1
|
Parvin F, Haglund S, Wegenast-Braun B, Jucker M, Saito T, Saido TC, Nilsson KPR, Nilsson P, Nyström S, Hammarström P. Divergent Age-Dependent Conformational Rearrangement within Aβ Amyloid Deposits in APP23, APPPS1, and AppNL-F Mice. ACS Chem Neurosci 2024; 15:2058-2069. [PMID: 38652895 PMCID: PMC11099915 DOI: 10.1021/acschemneuro.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Amyloid plaques composed of fibrils of misfolded Aβ peptides are pathological hallmarks of Alzheimer's disease (AD). Aβ fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aβ fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aβ fibril structures in situ differ in Aβ plaque of different mouse models expressing familial mutations in the AβPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aβ-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL-F have different fibril structures within Aβ-amyloid plaques depending on the AβPP-processing genotype. Co-staining with Aβ-specific antibodies showed that individual plaques from APP23 mice expressing AβPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aβ40 fibrils, and the corona region is dominated by diffusely packed Aβ40 fibrils. Conversely, the AβPP knock-in mouse AppNL-F, expressing the AβPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aβ42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aβ40 and was hence minuscule in AppNL-F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.
Collapse
Affiliation(s)
- Farjana Parvin
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Samuel Haglund
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Bettina Wegenast-Braun
- German
Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076 Tübingen, Germany
- Hertie
Institute for Clinical Brain Research, University
of Tübingen, 72076 Tübingen, Germany
| | - Mathias Jucker
- German
Center for Neurodegenerative Diseases (DZNE), University of Tübingen, 72076 Tübingen, Germany
- Hertie
Institute for Clinical Brain Research, University
of Tübingen, 72076 Tübingen, Germany
| | - Takashi Saito
- Laboratory
for Proteolytic Neuroscience, RIKEN Center
for Brain Science, Wako 351-0198, Saitama, Japan
- Department
of Neurocognitive Science, Nagoya City University
Graduate School of Medical Sciences, Nagoya 467-8601, Aichi, Japan
| | - Takaomi C. Saido
- Laboratory
for Proteolytic Neuroscience, RIKEN Center
for Brain Science, Wako 351-0198, Saitama, Japan
| | - K. Peter R. Nilsson
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Per Nilsson
- Department
of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17177 Solna, Sweden
| | - Sofie Nyström
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Per Hammarström
- Department
of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
2
|
Klingstedt T, Lantz L, Shirani H, Ge J, Hanrieder J, Vidal R, Ghetti B, Nilsson KPR. Thiophene-Based Ligands for Specific Assignment of Distinct Aβ Pathologies in Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1581-1595. [PMID: 38523263 PMCID: PMC10995944 DOI: 10.1021/acschemneuro.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Aggregated species of amyloid-β (Aβ) are one of the pathological hallmarks in Alzheimer's disease (AD), and ligands that selectively target different Aβ deposits are of great interest. In this study, fluorescent thiophene-based ligands have been used to illustrate the features of different types of Aβ deposits found in AD brain tissue. A dual-staining protocol based on two ligands, HS-276 and LL-1, with different photophysical and binding properties, was developed and applied on brain tissue sections from patients affected by sporadic AD or familial AD associated with the PSEN1 A431E mutation. When binding to Aβ deposits, the ligands could easily be distinguished for their different fluorescence, and distinct staining patterns were revealed for these two types of AD. In sporadic AD, HS-276 consistently labeled all immunopositive Aβ plaques, whereas LL-1 mainly stained cored and neuritic Aβ deposits. In the PSEN1 A431E cases, each ligand was binding to specific types of Aβ plaques. The ligand-labeled Aβ deposits were localized in distinct cortical layers, and a laminar staining pattern could be seen. Biochemical characterization of the Aβ aggregates in the individual layers also showed that the variation of ligand binding properties was associated with certain Aβ peptide signatures. For the PSEN1 A431E cases, it was concluded that LL-1 was binding to cotton wool plaques, whereas HS-276 mainly stained diffuse Aβ deposits. Overall, our findings showed that a combination of ligands was essential to identify distinct aggregated Aβ species associated with different forms of AD.
