1
|
Shi Y, Zhuo R, Guo W, Shi Y. A Quantitative Evaluation of the Efficacy of Endochondral Ossification-Based Grafts in Bone Defect Regeneration: An Analysis of Animal Studies. ACS Biomater Sci Eng 2025; 11:2481-2491. [PMID: 40301001 DOI: 10.1021/acsbiomaterials.4c01895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The regeneration of bone defects through bone grafts primarily depends on two strategies: intramembrane ossification (IO) and endochondral ossification (EO). Traditional bone tissue engineering has focused on mimicking the IO process to stimulate the formation of a bone-like matrix. However, repair strategies based on IO often result in excessive deposition of the matrix on the graft surface, hindering bone tissue regeneration. In recent years, researchers have increasingly focused on investigating the reparative potential of EO-based grafts for bone defects, such as microspheres, pellets, and hydrogel. However, the effectiveness of EO-based grafts on bone defects has not yet been quantitatively evaluated. Therefore, this study conducted a systematic review and meta-analysis of previous studies to quantitatively assess the bone regenerative potential of EO-based grafts. The results revealed that EO-based grafts showed favorable ability for bone regeneration. However, there was no significant difference in bone regeneration between EO-based grafts that utilized chondrogenic differentiation or hypertrophic differentiation. Additionally, the results demonstrated low quality in the experimental methods and the reporting of animal studies as well as a low quality of evidence provided by the included studies. Based on this, we propose three suggestions to enhance the quality of experimental methods and reporting in animal experiments. Furthermore, it is essential to conduct more evidence-based research to establish reliable evidence for the clinical application of EO-based grafts.
Collapse
Affiliation(s)
- Yihua Shi
- Department of Orthopedic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 442000, China
| | - Ranning Zhuo
- Department of Clinical Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Weichun Guo
- Department of Orthopedic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yubo Shi
- Department of Orthopedic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang 442000, China
| |
Collapse
|
2
|
Greco V, Lanza V, Tomasello B, Naletova I, Cairns WRL, Sciuto S, Rizzarelli E. Copper Complexes with New Glycyl-l-histidyl-l-lysine-Hyaluronan Conjugates Show Antioxidant Properties and Osteogenic and Angiogenic Synergistic Effects. Bioconjug Chem 2025; 36:662-675. [PMID: 40123442 DOI: 10.1021/acs.bioconjchem.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
In recent years, hyaluronic acid (HA) and the natural tripeptide glycyl-l-histidyl-l-lysine (GHK), especially its copper(II) complex (GHK-Cu), individually have been shown to exert helpful properties for bone protection and regeneration. However, they are not strong enough to handle oxidative stress, hydrolytic attack, or environmental conditions. Being aware that conjugation chemistry has recently emerged as an appealing approach for generating new molecular entities capable of preserving the molecular integrity of their moieties or delaying their degradation, herein we present the synthesis of conjugates of HA with GHK (GHK-HA), at different loadings of the tripeptide. GHK-HA binds copper(II) ions and potentiates the chemical and biological properties of the two components in in vitro assays. The results highlight copper's role in promoting the expression and release of certain trophic, angiogenic, and osteogenic factors, including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), as well as bone morphogenetic protein-2 (BMP-2). The protective and regenerative activities of the metal ion are related to the translocation of its intracellular chaperones Copper Chaperone for Superoxide Dismutase (CCS) and Antioxidant-1 (Atox1) to the nucleus where they act as transcription factors.
