1
|
Jang DG, Sim HJ, Kwon KY. Integrative approaches in Xenopus-based research: A report from the 1st Asian Xenopus Conference. Dev Growth Differ 2025; 67:186-191. [PMID: 40181657 DOI: 10.1111/dgd.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/05/2025]
Abstract
The first Asian community conference on "Scientific research using Xenopus as an animal model system" was held in Osaka, Japan, from November 24 to 26, 2024. This event was organized by the Korean Society for Xenopus Development of KSMCB (Korean Society for the Molecular and Cellular Biology), Xenopus Community in Japan (XCIJ), KNU G-LAMP Project, National BioResource Project-Clawed frogs/Newts (NBRP), and Osaka University. The conference covered various research topics in biological sciences using Xenopus. The ultimate goal of this conference was to promote collaboration and encourage a new and sustainable relationship among researchers in the Asian region who utilize Xenopus in their studies by sharing scientific findings. The conference not only shared research findings from various biological fields in the Asian region but also provided opportunities to invite global experts in the Xenopus research for "Keynote Lectures" and rising researchers who use other animal models for the "Friends of Xenopus" session to foster interdisciplinary exchange. In addition, organizers planned a luncheon seminar to help trainee students learn how to write a scientific paper and how not to.
Collapse
Affiliation(s)
- Dong Gil Jang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Hyo Jung Sim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Keun Yeong Kwon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
2
|
Yao ZY, Gong JS, Jiang JY, Su C, Zhao WH, Xu ZH, Shi JS. Unraveling the intricacies of glycosaminoglycan biosynthesis: Decoding the molecular symphony in understanding complex polysaccharide assembly. Biotechnol Adv 2024; 75:108416. [PMID: 39033835 DOI: 10.1016/j.biotechadv.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Wen-Han Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
3
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
4
|
Lu Y, Wen W, Huang Q, Duan N, Li M, Zhang K, Li Z, Sun L, Wang Q. Development and experimental validation of an energy metabolism-related gene signature for diagnosing of osteoporosis. Sci Rep 2024; 14:8153. [PMID: 38589566 PMCID: PMC11001872 DOI: 10.1038/s41598-024-59062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/06/2024] [Indexed: 04/10/2024] Open
Abstract
Osteoporosis is usually caused by excessive bone resorption and energy metabolism plays a critical role in the development of osteoporosis. However, little is known about the role of energy metabolism-related genes in osteoporosis. This study aimed to explore the important energy metabolism-related genes involved in the development of osteoporosis and develop a diagnosis signature for osteoporosis. The GSE56814, GSE62402, and GSE7158 datasets were downloaded from the NCBI Gene Expression Omnibus. The intersection of differentially expressed genes between high and low levels of body mineral density (BMD) and genes related to energy metabolism were screened as differentially expressed energy metabolism genes (DE-EMGs). Subsequently, a DE-EMG-based diagnostic model was constructed and differential expression of genes in the model was validated by RT-qPCR. Furthermore, a receiver operating characteristic curve and nomogram model were constructed to evaluate the predictive ability of the diagnostic model. Finally, the immune cell types in the merged samples and networks associated with the selected optimal DE-EMGs were constructed. A total of 72 overlapped genes were selected as DE-EMGs, and a five DE-EMG based diagnostic model consisting B4GALT4, ADH4, ACAD11, B4GALT2, and PPP1R3C was established. The areas under the curve of the five genes in the merged training dataset and B4GALT2 in the validation dataset were 0.784 and 0.790, respectively. Moreover, good prognostic prediction ability was observed using the nomogram model (C index = 0.9201; P = 5.507e-14). Significant differences were observed in five immune cell types between the high- and low-BMD groups. These included central memory, effector memory, and activated CD8 T cells, as well as regulatory T cells and activated B cells. A network related to DE-EMGs was constructed, including hsa-miR-23b-3p, DANCR, 17 small-molecule drugs, and two Kyoto Encyclopedia of Genes and Genomes pathways, including metabolic pathways and pyruvate metabolism. Our findings highlighted the important roles of DE-EMGs in the development of osteoporosis. Furthermore, the DANCR/hsa-miR-23b-3p/B4GALT4 axis might provide novel molecular insights into the process of osteoporosis development.
