1
|
González-Conde M, Yáñez C, Abuín C, Keup C, Lago-Lestón R, Aybar M, Pedrouzo L, Palacios P, Curiel T, Cueva J, Rodríguez C, Carmona M, Cortegoso A, García-Caballero T, Muinelo-Romay L, Kasimir-Bauer S, López-López R, Costa C. Gene expression analysis in circulating tumour cells to determine resistance to CDK4/6 inhibitors plus endocrine therapy in HR + /HER2- metastatic breast cancer patients. J Transl Med 2025; 23:400. [PMID: 40186268 PMCID: PMC11971781 DOI: 10.1186/s12967-025-06374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/08/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Metastatic breast cancer (BC) is the main cause of cancer-related mortality in women worldwide. HR + /HER2- BC patients are treated with endocrine therapy (ET), but therapeutic resistance is common. The combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) with ET was approved for metastatic BC patients and extended the median progression-free survival to 24 months. This therapy is not always effective, and in every patient, resistance ultimately occurs, but the underlying resistance mechanisms remain unclear. To address this gap, we explored circulating tumour cells (CTCs) as biomarkers to assess treatment response and resistance in metastatic HR + /HER2- BC patients receiving CDK4/6i plus ET. METHODS In total, 53 HR + /HER2- metastatic BC patients who received a CDK4/6i plus ET as first-line treatment were analysed, including samples from internal and external validation cohorts. CTCs were isolated using the negative enrichment approach RosetteSep (STEMCELL Technologies) or positive immunomagnetic selection targeting EpCAM, EGFR, and HER2 (AdnaTest EMT-2/StemCell Select™, QIAGEN). RNA was extracted from CTCs and PBMCs for nCounter analysis (Pancancer pathways panel) in a discovery phase. Subsequent validation was performed by RT-qPCR. RESULTS CTC gene expression analysis revealed that non responder patients (those who experienced disease progression before 180 days) exhibited elevated PRKCB (p-value: 0.011), MAPK3 (p-value: 0.006) and STAT3 (p-value: 0.008) expression, while responders showed increased CDK6 (p-value: 0.011) and CCND1 (p-value: 0.035) expression at baseline. CTC transcriptional characterization revealed a gene expression signature (STAT3highPRKCBhighCDK6low) that accurately classified HR + /HER2- metastatic BC patients who responded to CDK4/6i plus ET, regardless of the CTC isolation method (AUC > 0.8). CTC characterization at progression also identified biomarkers linked to therapy resistance, including the epigenetic regulators EZH2 and HDAC6 and the cell cycle regulator CDC7, which could guide the selection of subsequent therapy lines. The expression of the CDK4 and STAT3 genes in CTCs was associated with progression-free survival and overall survival, respectively. Likewise, the presence of ≥ one CTC after one cycle of therapy predicts a worse prognosis. CONCLUSIONS CTC gene expression provides information about treatment outcomes in HR + /HER2- metastatic BC patients receiving CDK4/6i plus ET and could guide personalized strategies and improve prognosis.
Collapse
MESH Headings
- Humans
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Neoplastic Cells, Circulating/drug effects
- Breast Neoplasms/genetics
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Breast Neoplasms/blood
- Female
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/metabolism
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 4/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Receptor, ErbB-2/metabolism
- Neoplasm Metastasis
- Middle Aged
- Gene Expression Regulation, Neoplastic/drug effects
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Aged
- Gene Expression Profiling
- Adult
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Antineoplastic Agents, Hormonal/therapeutic use
Collapse
Affiliation(s)
- Miriam González-Conde
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Celso Yáñez
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Carmen Abuín
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Corinna Keup
- Department of Gynaecology and Obstetrics, University Hospital Essen, 45147, Essen, Germany
| | - Ramón Lago-Lestón
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Oncomet, Santiago de Compostela, Spain
| | - Maribel Aybar
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Lucía Pedrouzo
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Patricia Palacios
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Teresa Curiel
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Juan Cueva
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Carmela Rodríguez
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Marta Carmona
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Alexandra Cortegoso
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela. Health Research Institute of Santiago, Santiago de Compostela, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain
- Liquid Biopsy Analysis Unit, Oncomet, Santiago de Compostela, Spain
| | - Sabine Kasimir-Bauer
- Department of Gynaecology and Obstetrics, University Hospital Essen, 45147, Essen, Germany
| | - Rafael López-López
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Oncology, University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.
| | - Clotilde Costa
- Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer, CIBERONC, Madrid, Spain.
| |
Collapse
|
2
|
Marcho LM, Coss CC, Xu M, Datta J, Manouchehri JM, Cherian MA. Potent estrogen receptor β agonists with inhibitory activity in vitro, fail to suppress xenografts of endocrine-resistant cyclin-dependent kinase 4/6 inhibitor-resistant breast cancer cells. Front Oncol 2025; 15:1441896. [PMID: 40206590 PMCID: PMC11979155 DOI: 10.3389/fonc.2025.1441896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Objective Seventy percent of newly diagnosed breast cancers are estrogen receptor-α positive and HER2/neu negative. First-line treatments incorporate endocrine therapy and cyclin-dependent kinase 4/6 inhibitors. However, therapy resistance occurs in most patients. Hence, there is an urgent need for effective second-line treatments. We previously showed that the potent estrogen receptor-β agonists, OSU-ERβ-12 and LY500307, synergized with the selective estrogen receptor modulator, tamoxifen, in vitro. Furthermore, we showed that these compounds inhibited endocrine-resistant and cyclin-dependent kinase 4/6-inhibitor-resistant estrogen receptor α-positive cell lines in vitro. Here, we used fulvestrant- and abemaciclib-resistant T47D-derived cell line xenografts to determine the efficacy of the combination of OSU-ERβ-12 and LY500307 with tamoxifen in vivo. Results Despite efficacy in vitro, treatments failed to reduce xenograft tumor volumes. Hence, we conclude that this treatment strategy lacks direct cancer cell-intrinsic cytotoxic efficacy in vivo.