Collapse
Affiliation(s)
- Therése Klingstedt
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Linda Lantz
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Hamid Shirani
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| | - Junyue Ge
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
The Sahlgrenska Academy, University of Gothenburg,
Mölndal Hospital, Mölndal 431 80, Sweden
| | - Jörg Hanrieder
- Department
of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,
The Sahlgrenska Academy, University of Gothenburg,
Mölndal Hospital, Mölndal 431 80, Sweden
- Department
of Neurodegenerative Diseases, University
College London Institute of Neurology, Queen Square, London WC1N 3BG, United
Kingdom
| | - Ruben Vidal
- Department
of Pathology and Laboratory Medicine, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Bernardino Ghetti
- Department
of Pathology and Laboratory Medicine, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - K. Peter R. Nilsson
- Department
of Physics, Chemistry and Biology, Linköping
University, Linköping 581 83, Sweden
| |
Collapse
|
3
|
Duran-Meza E, Araya-Secchi R, Romero-Hasler P, Soto-Bustamante EA, Castro-Fernandez V, Castillo-Caceres C, Monasterio O, Diaz-Espinoza R. Metal Ions Can Modulate the Self-Assembly and Activity of Catalytic Peptide Amyloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6094-6106. [PMID: 38470353 DOI: 10.1021/acs.langmuir.3c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Rational design of peptides has become a powerful tool to produce self-assembled nanostructures with the ability to catalyze different chemical reactions, paving the way to develop minimalistic enzyme-like nanomaterials. Catalytic amyloid-like assemblies have emerged among the most versatile and active, but they often require additional factors for activity. Elucidating how these factors influence the structure and activity is key for the design. Here, we showed that biologically relevant metal ions can guide and modulate the self-assembly of a small peptide into diverse amyloid architectures. The morphology and catalytic activity of the resulting fibrils were tuned by the specific metal ion decorating the surface, whereas X-ray structural analysis of the amyloids showed ion-dependent shape sizes. Molecular dynamics simulations showed that the metals can strongly affect the local conformational space, which can trigger major rearrangements of the fibrils. Our results demonstrate that the conformational landscape of catalytic amyloids is broad and tunable by external factors, which can be critical for future design strategies.
Collapse
Affiliation(s)
- Eva Duran-Meza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, General Amengual 014, Estación Central, Santiago 9170390, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Raul Araya-Secchi
- Computational Biophysics group, Facultad de Ingenieria, Tecnologia y Diseño, Universidad San Sebastian, Bellavista 7, Recoleta, Santiago 8420524, Chile
- Centro Basal Ciencia & Vida, Universidad San Sebastian, Santiago 8420524, Chile
| | - Patricio Romero-Hasler
- Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 81380494, Chile
| | - Eduardo Arturo Soto-Bustamante
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Dr. Carlos Lorca Tobar 964, Independencia, Santiago 81380494, Chile
| | - Victor Castro-Fernandez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Claudio Castillo-Caceres
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, General Amengual 014, Estación Central, Santiago 9170390, Chile
| | - Octavio Monasterio
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, General Amengual 014, Estación Central, Santiago 9170390, Chile
| |
Collapse
|
4
|
Stroo E, Janssen L, Sin O, Hogewerf W, Koster M, Harkema L, Youssef SA, Beschorner N, Wolters AH, Bakker B, Becker L, Garrett L, Marschall S, Hoelter SM, Wurst W, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Thathiah A, Foijer F, van de Sluis B, van Deursen J, Jucker M, de Bruin A, Nollen EA. Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain. Life Sci Alliance 2023; 6:e202201730. [PMID: 37130781 PMCID: PMC10155860 DOI: 10.26508/lsa.202201730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-β aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leen Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Olga Sin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Wytse Hogewerf
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sameh A Youssef
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Natalie Beschorner
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anouk Hg Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Lilian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sabine M Hoelter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven, Leuven, Belgium
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Matthias Jucker
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ellen Aa Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Björk L, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. Chembiochem 2023; 24:e202300044. [PMID: 36891883 PMCID: PMC10404026 DOI: 10.1002/cbic.202300044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023]
Abstract
The development of ligands for detecting protein aggregates is of great interest, as these aggregated proteinaceous species are the pathological hallmarks of several devastating diseases, including Alzheimer's disease. In this regard, thiophene-based ligands have emerged as powerful tools for fluorescent assessment of these pathological entities. The intrinsic conformationally sensitive photophysical properties of poly- and oligothiophenes have allowed optical assignment of disease-associated protein aggregates in tissue sections, as well as real-time in vivo imaging of protein deposits. Herein, we recount the chemical evolution of different generations of thiophene-based ligands, and exemplify their use for the optical distinction of polymorphic protein aggregates. Furthermore, the chemical determinants for achieving a superior fluorescent thiophene-based ligand, as well as the next generation of thiophene-based ligands targeting distinct aggregated species are described. Finally, the directions for future research into the chemical design of thiophene-based ligands that can aid in resolving the scientific challenges around protein aggregation diseases are discussed.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
6
|
Pirhaghi M, Najarzadeh Z, Moosavi-Movahedi F, Shafizadeh M, Mamashli F, Atarod D, Ghasemi A, Morshedi D, Meratan AA, Otzen DE, Saboury AA. The anti-platelet drug ticlopidine inhibits FapC fibrillation and biofilm production: Highlighting its antibiotic activity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140883. [PMID: 36455808 DOI: 10.1016/j.bbapap.2022.140883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.