Collapse
Affiliation(s)
- Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Valeria Lanza
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Warren R L Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), Via Torino 155, 30172 Venice, Italy
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- Institute of Crystallography, National Council of Research (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
3
|
Han Y, Ma H, Tang Z, Jin C. Knockdown of IER3 Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. Biomedicines 2025; 13:947. [PMID: 40299640 PMCID: PMC12025315 DOI: 10.3390/biomedicines13040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/01/2025] Open
Abstract
Background: The differentiation process of human mesenchymal stem cells (hMSCs) is regulated by a variety of chemical, physical, and biological factors. These factors activate distinct signaling pathways and transcriptional networks, thereby regulating the lineage-specific differentiation of hMSCs. Objective: This study aims to investigate the role of Immediate Early Response 3 (IER3) in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and explore the underlying regulatory mechanisms by which IER3 influences osteogenesis. Methods: The expression levels of IER3 and osteogenesis-related genes were quantified when hMSCs were subjected to in vitro osteogenic induction. Then, stable IER3-knockdown hMSCs were generated using IER3-targeted shRNA lentiviral vectors, and the impact of IER3 on osteogenic differentiation was evaluated through both in vitro cell induction and hMSCs subcutaneous implantation model of nude mice. Moreover, RNA-seq and functional inhibition assays were performed to elucidate the signaling pathway through which IER3 regulates the osteogenic differentiation of hMSCs. Results: IER3 expression was significantly downregulated during osteogenic differentiation. Knockdown of IER3 markedly upregulated the expression of ALP and RUNX2, enhancing the osteogenic differentiation capacity of hMSCs, both in vitro and in vivo. Mechanistic studies revealed that IER3 knockdown significantly increased phosphorylated ERK1/2 levels, activating the MAPK/ERK signaling pathway. Furthermore, inhibition of the MAPK/ERK signaling pathway reversed the enhanced osteogenic differentiation observed following IER3 knockdown. Conclusions: Knockdown of IER3 promotes osteogenic differentiation of hMSCs through regulation of the MAPK/ERK signaling pathway, indicating IER3 represents a potential therapeutic target for the treatment of osteoporosis and bone defect-related diseases.
Collapse
Affiliation(s)
| | | | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China; (Y.H.); (H.M.)
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China; (Y.H.); (H.M.)
| |
Collapse
|
4
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
5
|
Ribatti D. A Darwinian approach to the development of the vascular system in the vertebrates. Clin Exp Med 2025; 25:97. [PMID: 40146409 PMCID: PMC11950037 DOI: 10.1007/s10238-025-01633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
The vascular system originated around 600 million years ago. Endothelial cells evolved between 540 and 510 million years ago, and endothelial heterogeneity also developed. In invertebrates, two typologies have been described, the so-called open and closed systems, whereas in vertebrates only a closed system is present. In mammals, the presence of smooth muscle cells in the walls of small arteries regulates blood pressure and distribution to different organs; capillaries are involved in the exchange of gasses and metabolites; veins return the blood to the heart, whereas lymphatic vessels collect interstitial fluids and white blood cells and are in continuity with the venous system. Endothelial heterogeneity is the consequence of the different interactions of endothelium with the organ and tissue microenvironment including stromal cells, which is mediated by soluble factors or cell-cell/cell-extracellular matrix interactions leading to a particular phenotype of the endothelium. In this context, the heterogeneity of endothelial cells reflects specific responses to different microenvironments and their specialization to perform different functions, leading to different subsets of endothelial cells with unique gene expression patterns.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Piazza Giulio Cesare, 11, 70125, Bari, Italy.
| |
Collapse
|
6
|
Campagna R, Schiavoni V, Rao L, Bambini F, Frontini A, Sampalmieri F, Salvolini E, Memé L. Novel Ti6Al4V Surface Treatment for Subperiosteal Dental Implants: Evaluation of Osteoblast-like Cell Proliferation and Osteogenic Response. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1234. [PMID: 40141517 PMCID: PMC11943677 DOI: 10.3390/ma18061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Nowadays, custom-made subperiosteal implants are emerging as a solution in all those cases where there is lack of healthy bone tissue to support endosseous implants. The development of innovative techniques has allowed the production of grids that precisely match the patient's anatomy. Elucidating the impact of laser-melted Ti6Al4V grids on both hard and soft tissues with which they come into contact is, therefore, mandatory. In this study, we analyzed the effects of five different surface treatments on a human osteoblast-like cell line (MG-63). In particular, the cell proliferation and osteogenic response were evaluated. Taken together, our data demonstrate that in our in vitro setting, the new surface treatment developed by Al Ti color could enhance osteogenesis and improve the stabilization of the implant to the residual bone by stimulating the best osteogenic response in MG-63 cells. Although further studies are required to validate our data in an in vivo model, our results provide the basis for future advances in implantology for the long-term maintenance of osseointegration.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Loredana Rao
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (L.R.); (A.F.)