Collapse
Affiliation(s)
- Lynn M. Marcho
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Christopher C. Coss
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, United States
- Drug Development Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Menglin Xu
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Jharna Datta
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Jasmine M. Manouchehri
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Mathew A. Cherian
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
3
|
Sahin TK, Aksoy S, Guven DC. Oral selective estrogen receptor degraders (SERDs) in hormone receptor-positive HER2-negative metastatic breast cancer after progression with CDK4/6 inhibitors. Expert Rev Anticancer Ther 2025:1-14. [PMID: 40082241 DOI: 10.1080/14737140.2025.2479604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Hormone receptor-positive (HR+), HER2-negative metastatic breast cancer (mBC) remains a prevalent and challenging disease. Endocrine therapy (ET) combined with CDK4/6 inhibitors is the first-line standard of care, yet resistance mechanisms, including ESR1 mutations, drive disease progression. Novel oral selective estrogen receptor degraders (SERDs) have emerged as promising therapeutic agents after progression with CDK4/6 inhibitors secondary to ESR1 mutations. However, the available studies on SERDs differ in design, study population, and outcomes, necessitating a critical review of available data. AREAS COVERED This review explores the mechanisms, clinical efficacy, and safety profiles of oral SERDs in HR-positive, HER2-negative mBC, particularly following progression on CDK4/6 inhibitors. Recent key clinical trials, including EMERALD, SERENA-2, EMBER-3 and AMEERA-3, are analyzed, highlighting their efficacy in overcoming resistance, especially in ESR1-mutant populations. EXPERT OPINION Oral SERDs offer enhanced bioavailability and convenience compared to fulvestrant, representing a critical advancement in endocrine therapy. Their integration into treatment strategies, particularly in combination regimens and ctDNA-driven approaches, may improve patient outcomes and address resistance mechanisms. However, other than ESR1 mutations, clinical refinement for patient selection is limited. Further trials are needed to optimize patient selection for oral SERD use and define the most effective combination strategies with oral SERDs.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Ji M, Wang X, Liu C, Ma G, Lu X, Zhu B, He S, Zhang J, Xu X, Song S, Yang Z. Imaging CDK4/6 Broaden Options of Breast Cancer Diagnostics with Positron Emission Tomography. J Med Chem 2025; 68:4635-4649. [PMID: 39945599 DOI: 10.1021/acs.jmedchem.4c02672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This study developed a novel PET radiotracer to screen breast cancer patients sensitive to CDK4/6 inhibitors, guiding personalized treatment. Two CDK4/6-targeting precursors were synthesized and evaluated in vitro and in vivo. Three breast cancer cell lines─MCF-7, MDA-MB-231, and MDA-MB-468─were selected based on decreasing sensitivity to palbociclib. Compared to [68Ga]Ga-DOTA-Hexa-CDKi, [68Ga]Ga-DOTA-Bua-CDKi clearly identified cell lines with high sensitivity to palbociclib. PET/CT imaging showed significantly higher uptake of [68Ga]Ga-DOTA-Bua-CDKi (8.40 ± 0.85%ID/g) in MCF-7 tumors 60 min after tracer injection, with significant differences in tumor uptake among the three models (P < 0.05). Blocking assays demonstrated specific tumor uptake of [68Ga]Ga-DOTA-Bua-CDKi. Biosafety tests validated its safety as a diagnostic agent. [68Ga]Ga-DOTA-Bua-CDKi showed highly specific targeting of CDK4/6 and effective contrast imaging in tumor models. To our knowledge, [68Ga]Ga-DOTA-Bua-CDKi is one of the first radiotracers to assess CDK inhibitor sensitivity, offering promise for evaluating patient responses to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Mengjing Ji
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Xiangwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Cheng Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Guang Ma
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Xin Lu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Bin Zhu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Xiaoping Xu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| | - Zhongyi Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Biomedical Imaging, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai 200032, China
| |
Collapse
|
5
|
Pantelimon I, Stancu AM, Coniac S, Ionescu AI, Atasiei DI, Georgescu DE, Galeș LN. Local Control of Advanced Breast Cancer-Debate in Multidisciplinary Tumor Board. J Clin Med 2025; 14:510. [PMID: 39860516 PMCID: PMC11766072 DOI: 10.3390/jcm14020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: In Romania, breast cancer is the second most common cancer, the third leading cause of cancer death, and the most prevalent cancer overall. De novo advanced-stage breast cancer often presents in clinical practice, and treatment decisions are best made in a multidisciplinary tumor board (MTD) involving surgeons, radiotherapists, and medical oncologists. Significant advances in systemic therapies, particularly in progression-free survival (PFS) and overall survival (OS), have surpassed traditional palliative mastectomy and radiotherapy for local control. Therefore, the purpose of this study is to emphasize the importance of the initial choice of treatment for patient prognosis. Methods: We expose two cases of patients with de novo severe, advanced-stage, hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer and their management and outcome using cyclin-dependent kinase (CDK) 4/6 inhibitor and radiotherapy. An extensive review of the literature from the past five years was also conducted. Results: The role of palliative mastectomy is diminishing, as many patients are opting for novel therapies, including cyclin-dependent kinase (CDK) 4/6 inhibitors, which may improve quality of life. Conclusions: First-line therapy for locally advanced breast cancer has suffered changes due to the implementation of systemic targeted therapy. However, drug resistance-either de novo or acquired-remains a critical consideration. MTD discussions and informed patient decisions are essential to achieving a personalized, evidence-based treatment outcome.
