dorantes M, Camacho-Arroyo I. Cancer Stem Cells and Androgen Receptor Signaling: Partners in Disease Progression. Int J Mol Sci 2023; 24:15085. [PMID: 37894767 PMCID: PMC10606328 DOI: 10.3390/ijms242015085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer stem cells exhibit self-renewal, tumorigenesis, and a high differentiation potential. These cells have been detected in every type of cancer, and different signaling pathways can regulate their maintenance and proliferation. Androgen receptor signaling plays a relevant role in the pathophysiology of prostate cancer, promoting cell growth and differentiation processes. However, in the case of prostate cancer stem cells, the androgen receptor negatively regulates their maintenance and self-renewal. On the other hand, there is evidence that androgen receptor activity positively regulates the generation of cancer stem cells in other types of neoplasia, such as breast cancer or glioblastoma. Thus, the androgen receptor role in cancer stem cells depends on the cellular context. We aimed to analyze androgen receptor signaling in the maintenance and self-renewal of different types of cancer stem cells and its action on the expression of transcription factors and surface markers associated with stemness.
Collapse
Affiliation(s)
- Juan Carlos Quintero
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, Mexico City 11000, Mexico;
| | | | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|