| | - Fabrizio Bambini
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (L.R.); (A.F.)
| | - Francesco Sampalmieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Lucia Memé
- Department of Life Sciences, Health and Health Professions, Link Campus University Città di Castello (Pg), 06012 Città di Castello, Italy;
| |
Collapse
|
7
|
Bei M, Cao Q, Zhao C, Xiao Y, Chen Y, Xiao H, Sun X, Tian F, Yang M, Wu X. Heterotopic ossification: Current developments and emerging potential therapies. Chin Med J (Engl) 2025; 138:389-404. [PMID: 39819765 PMCID: PMC11845195 DOI: 10.1097/cm9.0000000000003244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Indexed: 01/19/2025] Open
Abstract
ABSTRACT This review aimed to provide a comprehensive analysis of the etiology, epidemiology, pathology, and conventional treatment of heterotopic ossification (HO), especially emerging potential therapies. HO is the process of ectopic bone formation at non-skeletal sites. HO can be subdivided into two major forms, acquired and hereditary, with acquired HO predominating. Hereditary HO is a rare and life-threatening genetic disorder, but both acquired and hereditary form can cause severe complications, such as peripheral nerve entrapment, pressure ulcers, and disability if joint ankylosis develops, which heavily contributes to a reduced quality of life. Modalities have been proposed to treat HO, but none have emerged as the gold standard. Surgical excision remains the only effective modality; however, the optimal timing is controversial and may cause HO recurrence. Recently, potential therapeutic strategies have emerged that focus on the signaling pathways involved in HO, and small molecule inhibitors have been shown to be promising. Moreover, additional specific targets, such as small interfering RNAs (siRNAs) and non-coding RNAs, could be used to effectively block HO or develop combinatorial therapies for HO.
Collapse
Affiliation(s)
- Mingjian Bei
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Qiyong Cao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Chunpeng Zhao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Yaping Xiao
- Department of Orthopedic Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei 430000, China
| | - Yimin Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Honghu Xiao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Xu Sun
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Faming Tian
- School Of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Minghui Yang
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
| | - Xinbao Wu
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital Affiliated to Capital Medical University, Beijing 100035, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing 100035, China
| |
Collapse
|
8
|
Wei F, Wu X, Wang H, Zhang Y, Xie L. Methimazole disrupted skeletal ossification and muscle fiber transition in Bufo gargarizans larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117684. [PMID: 39793290 DOI: 10.1016/j.ecoenv.2025.117684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Methimazole (MMI) is an emerging endocrine disrupting chemical (EDC) due to its increasing use in the treatment of thyrotoxicosis (hyperthyroidism), but its potential impact on amphibian development remains largely unexplored. In the present study, the effects of 8 mg/L MMI and 1 μg/L thyroxine (T4) exposure on skeletal ossification and muscle development in Bufo gargarizans tadpoles were comprehensively investigated by double skeletal staining, histological analysis and RNA sequencing. Our results indicated that MMI treatment down-regulated the expression levels of ossification-related genes (e.g., BMPs, MMPs, and Wnt9a) in cartilage, thereby delaying chondrocyte apoptosis and inhibiting hindlimb ossification. Muscle sarcomere was elongated in both the MMI and T4 treatment groups, which may lead to muscle weakness and consequently affect land motion. Additionally, we evaluated the expression levels of fast muscle-related genes (TNNI2 and TNNT3) and slow muscle-related genes (TNNI1 and TNNT1), revealing an opposite trend in the transition from fast to slow muscle after T4 and MMI exposures. In conclusion, these findings fill the data gap regarding MMI contamination in aquatic environments by revealing the negative effects of MMI on amphibian bone and muscle development. Future studies should address the toxicity of EDCs to wildlife and inform aquatic ecosystem conservation strategies.