Collapse
Affiliation(s)
- Iuliana Pantelimon
- Department of Medical Oncology, Clinical Hospital Dr. Ion Cantacuzino, 030167 Bucharest, Romania; (I.P.); (A.M.S.); (S.C.)
- Discipline of Medical Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Andra Maria Stancu
- Department of Medical Oncology, Clinical Hospital Dr. Ion Cantacuzino, 030167 Bucharest, Romania; (I.P.); (A.M.S.); (S.C.)
- Department of Physiology, Craiova University of Medicine and Pharmacy, 200349 Craiova, Romania
| | - Simona Coniac
- Department of Medical Oncology, Clinical Hospital Dr. Ion Cantacuzino, 030167 Bucharest, Romania; (I.P.); (A.M.S.); (S.C.)
- Department of Endocrinology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andreea-Iuliana Ionescu
- Department of Radiotherapy, Coltea Clinical Hospital, 030167 Bucharest, Romania;
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dimitrie-Ionuț Atasiei
- Discipline of Oncological Radiotherapy and Medical Imaging, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Dragoș Eugen Georgescu
- Department of Surgery, Clinical Hospital Dr. Ion Cantacuzino, Bucharest, 030167 Bucharest, Romania;
- Discipline of Surgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurenția Nicoleta Galeș
- Discipline of Medical Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Medical Oncology, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
6
|
Amaral C, Almeida CF, Valente MJ, Varela CL, Costa SC, Roleira FMF, Tavares-da-Silva E, Vinggaard AM, Teixeira N, Correia-da-Silva G. New Promising Steroidal Aromatase Inhibitors with Multi-Target Action on Estrogen and Androgen Receptors for Breast Cancer Treatment. Cancers (Basel) 2025; 17:165. [PMID: 39857947 PMCID: PMC11763961 DOI: 10.3390/cancers17020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Endocrine therapies that comprise anti-estrogens and aromatase inhibitors (AIs) are the standard treatment for estrogen receptor-positive (ER+) (Luminal A) breast cancer-the most prevalent subtype. However, the emergence of resistance restricts their success by causing tumor relapse and re-growth, which demands a switch towards other therapeutic approaches in order to minimize or overcome resistance. Indeed, this clinical limitation highlights the search for new molecules to improve cancer treatment. Recently, strategies that address multiple targets have been emerging, and multi-target drugs have the potential to become the future anti-cancer molecules. Our group has been searching for new multi-target compounds, and as part of this, our study aims to understand the anti-cancer and multi-target potential of three new steroidal aromatase inhibitors (AIs): 7α-methylandrost-4-en-17-one (6), 7α-methylandrost-4-ene-3,17-dione (10a) and androsta-4,9(11)-diene-3,17-dione (13). Methods: Their in vitro actions and molecular mechanisms were elucidated in a sensitive ER+ aromatase-overexpressing breast cancer cell line, MCF-7aro cells, as well as in an AI-resistant ER+ breast cancer cell line, LTEDaro cells. Results: All the new AIs (10 µM) prevented the proliferation of MCF-7aro cells by arresting cell cycle progression. Interestingly, all AIs (10 µM) act as androgen receptor (AR) agonists and modulate ER levels, synthesis and signaling to induce the apoptosis of ER+ breast cancer cells. Additionally, these new AIs (10 µM) also re-sensitize resistant cells by promoting apoptosis, offering a therapeutic benefit. Conclusions: Overall, new steroidal polypharmacological compounds have been discovered that, by acting as AIs, ER modulators and AR agonists, impair ER+ breast cancer cell growth. Overall, this study is a breakthrough on drug discovery as it presents new molecules with appealing anti-cancer properties and multi-target action for the treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Cristina Amaral
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (C.F.A.); (N.T.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina F. Almeida
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (C.F.A.); (N.T.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Maria João Valente
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (M.J.V.); (A.M.V.)
| | - Carla L. Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
| | - Saul C. Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal;
| | - Fernanda M. F. Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal (E.T.-d.-S.)
| | - Elisiário Tavares-da-Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III, Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal (E.T.-d.-S.)
| | - Anne Marie Vinggaard
- National Food Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (M.J.V.); (A.M.V.)