Collapse
Affiliation(s)
- Yao Lu
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Wen Wen
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Huang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Ning Duan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Ming Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Kun Zhang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Zhong Li
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China
| | - Liang Sun
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China.
| | - Qian Wang
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, 555 Youyi East Road, Xi'an, 710054, Shaan'xi Province, China.
| |
Collapse
|
5
|
Xu P, Cai X, Guan X, Xie W. Sulfoconjugation of protein peptides and glycoproteins in physiology and diseases. Pharmacol Ther 2023; 251:108540. [PMID: 37777160 PMCID: PMC10842354 DOI: 10.1016/j.pharmthera.2023.108540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Protein sulfoconjugation, or sulfation, represents a critical post-translational modification (PTM) process that involves the attachment of sulfate groups to various positions of substrates within the protein peptides or glycoproteins. This process plays a dynamic and complex role in many physiological and pathological processes. Here, we summarize the importance of sulfation in the fields of oncology, virology, drug-induced liver injury (DILI), inflammatory bowel disease (IBD), and atherosclerosis. In oncology, sulfation is involved in tumor initiation, progression, and migration. In virology, sulfation influences viral entry, replication, and host immune response. In DILI, sulfation is associated with the incidence of DILI, where altered sulfation affects drug metabolism and toxicity. In IBD, dysregulation of sulfation compromises mucosal barrier and immune response. In atherosclerosis, sulfation influences the development of atherosclerosis by modulating the accumulation of lipoprotein, and the inflammation, proliferation, and migration of smooth muscle cells. The current review underscores the importance of further research to unravel the underlying mechanisms and therapeutic potential of targeting sulfoconjugation in various diseases. A better understanding of sulfation could facilitate the emergence of innovative diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Bento ADA, Maciel MC, Bezerra FF, Mourão PADS, Pavão MSG, Stelling MP. Extraction, Isolation, Characterization, and Biological Activity of Sulfated Polysaccharides Present in Ascidian Viscera Microcosmus exasperatus. Pharmaceuticals (Basel) 2023; 16:1401. [PMID: 37895872 PMCID: PMC10609765 DOI: 10.3390/ph16101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Ascidians are marine invertebrates that synthesize sulfated glycosaminoglycans (GAGs) within their viscera. Ascidian GAGs are considered analogues of mammalian GAGs and possess great potential as bioactive compounds, presenting antitumoral and anticoagulant activity. Due to its worldwide occurrence and, therefore, being a suitable organism for large-scale mariculture in many marine environments, our main objectives are to study Microcosmus exasperatus GAGs regarding composition, structure, and biological activity. We also aim to develop efficient protocols for sulfated polysaccharides extraction and purification for large-scale production and clinical applications. GAGs derived from M. exasperatus viscera were extracted by proteolytic digestion, purified by ion-exchange liquid chromatography, and characterized by agarose gel electrophoresis and enzymatic treatments. Anticoagulant activity was evaluated by APTT assays. Antitumoral activity was assessed in an in vitro model of tumor cell culture using MTT, clonogenic, and wound healing assays, respectively. Our results show that M. exasperatus presents three distinct polysaccharides; among them, two were identified: a dermatan sulfate and a fucosylated dermatan sulfate. Antitumoral activity was confirmed for the total polysaccharides (TP). While short-term incubation does not affect tumor cell viability at low concentrations, long-term TP incubation decreases LLC tumor cell growth/proliferation at different concentrations. In addition, TP decreased tumor cell migration at different concentrations. In conclusion, we state that M. exasperatus presents great potential as an alternative GAG source, producing compounds with antitumoral properties at low concentrations that do not possess anticoagulant activity and do not enhance other aspects of malignancy, such as tumor cell migration. Our perspectives are to apply these molecules in future preclinical studies for cancer treatment as antitumoral agents to be combined with current treatments to potentiate therapeutic efficacy.
Collapse
Affiliation(s)
- Ananda de Araujo Bento
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro 20271-110, Brazil; (A.d.A.B.); (M.C.M.)
| | - Marianna Cardoso Maciel
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro 20271-110, Brazil; (A.d.A.B.); (M.C.M.)
| | - Francisco Felipe Bezerra
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil; (F.F.B.); (P.A.d.S.M.); (M.S.G.P.)
| | - Paulo Antônio de Souza Mourão
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil; (F.F.B.); (P.A.d.S.M.); (M.S.G.P.)
| | - Mauro Sérgio Gonçalves Pavão
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-971, Brazil; (F.F.B.); (P.A.d.S.M.); (M.S.G.P.)
| | - Mariana Paranhos Stelling
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro 20271-110, Brazil; (A.d.A.B.); (M.C.M.)
| |
Collapse
|