Collapse
Affiliation(s)
- Fei Wei
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China; College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xueyi Wu
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yongpu Zhang
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China.
| | - Lei Xie
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China.
| |
Collapse
|
9
|
Li G, Wu J, Cheng X, Pei X, Wang J, Xie W. Nanoparticle-Mediated Gene Delivery for Bone Tissue Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408350. [PMID: 39623813 DOI: 10.1002/smll.202408350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Indexed: 03/17/2025]
Abstract
Critical-sized bone defects represent an urgent clinical problem, necessitating innovative treatment approaches. Gene-activated grafts for bone tissue engineering have emerged as a promising solution. However, traditional gene delivery methods are constrained by limited osteogenic efficacy and safety concerns. Recently, organic and inorganic nanoparticle (NP) vectors have attracted significant attention in bone tissue engineering for their safe, stable, and controllable gene delivery. Targeted gene delivery guided by insights into bone healing mechanisms, coupled with the multifunctional design of NPs, is crucial for enhancing therapeutic outcomes. Here, the theoretical foundations underlying NP-mediated gene therapy for enhancing bone healing across different histological stages are elucidated. Furthermore, the distinct attributes of functionalized NP vectors are discussed, and cutting-edge strategies aimed at optimizing gene delivery efficiency throughout the therapeutic process are highlighted. Additionally, the review addresses the unresolved challenges and prospects of this technology. This review may contribute to the continued development and clinical application of NP-mediated gene delivery for treating critical-sized bone defects.
Collapse
Affiliation(s)
- Guangzhao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinting Cheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wenjia Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
10
|
Schweitzer L, Schoon J, Bläß N, Huesker K, Neufend JV, Siemens N, Bekeschus S, Schlüter R, Schneider P, Uhlmann E, Wassilew G, Schulze F. Ultraviolet laser induced periodic surface structures positively influence osteogenic activity on titanium alloys. Front Bioeng Biotechnol 2024; 12:1462232. [PMID: 39530059 PMCID: PMC11551024 DOI: 10.3389/fbioe.2024.1462232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objective Endoprostheses might fail due to complications such as implant loosening or periprosthetic infections. The surface topography of implant materials is known to influence osseointegration and attachment of pathogenic bacteria. Laser-Induced Periodic Surface Structures (LIPSS) can improve the surface topography of orthopedic implant materials. In this preclinical in vitro study, laser pulses with a wavelength in the ultraviolet (UV) spectrum were applied for the generation of LIPSS to positively influence formation of extracellular matrix by primary human Osteoblasts (hOBs) and to reduce microbial biofilm formation in vitro. Methods Laser machining was employed for generating UV-LIPSS on sample disks made of Ti6Al4V and Ti6Al7Nb alloys. Sample disks with polished surfaces were used as controls. Scanning electron microscopy was used for visualization of surface topography and adherent cells. Metal ion release and cellular metal levels were investigated by inductively coupled plasma mass spectrometry. Cell culture of hOBs on sample disks with and without UV-LIPSS surface treatments was performed. Cells were investigated for their viability, proliferation, osteogenic function and cytokine release. Biofilm formation was facilitated by seeding Staphylococcus aureus on sample disks and quantified by wheat germ agglutinin (WGA) staining. Results UV-LIPSS modification results in topographies with a periodicity of 223 nm ≤ λ ≤ 278 nm. The release of metal ions was found increased for UV-LIPSS on Ti6Al4V and decreased for UV-LIPSS on Ti6Al7Nb, while cellular metal levels remain unaffected. Cellular adherence was decreased for hOBs on UV-LIPSS Ti6Al4V when compared to controls while proliferation rate was unaffected. Metabolic activity was lower on UV-LIPSS Ti6Al7Nb when compared to the control. Alkaline phosphatase activity was upregulated for hOBs grown on UV-LIPSS on both alloys. Less pro-inflammatory cytokines were released for cells grown on UV-LIPSS Ti6Al7Nb when compared to polished surfaces. WGA signals were significantly lower on UV-LIPSS Ti6Al7Nb indicating reduced formation of a S. aureus biofilm. Conclusion Our results suggest that UV-LIPSS texturing of Ti6Al7Nb positively influence bone forming function and cytokine secretion profile of hOBs in vitro. In addition, our results indicate diminished biofilm formation on UV-LIPSS treated Ti6Al7Nb surfaces. These effects might prove beneficial in the context of long-term arthroplasty outcomes.