| | - Natércia Teixeira
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (C.F.A.); (N.T.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (C.F.A.); (N.T.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Hao C, Wei Y, Meng W, Zhang J, Yang X. PI3K/AKT/mTOR inhibitors for hormone receptor-positive advanced breast cancer. Cancer Treat Rev 2025; 132:102861. [PMID: 39662202 DOI: 10.1016/j.ctrv.2024.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/13/2024]
Abstract
Dysregulation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway plays a pivotal role in the development and progression of various cancers. In hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer, aberrations in this pathway are increasingly recognized as key drivers of resistance to endocrine therapy and cyclin-dependent kinase 4/6 (CDK4/6) inhibitors, the first-line treatments for this disease subtype. Recognizing the urgent need for alternative therapeutic strategies, significant advancements have been made in developing PI3K/AKT/mTOR inhibitors for HR+ advanced/metastatic breast cancer. Among these inhibitors, capivasertib and alpelisib have received approval as targeted therapies for this indication. This review provides a comprehensive summary of the latest developments in PI3K/AKT/mTOR inhibitors for HR+ breast cancer. It also delves into different aspects, including sampling, testing method and timing, of PI3K/AKT/mTOR diagnostic testing. Additionally, the review discusses key considerations for integrating these inhibitors into clinical practice, such as timing and choice of PI3K/AKT/mTOR inhibitors, and management of treatment toxicities. By examining these different aspects, this review aims to provide valuable insights into optimizing the clinical utility of PI3K/AKT/mTOR inhibitors in HR+ advanced breast cancer.
Collapse
Affiliation(s)
- Chunfang Hao
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Tianjin Cancer Hospital Airport Hospital, Tianjin, China; National Clinical Research Center for Cancer, Tianjin, China.
| | - Yunchu Wei
- Peking University Health Science Center, Beijing, China
| | - Wenjing Meng
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jie Zhang
- Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Xiaonan Yang
- Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| |
Collapse
|
8
|
Peng Y, Zhou Y, Zhou X, Jia X, Zhong Y. A disproportionality analysis of CDK4/6 inhibitors in the FDA Adverse Event Reporting System (FAERS). Expert Opin Drug Saf 2025; 24:25-33. [PMID: 39083396 DOI: 10.1080/14740338.2024.2387323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The FDA Adverse Event Reporting System (FAERS) was used to mine and evaluate adverse events (AEs) associated with cyclin-dependent kinase (CDK) 4/6 inhibitors, thereby providing a reference for clinical rational drug use. METHODS AE data related to CDK4/6 inhibitors from the first quarter of 2015 to the first quarter of 2023 were acquired from FAERS, while the signal mining was processed using the reporting odds ratio (ROR) method and Bayesian confidence propagation neural network (BCPNN) method. RESULTS The number of AE reports for CDK4/6 inhibitors was, respectively, 132,494 for palbociclib, 56,151 for ribociclib, and 7,014 for abemaciclib. The corresponding numbers of AE signals were 322,522, and 59, with the number of involved System Organ Class (SOC) being 23, 23, and 15, mainly involving blood and lymphatic system disorders, respiratory, thoracic and mediastinal disorders, hepatobiliary disorders, skin and subcutaneous tissue disorders, etc. CONCLUSION CDK4/6 inhibitors could lead to pulmonary toxicity, myelosuppression, skin reactions, etc. Special attention should be paid to abemaciclib for interstitial lung disease (ILD), erythema multiforme, and thrombosis risk; ribociclib for cardiac toxicity, hepatotoxicity, and musculoskeletal toxicity; palbociclib for neurocognitive impairment and osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Yuan Peng
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yuying Zhou
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuanyi Zhou
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xu Jia
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Zhong
- Department of Pharmacy, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital. C. T), Chengdu, Sichuan, China
| |
Collapse
|
9
|
Chan A, Gill J, Chih H, Wright SCE, Vasilevski N, Eichhorn PJA. Influence of Epithelial-Mesenchymal Transition on Risk of Relapse and Outcome to Eribulin or Cyclin-Dependent Kinase Inhibitors in Metastatic Breast Cancer. JCO Precis Oncol 2024; 8:e2400274. [PMID: 39642326 PMCID: PMC11634087 DOI: 10.1200/po.24.00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
PURPOSE The presence of epithelial-mesenchymal transition (EMT) in breast cancer (BC) cells has been linked to worse prognosis and may influence response to systemic treatment. We explored the effect of EMT in tumor samples of patients with metastatic BC on disease-free interval and overall survival in those patients receiving eribulin or cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). MATERIALS AND METHODS Key inclusion criteria included available archived primary BC tissue and, where available, matched metastatic biopsy. Patients received eribulin and/or a CDK4/6i in the metastatic setting. Specimens were assessed for biomarkers by immunohistochemistry (CDH1, AE1/3, VIM, CDH2, ZEB1, pSMAD2, and SMAD4) and gene expression by droplet digital polymerase chain reaction (CDH1, CDH2, SNAI1 & 2, TWIST1, VIM, PTEN, and ZEB1 & 2). RESULTS Between 2002 and 2020, 127 patients were included (95 early-stage disease at diagnosis with metastatic relapse, 32 de novo metastatic disease). In metastatic samples, presence of ZEB1 overexpression was associated with shorter time to recurrence (48.1 months shorter; P = .003), with pSMAD2 overexpression suggesting clinical significance of 52.0 months shorter; P = .01. High gene expression levels for SNAIL1, TWIST1, and PTEN in the primary BC were associated with significantly longer survival in patients who received eribulin (P < .05); high VIM was associated with a clinically relevant trend toward shorter survival after a CDK4/6i (P = .013). CONCLUSION We demonstrate in our exploratory study that biomarkers involved in the process of EMT could have a prognostic impact in a cohort of patients with BC uniformly treated and with long-term follow-up. Genes known to be involved in EMT were associated with improved eribulin efficacy, while suggesting a poorer outcome with CDK4/6i.
