1
|
Nesic K, Parker P, Swisher EM, Krais JJ. DNA repair and the contribution to chemotherapy resistance. Genome Med 2025; 17:62. [PMID: 40420317 PMCID: PMC12107761 DOI: 10.1186/s13073-025-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
The DNA damage response comprises a set of imperfect pathways that maintain cell survival following exposure to DNA damaging agents. Cancers frequently exhibit DNA repair pathway alterations that contribute to their intrinsic genome instability. This, in part, facilitates a therapeutic window for many chemotherapeutic agents whose mechanisms of action often converge at the generation of a double-strand DNA break. The development of therapy resistance occurs through countless molecular mechanisms that promote tolerance to DNA damage, often by preventing break formation or increasing repair capacity. This review broadly discusses the DNA damaging mechanisms of action for different classes of chemotherapeutics, how avoidance and repair of double-strand breaks can promote resistance, and strategic directions for counteracting therapy resistance.
Collapse
Affiliation(s)
- Ksenija Nesic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Phoebe Parker
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | - John J Krais
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
2
|
Feng YY, Jin X, Pan MX, Liao JM, Huang XZ, Kang CM. LRP5 enhances glioma cell proliferation by modulating the MAPK/p53/cdc2 pathway. Int J Med Sci 2025; 22:990-1001. [PMID: 39991761 PMCID: PMC11843149 DOI: 10.7150/ijms.99920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Background: Glioma is a malignant neoplasm with generally poor prognosis and the treatment options and effective drugs are very limited. LRP5, a member of the low-density lipoprotein receptor (LDLR) gene family, has been reported to regulate the progression of various cancers such as gastric and colorectal cancer. However, the function of LRP5 in glioma has not been elucidated. The objective of this study is to explore the influence of LRP5 in glioma cell proliferation and its potential molecular mechanisms. Methods: LRP5 expression in glioma was assessed through bioinformatics analysis, and validation was conducted using clinical glioma tissues. Glioma cell lines with reduced LRP5 expression were established through RNA interference. A series of experiments such as cell proliferation assay, flow cytometry analysis, and Western blotting were used to determine the role of LRP5 in glioma cell proliferation, cell cycle progression, and the underlying mechanisms. Results: LRP5 was found to be upregulated in glioma tissues and exhibited significant variations across various subtypes of glioblastoma (GBM). When differentiating between normal individuals and glioma patients, the area under the receiver operating characteristic curve (ROC) for LRP5 was determined to be 0.981. Downregulating the expression of LRP5 in glioma cells can weaken their proliferative ability and reduce the number of cell colonies. There were more cells arrested in the G2/M phase of the cell cycle. The protein levels of phospho-p53 (p-p53), p21Cip1, and phospho-cdc2 (p-cdc2) were elevated. Moreover, LRP5 down-regulation suppressed the phosphorylation of the mitogen-activated protein kinase (MAPK) family members, JNK and p38 MAPK. Consistent results with those mentioned above can be achieved by using an LRP5 antagonist named DKK-1. Conclusion: This research has identified that LRP5 may promote glioma proliferation by influencing the G2/M transition and the activation of the MAPK/p53/cdc2 pathways, suggesting its value as a potential molecular target for glioma diagnosis and treatment.
Collapse
Affiliation(s)
- Ying-Yi Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xin Jin
- Department of Neurosurgery, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, 510120, China
| | - Min-Xuan Pan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, 510120, China
| | - Jia-Min Liao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, 510120, China
| | - Xian-Zhang Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Chun-Min Kang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, Guangdong, 510120, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
3
|
Li J, Cheng X, Huang D, Cui R. The regulatory role of mitotic catastrophe in hepatocellular carcinoma drug resistance mechanisms and its therapeutic potential. Biomed Pharmacother 2024; 180:117598. [PMID: 39461015 DOI: 10.1016/j.biopha.2024.117598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
This review focuses on the role and underlying mechanisms of mitotic catastrophe (MC) in the regulation of drug resistance in hepatocellular carcinoma (HCC). HCC is one of the leading causes of cancer-related mortality worldwide, posing significant treatment challenges due to its high recurrence rates and drug resistance. Research suggests that MC, as a mechanism of cell death, plays a crucial role in enhancing the efficacy of HCC treatment by disrupting the replication and division mechanisms of tumor cells. The present review summarizes the molecular mechanisms of MC and its role in HCC drug resistance and explores the potential of combining MC with existing cancer therapies to improve treatment outcomes. Future research should focus on the in-depth elucidation of the molecular mechanisms of MC and its application in HCC therapy, providing new insights for the development of more effective treatments.