Collapse
Affiliation(s)
- Luiz Schweitzer
- Fraunhofer Institute for Production Systems and Design Technology, Berlin, Germany
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Niklas Bläß
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Katrin Huesker
- Endocrinology and Immunology Department, Institute for Medical Diagnostics, Berlin, Germany
| | - Janine V. Neufend
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | | | - Eckart Uhlmann
- Fraunhofer Institute for Production Systems and Design Technology, Berlin, Germany
- Institute for Machine Tools and Factory Management, Technische Universität Berlin, Berlin, Germany
| | - Georgi Wassilew
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Frank Schulze
- Center for Orthopaedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Wang C, Gong S, Liu H, Cui L, Ye Y, Liu D, Liu T, Xie S, Li S. Angiogenesis unveiled: Insights into its role and mechanisms in cartilage injury. Exp Gerontol 2024; 195:112537. [PMID: 39111547 DOI: 10.1016/j.exger.2024.112537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024]
Abstract
Osteoarthritis (OA) commonly results in compromised mobility and disability, thereby imposing a significant burden on healthcare systems. Cartilage injury is a prevalent pathological manifestation in OA and constitutes a central focus for the development of treatment strategies. Despite the considerable number of studies aimed at delaying this degenerative process, their outcomes remain unvalidated in preclinical settings. Recently, therapeutic strategies focused on angiogenesis have attracted the growing interest from researchers. Thus, we conducted a comprehensive literature review to elucidate the current progress in research and pinpoint research gaps in this domain. Additionally, it provides theoretical guidance for future research endeavors and the development of treatment strategies.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Shuangquan Gong
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Hongjun Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Liqiang Cui
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Yu Ye
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Dengshang Liu
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China
| | - Tianzhu Liu
- Neurological Disease Center, Zigong Fourth People's Hospital, Zigong, 643000, Sichuan, China
| | - Shiming Xie
- Spinal Surgery Department, Mianyang Orthopaedic Hospital, Mianyang 621700, Sichuan, China.
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210003, China.
| |
Collapse
|
12
|
Yan H, Li Z, Zhang Z. Exploring the pharmacological mechanism of Xianlingubao against diabetic osteoporosis based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e39138. [PMID: 39093780 PMCID: PMC11296417 DOI: 10.1097/md.0000000000039138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Xianlinggubao formula (XLGB), is a traditional Chinese compound Medicine that has been extensively used in osteoarthritis and aseptic osteonecrosis, but its curative effect on diabetic osteoporosis (DOP) and its pharmacological mechanisms remains not clear. The aim of the present study was to investigate the possible mechanism of drug repurposing of XLGB in DOP therapy. We acquired XLGB active compounds from the traditional Chinese medicine systems pharmacology and traditional Chinese medicines integrated databases and discovered potential targets for these compounds by conducting target fishing using the traditional Chinese medicine systems pharmacology and Swiss Target Prediction databases. Gene Cards and Online Mendelian Inheritance in Man® database were used to identify the DOP targets. Overlapping related targets between XLGB and DOP was selected to build a protein-protein interaction network. Next, the Metascape database was utilized to enrich the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. In addition, Auto-Dock Vina software was used to verify drug and target binding. In total, 48 hub targets were obtained as the candidate targets responsible for DOP therapy. The anti-DOP effect mediated by XLGB was primarily centralized on the advanced glycation end products (AGEs)-receptor for AGE signaling pathway in diabetic complications and osteoclast differentiation. In addition, AKT serine/threonine kinase 1, tumor necrosis factor, Interleukin-6, vascular endothelial growth factor A and peroxisome proliferator activated receptor gamma, which were considered as potential therapeutic targets. Furthermore, molecular docking results confirm the credibility of the predicted therapeutic targets. This study elucidates that XLGB may through regulating AGEs formation and osteoclast differentiation as well as angiogenesis and adipogenesis against DOP. And this study provides new promising points to find the exact regulatory mechanisms of XLGB mediated anti-DOP effect.