Collapse
Affiliation(s)
- Arlene Chan
- Breast Cancer Research Centre-WA and Curtin University, Perth, Australia
- Curtin Medical School, Curtin University, Bentley, Australia
| | - Jespal Gill
- Anatomical Pathology, Western Diagnostics, Jandakot and PathWest, Murdoch, Australia
| | - HuiJun Chih
- School of Population Health, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Sarah Christine Elisabeth Wright
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Natali Vasilevski
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Pieter Johan Adam Eichhorn
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
10
|
Wu S, Xu J, Ma Y, Liang G, Wang J, Sun T. Advances in the mechanism of CDK4/6 inhibitor resistance in HR+/HER2- breast cancer. Ther Adv Med Oncol 2024; 16:17588359241282499. [PMID: 39371618 PMCID: PMC11450575 DOI: 10.1177/17588359241282499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Among women, breast cancer is the most prevalent form of a malignant tumour. Among the subtypes of breast cancer, hormone receptor (HR) positive and human epidermal growth factor receptor (HER2) negative kinds make up the biggest proportion. The advent of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, which are dependent on cell cycle proteins, has greatly enhanced the prognosis of patients with advanced HR+/HER2- breast cancer. This is a specific treatment that stops the growth of cancer cells by preventing them from dividing. Nevertheless, the drug resistance of the disease unavoidably impacts the effectiveness of treatment and the prognosis of patients. This report provides a thorough analysis of the current research advancements about the resistance mechanism of CDK4/6 inhibitors in HR+/HER2- breast cancer. It presents an in-depth discussion from numerous viewpoints, such as aberrant cell cycle regulation and changes in signalling pathways. In response to the drug resistance problem, subsequent treatment strategies are also being explored, including switching to other CDK4/6 inhibitor drugs, a combination of novel endocrine therapeutic agents, an optimal combination of targeted therapies and switching to chemotherapy. An in-depth study of the resistance mechanism can assist in identifying creative tactics that can overcome or postpone drug resistance, alleviate the problem of restricted treatment strategies following drug resistance and enhance the prognosis of patients.
Collapse
Affiliation(s)
- Sijia Wu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Junnan Xu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yiwen Ma
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Guilian Liang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Jiaxing Wang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Tao Sun
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, China
| |
Collapse
|
11
|
Sreekumar S, Montaudon E, Klein D, Gonzalez ME, Painsec P, Derrien H, Sourd L, Smeal T, Marangoni E, Ridinger M. PLK1 Inhibitor Onvansertib Enhances the Efficacy of Alpelisib in PIK3CA-Mutated HR-Positive Breast Cancer Resistant to Palbociclib and Endocrine Therapy: Preclinical Insights. Cancers (Basel) 2024; 16:3259. [PMID: 39409880 PMCID: PMC11476299 DOI: 10.3390/cancers16193259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Endocrine therapy (ET) combined with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) is the preferred first-line treatment for hormone receptor-positive (HR+)/HER2- metastatic breast cancer. Although this is beneficial, acquired resistance leads to disease progression, and patients harboring PIK3CA mutations are treated with targeted therapies such as the PI3Kα inhibitor, alpelisib, alongside ET. Drug-associated resistance mechanisms limit the efficacy of alpelisib, highlighting the need for better combination therapies. This study aimed to evaluate the efficacy of combining alpelisib with a highly specific PLK1 inhibitor, onvansertib, in PIK3CA-mutant HR+ breast cancer preclinical models. METHODS We assessed the effect of the alpelisib and onvansertib combination on cell viability, PI3K signaling pathway, cell cycle phase distribution and apoptosis in PI3K-activated HR+ breast cancer cell lines. The antitumor activity of the combination was evaluated in three PIK3CA-mutant HR+ breast cancer patient-derived xenograft (PDX) models, resistant to ET and CDK4/6 inhibitor palbociclib. Pharmacodynamics studies were performed using immunohistochemistry and Simple Western analyses in tumor tissues. RESULTS The combination synergistically inhibited cell viability, suppressed PI3K signaling, induced G2/M arrest and apoptosis in PI3K-activated cell lines. In the three PDX models, the combination demonstrated superior anti-tumor activity compared to the single agents. Pharmacodynamic studies confirmed the inhibition of both PLK1 and PI3K activity and pronounced apoptosis in the combination-treated tumors. CONCLUSIONS Our findings support that targeting PLK1 and PI3Kα with onvansertib and alpelisib, respectively, may be a promising strategy for patients with PIK3CA-mutant HR+ breast cancer failing ET + CDK4/6i therapies and warrant clinical evaluation.