Collapse
Affiliation(s)
- Mitra Pirhaghi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | | | - Mahshid Shafizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Deyhim Atarod
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Atiyeh Ghasemi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Dina Morshedi
- Department of Bioprocess Engineering, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C, Denmark
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Mukherjee A, Al-Lahham R, Corkins ME, Samanta S, Schmeichel AM, Singer W, Low PA, Govindaraju T, Soto C. Identification of Multicolor Fluorescent Probes for Heterogeneous Aβ Deposits in Alzheimer's Disease. Front Aging Neurosci 2022; 13:802614. [PMID: 35185519 PMCID: PMC8852231 DOI: 10.3389/fnagi.2021.802614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
Accumulation of amyloid-beta (Aβ) into amyloid plaques and hyperphosphorylated tau into neurofibrillary tangles (NFTs) are pathological hallmarks of Alzheimer's disease (AD). There is a significant intra- and inter-individual variability in the morphology and conformation of Aβ aggregates, which may account in part for the extensive clinical and pathophysiological heterogeneity observed in AD. In this study, we sought to identify an array of fluorescent dyes to specifically probe Aβ aggregates, in an effort to address their diversity. We screened a small library of fluorescent probes and identified three benzothiazole-coumarin derivatives that stained both vascular and parenchymal Aβ deposits in AD brain sections. The set of these three dyes allowed the visualization of Aβ deposits in three different colors (blue, green and far-red). Importantly, two of these dyes specifically stained Aβ deposits with no apparent staining of hyperphosphorylated tau or α-synuclein deposits. Furthermore, this set of dyes demonstrated differential interactions with distinct types of Aβ deposits present in the same subject. Aβ aggregate-specific dyes identified in this study have the potential to be further developed into Aβ imaging probes for the diagnosis of AD. In addition, the far-red dye we identified in this study may serve as an imaging probe for small animal imaging of Aβ pathology. Finally, these dyes in combination may help us advance our understanding of the relation between the various Aβ deposits and the clinical diversity observed in AD.
Collapse
Affiliation(s)
- Abhisek Mukherjee
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Rabab Al-Lahham
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mark E. Corkins
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | | | - Wolfgang Singer
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Phillip A. Low
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Claudio Soto
- Department of Neurology, Mitchell Center for Alzheimer’s Disease and Related Brain Disorders, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
8
|
Mannem R, Yousuf M, Sreerama L. Nanostructures Formed by Custom-Made Peptides Based on Amyloid Peptide Sequences and Their Inhibition by 2-Hydroxynaphthoquinone. Front Chem 2020; 8:684. [PMID: 32850681 PMCID: PMC7424059 DOI: 10.3389/fchem.2020.00684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 01/30/2023] Open
Abstract
Extensive research on amyloid fibril formations shows that certain core sequences within Aβ peptide play an important role in their formation. It is impossible to track these events in vivo. Many proteins and peptides with such core sequences form amyloid fibrils and such Aβ sheet mimics have become excellent tools to study amyloid fibril formation and develop therapeutic strategies. A group of peptides based on amyloid peptide sequences obtained from PDB searches, where glycine residues are substituted with alanine and isoleucine, are tested for aggregation by SEM and ThT binding assay. SEM of different peptide sequences showed morphologically different structures such as nanorods, crystalline needles and nanofibrils. The peptides were co-incubated with HNQ (a quinone) to study its effect on the process of aggregation and/or fibrillation. In conclusion, this group of peptides seem to be Aβ sheet mimics and can be very useful in understanding the different morphologies of amyloid fibrils arising from different peptide sequences and the effective strategies to inhibit or anneal them.