Collapse
Affiliation(s)
- Huili Yan
- Department of Clinical Laboratory, Changzhi People’s Hospital, Changzhi, China
| | - Zongying Li
- Department of Clinical Laboratory, Changzhi People’s Hospital, Changzhi, China
| | - Zhongwen Zhang
- Department of Endocrinology and Metabology, The Third Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Ma T, Wang Y, Ma J, Cui H, Feng X, Ma X. Research progress in the pathogenesis of hormone-induced femoral head necrosis based on microvessels: a systematic review. J Orthop Surg Res 2024; 19:265. [PMID: 38671500 PMCID: PMC11046814 DOI: 10.1186/s13018-024-04748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Hormonal necrosis of the femoral head is caused by long-term use of glucocorticoids and other causes of abnormal bone metabolism, lipid metabolism imbalance and blood microcirculation disorders in the femoral head, resulting in bone trabecular fracture, bone tissue necrosis collapse, and hip dysfunction. It is the most common type of non-traumatic necrosis of the femoral head, and its pathogenesis is complex, while impaired blood circulation is considered to be the key to its occurrence. There are a large number of microvessels in the femoral head, among which H-type vessels play a decisive role in the "angiogenesis and osteogenesis coupling", and thus have an important impact on the occurrence and development of femoral head necrosis. Glucocorticoids can cause blood flow injury of the femoral head mainly through coagulation dysfunction, endothelial dysfunction and impaired angiogenesis. Glucocorticoids may inhibit the formation of H-type vessels by reducing the expression of HIF-1α, PDGF-BB, VGEF and other factors, thus causing damage to the "angiogenesis-osteogenesis coupling" and reducing the ability of necrosis reconstruction and repair of the femoral head. Leads to the occurrence of hormonal femoral head necrosis. Therefore, this paper reviewed the progress in the study of the mechanism of hormone-induced femoral head necrosis based on microvascular blood flow at home and abroad, hoping to provide new ideas for the study of the mechanism of femoral head necrosis and provide references for clinical treatment of femoral head necrosis.
Collapse
Affiliation(s)
- Tiancheng Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Yan Wang
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Jianxiong Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China.
- Tianjin Orthopedic Institute, Tianjin, 300050, China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China.
| | - Hongwei Cui
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Xiaotian Feng
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Xinlong Ma
- Tianjin Hospital of Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| |
Collapse
|
14
|
Chen W, Wang Q, Tao H, Lu L, Zhou J, Wang Q, Huang W, Yang X. Subchondral osteoclasts and osteoarthritis: new insights and potential therapeutic avenues. Acta Biochim Biophys Sin (Shanghai) 2024; 56:499-512. [PMID: 38439665 DOI: 10.3724/abbs.2024017] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, and good therapeutic results are often difficult to obtain due to its complex pathogenesis and diverse causative factors. After decades of research and exploration of OA, it has been progressively found that subchondral bone is essential for its pathogenesis, and pathological changes in subchondral bone can be observed even before cartilage lesions develop. Osteoclasts, the main cells regulating bone resorption, play a crucial role in the pathogenesis of subchondral bone. Subchondral osteoclasts regulate the homeostasis of subchondral bone through the secretion of degradative enzymes, immunomodulation, and cell signaling pathways. In OA, osteoclasts are overactivated by autophagy, ncRNAs, and Rankl/Rank/OPG signaling pathways. Excessive bone resorption disrupts the balance of bone remodeling, leading to increased subchondral bone loss, decreased bone mineral density and consequent structural damage to articular cartilage and joint pain. With increased understanding of bone biology and targeted therapies, researchers have found that the activity and function of subchondral osteoclasts are affected by multiple pathways. In this review, we summarize the roles and mechanisms of subchondral osteoclasts in OA, enumerate the latest advances in subchondral osteoclast-targeted therapy for OA, and look forward to the future trends of subchondral osteoclast-targeted therapies in clinical applications to fill the gaps in the current knowledge of OA treatment and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Wenlong Chen
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiufei Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Huaqiang Tao
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Lingfeng Lu
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qiang Wang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Wei Huang
- Department of Orthopaedics, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215000, China
- Gusu School, Nanjing Medical University, Suzhou 215000, China
| |
Collapse
|
15
|