Collapse
Affiliation(s)
- Sreeja Sreekumar
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Davis Klein
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Migdalia E. Gonzalez
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Pierre Painsec
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Héloise Derrien
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Tod Smeal
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Maya Ridinger
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| |
Collapse
|
12
|
Glaviano A, Wander SA, Baird RD, Yap KCH, Lam HY, Toi M, Carbone D, Geoerger B, Serra V, Jones RH, Ngeow J, Toska E, Stebbing J, Crasta K, Finn RS, Diana P, Vuina K, de Bruin RAM, Surana U, Bardia A, Kumar AP. Mechanisms of sensitivity and resistance to CDK4/CDK6 inhibitors in hormone receptor-positive breast cancer treatment. Drug Resist Updat 2024; 76:101103. [PMID: 38943828 DOI: 10.1016/j.drup.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
Cell cycle dysregulation is a hallmark of cancer that promotes eccessive cell division. Cyclin-dependent kinase 4 (CDK4) and cyclin-dependent kinase 6 (CDK6) are key molecules in the G1-to-S phase cell cycle transition and are crucial for the onset, survival, and progression of breast cancer (BC). Small-molecule CDK4/CDK6 inhibitors (CDK4/6i) block phosphorylation of tumor suppressor Rb and thus restrain susceptible BC cells in G1 phase. Three CDK4/6i are approved for the first-line treatment of patients with advanced/metastatic hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) BC in combination with endocrine therapy (ET). Though this has improved the clinical outcomes for survival of BC patients, there is no established standard next-line treatment to tackle drug resistance. Recent studies suggest that CDK4/6i can modulate other distinct effects in both BC and breast stromal compartments, which may provide new insights into aspects of their clinical activity. This review describes the biochemistry of the CDK4/6-Rb-E2F pathway in HR+ BC, then discusses how CDK4/6i can trigger other effects in BC/breast stromal compartments, and finally outlines the mechanisms of CDK4/6i resistance that have emerged in recent preclinical studies and clinical cohorts, emphasizing the impact of these findings on novel therapeutic opportunities in BC.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Masakazu Toi
- School of Medicine, Kyoto University, Kyoto, Japan
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, Inserm U1015, Université Paris-Saclay, Villejuif, France
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff CF10 3AX, UK
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Experimental Medicine Building, 636921, Singapore; Cancer Genetics Service (CGS), National Cancer Centre Singapore, 168583, Singapore
| | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK; Division of Cancer, Imperial College London, Hammersmith Campus, London, UK
| | - Karen Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Healthy Longetivity Translational Program, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
| | - Richard S Finn
- Department of Oncology, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90123, Italy
| | - Karla Vuina
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; SiNOPSEE Therapeutics Pte Ltd, A⁎STARTCentral, 139955, Singapore
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
13
|
Oey O, Wijaya W, Redfern A. Eribulin in breast cancer: Current insights and therapeutic perspectives. World J Exp Med 2024; 14:92558. [PMID: 38948420 PMCID: PMC11212747 DOI: 10.5493/wjem.v14.i2.92558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 06/19/2024] Open
Abstract
Eribulin is a non-taxane synthetic analogue approved in many countries as third-line treatment for the treatment of patients with metastatic breast cancer. In addition to its mitotic property, eribulin has non-mitotic properties including but not limited to, its ability to induce phenotypic reversal of epithelial to mesenchymal transition, vascular remodelling, reduction in immunosuppressive tumour microenvironment. Since approval, there has been a surge in studies investigating the application of eribulin as an earlier-line treatment and also in combination with other agents such as immunotherapy and targeted therapy across all breast cancer sub-types, including hormone receptor positive, HER2 positive and triple negative breast cancer, many demonstrating promising activity. This review will focus on the application of eribulin in the treatment of metastatic breast cancer across all subtypes including its role as an earlier-line agent, its toxicity profile, and potential future directions.
Collapse
Affiliation(s)
- Oliver Oey
- Faculty of Medicine, University of Western Australia, Nedlands 6009, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands 6009, WA, Australia
| | - Wynne Wijaya
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Department of Internal Medicine, Universitas Gadjah Mada, Sleman 55281, Indonesia
| | - Andrew Redfern
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch 6150, WA, Australia
| |
Collapse
|
14
|
Talia M, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, De Rosis S, Miglietta AM, Capalbo C, De Francesco EM, Belfiore A, Grande F, Rizzuti B, Occhiuzzi MA, Fortino G, Guzzo A, Greco G, Maggiolini M, Lappano R. The G Protein Estrogen Receptor (GPER) is involved in the resistance to the CDK4/6 inhibitor palbociclib in breast cancer. J Exp Clin Cancer Res 2024; 43:171. [PMID: 38886784 PMCID: PMC11184778 DOI: 10.1186/s13046-024-03096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | | | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Antonella Guzzo
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
15
|
Apostolidou K, Zografos E, Papatheodoridi MA, Fiste O, Dimopoulos MA, Zagouri F. Oral SERDs alone or in combination with CDK 4/6 inhibitors in breast cancer: Current perspectives and clinical trials. Breast 2024; 75:103729. [PMID: 38599049 PMCID: PMC11011217 DOI: 10.1016/j.breast.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Over the past few decades, first-line therapy for treating advanced and metastatic HR+/HER2-breast cancer has transformed due to the introduction of adjuvant endocrine therapy with cyclin-dependent kinase 4/6 inhibitors (CDK 4/6i). However, there is an unmet need for novel classes of endocrine therapy with superior efficacy to improve treatment outcomes and overcome CDK4/6i resistance. New generation selective estrogen receptor degraders (SERDs), orally administered and with higher bioavailability, could potentially be the novel compounds to meet this emerging need. In this paper, we review accredited clinical studies on the combining effects of CDK4/6 inhibitors and oral SERDs, report efficacy of treatment data when available, and provide a framework for future research focusing on these promising agents.