Collapse
Affiliation(s)
- Jianwang Li
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China.
| | - Xiaozhen Cheng
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Denggao Huang
- Department of Central Laboratory, Xiangya School of Medicine Affiliated Haikou Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| | - Ronghua Cui
- Department of Oncology, Xiangya School of Medicine Affiliated Haikou Hospital/Haikou People's Hospital, No.43, Renmin Avenue, Haikou, Hainan 570208, PR China
| |
Collapse
|
4
|
Maldonado E, Rathmell WK, Shapiro GI, Takebe N, Rodon J, Mahalingam D, Trikalinos NA, Kalebasty AR, Parikh M, Boerner SA, Balido C, Krings G, Burns TF, Bergsland EK, Munster PN, Ashworth A, LoRusso P, Aggarwal RR. A Phase II Trial of the WEE1 Inhibitor Adavosertib in SETD2-Altered Advanced Solid Tumor Malignancies (NCI 10170). CANCER RESEARCH COMMUNICATIONS 2024; 4:1793-1801. [PMID: 38920407 PMCID: PMC11264598 DOI: 10.1158/2767-9764.crc-24-0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
UNLABELLED We sought to evaluate the efficacy of WEE1 inhibitor adavosertib in patients with solid tumor malignancies (cohort A) and clear cell renal cell carcinoma (ccRCC; cohort B). NCT03284385 was a parallel cohort, Simon two-stage, phase II study of adavosertib (300 mg QDAY by mouth on days 1-5 and 8-12 of each 21-day cycle) in patients with solid tumor malignancies harboring a pathogenic SETD2 mutation. The primary endpoint was the objective response rate. Correlative assays evaluated the loss of H3K36me3 by IHC, a downstream consequence of SETD2 loss, in archival tumor tissue. Eighteen patients were enrolled (9/cohort). The median age was 60 years (range 45-74). The median duration of treatment was 1.28 months (range 0-24+). No objective responses were observed in either cohort; accrual was halted following stage 1. Minor tumor regressions were observed in 4/18 (22%) evaluable patients. Stable disease (SD) was the best overall response in 10/18 (56%) patients, including three patients with SD > 4 months. One patient with ccRCC remains on treatment for >24 months. The most common adverse events of any grade were nausea (59%), anemia (41%), diarrhea (41%), and neutropenia (41%). Nine patients (50%) experienced a Grade ≥3 adverse event. Of eight evaluable archival tissue samples, six (75%) had a loss of H3K36me3 by IHC. Adavosertib failed to exhibit objective responses in SETD2-altered ccRCC and other solid tumor malignancies although prolonged SD was observed in a subset of patients. Combination approaches may yield greater depth of tumor response. SIGNIFICANCE WEE1 inhibition with adavosertib monotherapy demonstrated limited clinical activity in patients with SETD2-altered solid tumors despite compelling preclinical data indicating a synthetic lethal effect, which did not translate into robust tumor regression. Loss of the H3K36me3 trimethylation mark caused by SETD2-deficiency was confirmed in the majority of evaluable tumors. A subset of patients derived clinical benefit as manifested by minor tumor regressions and prolonged SD.
Collapse
Affiliation(s)
- Edward Maldonado
- University of California, San Francisco, San Francisco, California.
| | | | | | | | - Jordi Rodon
- Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, Texas.
| | | | | | | | - Mamta Parikh
- University of California, Davis, Davis, California.
| | | | - Celene Balido
- University of California, San Francisco, San Francisco, California.
| | - Gregor Krings
- University of California, San Francisco, San Francisco, California.
| | - Timothy F. Burns
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | | | | | - Alan Ashworth
- University of California, San Francisco, San Francisco, California.
| | | | | |
Collapse
|
5
|
Zhao SJ, Prior D, Heske CM, Vasquez JC. Therapeutic Targeting of DNA Repair Pathways in Pediatric Extracranial Solid Tumors: Current State and Implications for Immunotherapy. Cancers (Basel) 2024; 16:1648. [PMID: 38730598 PMCID: PMC11083679 DOI: 10.3390/cancers16091648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
DNA damage is fundamental to tumorigenesis, and the inability to repair DNA damage is a hallmark of many human cancers. DNA is repaired via the DNA damage repair (DDR) apparatus, which includes five major pathways. DDR deficiencies in cancers give rise to potential therapeutic targets, as cancers harboring DDR deficiencies become increasingly dependent on alternative DDR pathways for survival. In this review, we summarize the DDR apparatus, and examine the current state of research efforts focused on identifying vulnerabilities in DDR pathways that can be therapeutically exploited in pediatric extracranial solid tumors. We assess the potential for synergistic combinations of different DDR inhibitors as well as combinations of DDR inhibitors with chemotherapy. Lastly, we discuss the immunomodulatory implications of targeting DDR pathways and the potential for using DDR inhibitors to enhance tumor immunogenicity, with the goal of improving the response to immune checkpoint blockade in pediatric solid tumors. We review the ongoing and future research into DDR in pediatric tumors and the subsequent pediatric clinical trials that will be critical to further elucidate the efficacy of the approaches targeting DDR.
Collapse
Affiliation(s)
- Sophia J. Zhao
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Daniel Prior
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| | - Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Juan C. Vasquez
- Department of Pediatric Hematology/Oncology, Yale University School of Medicine, New Haven, CT 06510, USA; (S.J.Z.); (D.P.)
| |
Collapse
|