Lv N, Zhou Z, Hong L, Li H, Liu M, Qian Z. Zinc-energized dynamic hydrogel accelerates bone regeneration via potentiating the coupling of angiogenesis and osteogenesis. Front Bioeng Biotechnol 2024; 12:1389397. [PMID: 38633665 PMCID: PMC11022217 DOI: 10.3389/fbioe.2024.1389397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Insufficient initial vascularization plays a pivotal role in the ineffectiveness of bone biomaterials for treating bone defects. Consequently, enhancing the angiogenic properties of bone repair biomaterials holds immense importance in augmenting the efficacy of bone regeneration. In this context, we have successfully engineered a composite hydrogel capable of promoting vascularization in the process of bone regeneration. To achieve this, the researchers first prepared an aminated bioactive glass containing zinc ions (AZnBg), and hyaluronic acid contains aldehyde groups (HA-CHO). The composite hydrogel was formed by combining AZnBg with gelatin methacryloyl (GelMA) and HA-CHO through Schiff base bonding. This composite hydrogel has good biocompatibility. In addition, the composite hydrogel exhibited significant osteoinductive activity, promoting the activity of ALP, the formation of calcium nodules, and the expression of osteogenic genes. Notably, the hydrogel also promoted umbilical vein endothelial cell migration as well as tube formation by releasing zinc ions. The results of in vivo study demonstrated that implantation of the composite hydrogel in the bone defect of the distal femur of rats could effectively stimulate bone generation and the development of new blood vessels, thus accelerating the bone healing process. In conclusion, the combining zinc-containing bioactive glass with hydrogels can effectively promote bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Zhonglai Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Ribatti D. Aberrant tumor vasculature. Facts and pitfalls. Front Pharmacol 2024; 15:1384721. [PMID: 38576482 PMCID: PMC10991687 DOI: 10.3389/fphar.2024.1384721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Endothelial cells form a single cell layer lining the inner walls of blood vessels and play critical roles in organ homeostasis and disease progression. Specifically, tumor endothelial cells are heterogenous, and highly permeable, because of specific interactions with the tumor tissue environment and through soluble factors and cell-cell interactions. This review article aims to analyze different aspects of endothelial cell heterogeneity in tumor vasculature, with particular emphasis on vascular normalization, vascular permeability, metabolism, endothelial-to-mesenchymal transition, resistance to therapy, and the interplay between endothelial cells and the immune system.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy
| |
Collapse
|
17
|
Pal S, Sharma S, Porwal K, Tiwari MC, Khan YA, Kumar S, Kumar N, Chattopadhyay N. The Role of Osteogenic Effect and Vascular Function in Bone Health in Hypertensive Rats: A Study of Anti-hypertensive and Hemorheologic Drugs. Calcif Tissue Int 2024; 114:295-309. [PMID: 38102510 DOI: 10.1007/s00223-023-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Vascular dysfunction contributes to the development of osteopenia in hypertensive patients, as decreased blood supply to bones results in tissue damage and dysfunction. The effect of anti-hypertensive medicines on bone mass in hypertensive individuals is inconclusive because of the varied mechanism of their action, and suggests that reducing blood pressure (BP) alone is insufficient to enhance bone mass in hypertension. Pentoxifylline (PTX), a hemorheological drug, improves blood flow by reducing blood viscosity and angiogenesis, also has an osteogenic effect. We hypothesized that improving vascular function is critical to increasing bone mass in hypertension. To test this, we screened various anti-hypertensive drugs for their in vitro osteogenic effect, from which timolol and hydralazine were selected. In adult female spontaneously hypertensive rats (SHRs), timolol and hydralazine did not improve vascular function and bone mass, but PTX improved both. In female SHR animals, PTX restored bone mass, strength and mineralization, up to the level of normotensive control rats. In addition, we observed lower blood vasculature in the femur of adult SHR animals, and PTX restored them. PTX also restored the bone vascular and angiogenesis parameters that had been impaired in OVX SHR compared to sham SHR. This study demonstrates the importance of vascular function in addition to increased bone mass for improving bone health as achieved by PTX without affecting BP, and suggests a promising treatment option for osteoporosis in hypertensive patients, particularly at-risk postmenopausal women.
Collapse
Affiliation(s)
- Subhashis Pal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Shivani Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Mahesh C Tiwari
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Yasir A Khan
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Division of Endocrinology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226 031, India.
| |
Collapse
|
18
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|