Collapse
Affiliation(s)
- Kleoniki Apostolidou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece.
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| | | | - Oraianthi Fiste
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, 11528, Greece
| |
Collapse
|
16
|
Isaak AJ, Clements GR, Buenaventura RGM, Merlino G, Yu Y. Development of Personalized Strategies for Precisely Battling Malignant Melanoma. Int J Mol Sci 2024; 25:5023. [PMID: 38732242 PMCID: PMC11084485 DOI: 10.3390/ijms25095023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Melanoma is the most severe and fatal form of skin cancer, resulting from multiple gene mutations with high intra-tumor and inter-tumor molecular heterogeneity. Treatment options for patients whose disease has progressed beyond the ability for surgical resection rely on currently accepted standard therapies, notably immune checkpoint inhibitors and targeted therapies. Acquired resistance to these therapies and treatment-associated toxicity necessitate exploring novel strategies, especially those that can be personalized for specific patients and/or populations. Here, we review the current landscape and progress of standard therapies and explore what personalized oncology techniques may entail in the scope of melanoma. Our purpose is to provide an up-to-date summary of the tools at our disposal that work to circumvent the common barriers faced when battling melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Liang X, Zhang L, Gui X, Di L, Li H, Song G. Real-world study of palbociclib combined with endocrine therapy for patients with metastatic breast cancer: A comparison of subsequent treatment patterns and HER2 expression analysis. Cancer 2024; 130:1476-1487. [PMID: 38198366 DOI: 10.1002/cncr.35174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitors combined with endocrine therapy (ET) comprise the standard treatment for patients with hormone receptor-positive and human epidermal growth factor 2 (HER2)-negative metastatic breast cancer. The optimal systematic treatment after progression on palbociclib and the role of HER2 expression among these patients remain unclear. METHODS The authors retrospectively identified 361 patients who received palbociclib combined with ET. Progression-free survival (PFS) and overall survival (OS) were analyzed based on subsequent treatments and HER2 status (PFSsub and OSsub, respectively). PFS1 and OS1 were calculated from palbociclib administration to disease progression/death and death from any cause, respectively. PFSsub and OSsub were calculated from subsequent treatment initiation. RESULTS The median PFS1 and OS1 were 10.2 and 39.9 months, respectively. The median PFSsub and OSsub of 111 patients (54.7%) who received chemotherapy were 4.9 months and 20.0 months, respectively, whereas those of 89 patients (43.8%) who received endocrine backbone therapy were 5.9 months and 29.3 months, respectively. Among them, 31 patients (15.3%) who received abemaciclib combined with new ET showed better PFSsub and OSsub (12.2 months and not reached, respectively). The median PFS1 was significantly shorter in the HER2-low subgroup than in the HER2-zero subgroup among patients who received second-line or later palbociclib (6.1 vs. 7.8 months; p = .040) but did not differ among patients who received first-line palbociclib. CONCLUSIONS Various regimens after palbociclib use were received. An improvement was noted in PFS among patients who received endocrine backbone therapy relative to chemotherapy, which may have been secondary to the receipt of chemotherapy by patients with more aggressive disease. HER2 status was not related to the effect of first-line palbociclib, but it may play a role in later lines.
Collapse
Affiliation(s)
- Xu Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Linhui Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xinyu Gui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lijun Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Guohong Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
18
|
Kubeczko M, Tudrej P, Tyszkiewicz T, Krzywon A, Oczko-Wojciechowska M, JarzĄb M. Liquid biopsy utilizing miRNA in patients with advanced breast cancer treated with cyclin‑dependent kinase 4/6 inhibitors. Oncol Lett 2024; 27:181. [PMID: 38464342 PMCID: PMC10921259 DOI: 10.3892/ol.2024.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) are the mainstay of treatment of hormone receptor+/human epidermal growth factor receptor 2-patients with advanced breast cancer (ABC). Despite improvements in overall survival, most patients experience disease progression. Biomarkers derived from a liquid biopsy are appealing for their potential to detect resistance to treatment earlier than computed tomography imaging. However, clinical data concerning microRNAs (miRNAs/miRs) in the context of CDK4/6is are lacking. Thus, the present study assessed the use of miRNAs in patients with ABC treated with CDK4/6is. Patients treated for ABC with CDK4/6is between June and August 2022 were eligible. miRNA expression analyses were performed using a TaqMan™ low-density miRNA array. A total of 80 consecutive patients with ABC treated with CDK4/6is at Maria Sklodowska-Curie National Research Institute of Oncology (Gliwice, Poland) were assessed, with 14 patients diagnosed with progressive disease at the time of sampling, 55 patients exhibited clinical benefit from CDK4/6i treatment and 11 patients were at the beginning of CDK4/6i treatment. Patients with disease progression had significantly higher levels of miR-21 (P=0.027), miR-34a (P=0.011), miR-193b (P=0.032), miR-200a (P=0.027) and miR-200b (P=0.003) compared with patients who benefitted from CDK4/6i treatment. Significantly higher levels of miR-34a expression were observed in patients with progressive disease than in patients beginning treatment (P=0.031). The present study demonstrated the potential innovative role of circulating miRNAs during CDK4/6i treatment. Plasma-based expression of miR-21, -34a, -193b, -200a and -200b effectively distinguished patients with ABC who responded to CDK4/6i treatment from patients who were resistant. However, longitudinal studies are required to verify the predictive and prognostic potential of miRNA.
Collapse
Affiliation(s)
- Marcin Kubeczko
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Patrycja Tudrej
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Tomasz Tyszkiewicz
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Aleksandra Krzywon
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MaŁgorzata Oczko-Wojciechowska
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MichaŁ JarzĄb
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| |
Collapse
|
19
|
Guven DC, Sahin TK. The association between HER2-low status and survival in patients with metastatic breast cancer treated with Cyclin-dependent kinases 4 and 6 inhibitors: a systematic review and meta-analysis. Breast Cancer Res Treat 2024; 204:443-452. [PMID: 38240935 PMCID: PMC10959779 DOI: 10.1007/s10549-023-07226-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 03/24/2024]
Abstract
PURPOSE The cyclin-dependent kinase (CDK) 4/6 inhibitors significantly altered the treatment landscape of hormone-positive (HR+), HER2- metastatic breast cancer (MBC). However, biomarkers predicting long-term benefit and early progression are yet to be defined. Several studies suggested the possibility of diminished efficacy in patients with HER2-low disease. Therefore, we conducted a systematic review and meta-analysis to evaluate the association between low-level HER2 expression and efficacy outcomes (PFS, OS, ORR) with CDK 4/6 inhibitors. METHODS The Pubmed, Web of Science, and Scopus databases were used to systematically filter the published studies from inception to 08 August 2023 for this systemic review. Studies including MBC patients treated with CDK 4/6 inhibitors and reported survival outcomes according to HER2 expression were included. We performed the meta-analyses with the generic inverse-variance method with a fixed-effects model and used HRs with 95% two-sided CIs as the principal summary measure. RESULTS Nine studies encompassing 2705 patients were included in the analyses. In the pooled analysis of nine studies, the risk of progression and/or death was higher in patients with HER2-low tumors compared to HER2-zero (HR: 1.22, 95% CI 1.10-1.35, p < 0.001). In the pooled analysis of five studies, although the median follow-up was short, the risk of death was higher in the HER2-low group compared to the HER2-zero group (HR: 1.22, 95% CI 1.04-1.44, p = 0.010). CONCLUSION The available evidence demonstrates a significantly higher risk of progression or death with CDK 4/6 inhibitors in HER2-low tumors. Further research is needed to improve outcomes in patients with HR+-HER2-low tumors.
Collapse
Affiliation(s)
- Deniz Can Guven
- Hacettepe University Cancer Institute, Ankara, Turkey.
- Health Sciences University, Elazig City Hospital, Elazig, Turkey.
| | | |
Collapse
|
20
|
Marcho LM, Coss CC, Xu M, Datta J, Manouchehri JM, Cherian MA. Potent Estrogen Receptor β Agonists with Inhibitory Activity In Vitro , Fail to Suppress Xenografts of Endocrine-Resistant Cyclin-dependent Kinase 4/6 inhibitor-Resistant Breast Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575428. [PMID: 38293218 PMCID: PMC10827072 DOI: 10.1101/2024.01.12.575428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Objective Seventy percent of newly diagnosed breast cancers are estrogen receptor-α positive and HER2/neu negative [1]. First-line treatments incorporate endocrine therapy and cyclin-dependent kinase 4/6 inhibitors [2]. However, therapy resistance occurs in most patients [3-5]. Hence, there is an urgent need for effective second-line treatments. We previously showed that the potent estrogen receptor-β agonists, OSU-ERb-12 and LY500307, synergized with the selective estrogen receptor modulator, tamoxifen, in vitro. Furthermore, we showed that these compounds inhibited endocrine-resistant and cyclin-dependent kinase 4/6-inhibitor-resistant estrogen receptor α-positive cell lines in vitro [6]. Here, we used fulvestrant- and abemaciclib-resistant T47D-derived cell line xenografts to determine the efficacy of the combination of OSU-ERb-12 and LY500307 with tamoxifen in vivo. Results Despite efficacy in vitro, treatments failed to reduce xenograft tumor volumes. Hence, we conclude that this treatment strategy lacks direct cancer cell-intrinsic cytotoxic efficacy in vivo.
Collapse
|
21
|
Montazeri Aliabadi H, Manda A, Sidgal R, Chung C. Targeting Breast Cancer: The Familiar, the Emerging, and the Uncharted Territories. Biomolecules 2023; 13:1306. [PMID: 37759706 PMCID: PMC10526846 DOI: 10.3390/biom13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment. While this has resulted in the approval of a few molecularly targeted drugs by the FDA (including drugs targeting immune checkpoints), a wide array of signaling pathways seem to be still underexplored. Also, while combinatorial treatments have become common practice in clinics, the majority of these approaches seem to combine molecularly targeted drugs with chemotherapeutic agents. In this manuscript, we start by analyzing the list of FDA-approved molecularly targeted drugs for breast cancer to evaluate where molecular targeting stands in breast cancer treatment today. We will then provide an overview of other options currently under clinical trial or being investigated in pre-clinical studies.
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | | | | | | |
Collapse
|