Collapse
Affiliation(s)
- Radhika Mannem
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Mohammed Yousuf
- Central Laboratory Unit (CLU), Qatar University, Doha, Qatar
| | | |
Collapse
|
9
|
Strømme O, Psonka-Antonczyk KM, Stokke BT, Sundan A, Arum CJ, Brede G. Myeloma-derived extracellular vesicles mediate HGF/c-Met signaling in osteoblast-like cells. Exp Cell Res 2019; 383:111490. [PMID: 31283912 DOI: 10.1016/j.yexcr.2019.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/11/2023]
Abstract
Multiple myeloma is an incurable cancer of antibody-producing plasma cells. Hepatocyte growth factor (HGF), a cytokine aberrantly expressed in half of myeloma patients, is involved in myeloma pathogenesis by enhancing myeloma growth and invasiveness, and may play a role in myeloma bone disease by inhibiting osteoblastogenesis. In this study, we investigated whether extracellular vesicles (EVs) may play a role in HGF signaling between myeloma cells and osteoblast-like target cells. EVs from the HGF-positive cell line JJN-3 and the HGF-negative cell line INA-6, and from bone marrow plasma and primary human myeloma cells, were isolated using sequential centrifugation techniques and the presence of HGF on the EV-surface was investigated with ELISA. EVs from both cell lines were added to an established bioassay where HGF is known to induce interleukin-11 secretion in osteoblast-like cells. Our results show that HGF was bound to the surface of JJN-3-derived EVs, while INA-6-derived EVs were negative for HGF. Only JJN-3-derived EVs induced IL-11 secretion in osteoblast-like recipient cells. When osteoblast-like cells were preincubated with a specific HGF-receptor (c-Met) inhibitor, no induction of interleukin-11 was observed. Downstream c-Met phosphorylation was demonstrated by immunoblotting. EVs isolated from bone marrow plasma and primary myeloma cells were HGF-positive for a subset of myeloma patients. Taken together, this work shows for the first time that HGF bound on the surface of myeloma-derived EVs can effectuate HGF/c-Met signaling in osteoblast-like cells. Myeloma-derived EVs may play a role in myeloma bone disease by induction of the osteoclast-activating cytokine interleukin-11 in osteoblasts.
Collapse
Affiliation(s)
- Olaf Strømme
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Katarzyna M Psonka-Antonczyk
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Bjørn Torger Stokke
- Department of Physics, Faculty of Natural Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Anders Sundan
- Centre of Molecular Inflammation Research and Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Carl-Jørgen Arum
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway and Department of Urology, St. Olavs University Hospital, Trondheim, Norway.
| | - Gaute Brede
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
10
|
Perez C, Miti T, Hasecke F, Meisl G, Hoyer W, Muschol M, Ullah G. Mechanism of Fibril and Soluble Oligomer Formation in Amyloid Beta and Hen Egg White Lysozyme Proteins. J Phys Chem B 2019; 123:5678-5689. [PMID: 31246474 DOI: 10.1021/acs.jpcb.9b02338] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Assembly and deposition of insoluble amyloid fibrils with a distinctive cross-β-sheet structure is the molecular hallmark of amyloidogenic diseases affecting the central nervous system as well as non-neuropathic amyloidosis. Amyloidogenic proteins form aggregates via kinetic pathways dictated by initial solution conditions. Often, early stage, cytotoxic, small globular amyloid oligomers (gOs) and curvilinear fibrils (CFs) precede the formation of late-stage rigid fibrils (RFs). Growing experimental evidence suggests that soluble gOs are off-pathway aggregates that do not directly convert into the final stage RFs. Yet, the kinetics of RFs aggregation under conditions that either promote or suppress the growth of gOs remain incompletely understood. Here we present a self-assembly model for amyloid fibril formation in the presence and absence of early stage off-pathway aggregates, driven by our experimental results on hen egg white lysozyme (HewL) and beta amyloid (Aβ) aggregation. The model reproduces a range of experimental observations including the sharp boundary in the protein concentration above which the self-assembly of gOs occurs. This is possible when both primary and secondary RFs nucleation rates are allowed to have a nonlinear dependence on initial protein concentration, hinting toward more complex prenucleation and RFs assembly scenarios. Moreover, analysis of RFs lag period in the presence and absence of gOs indicates that these off-pathway aggregates have an inhibitory effect on RFs nucleation. Finally, we incorporate the effect of an Aβ binding protein on the aggregation process in the model that allows us to identify the most suitable solution conditions for suppressing gOs and RFs formation.
Collapse
Affiliation(s)
- Carlos Perez
- Department of Physics , University of South Florida , Tampa , Florida 33620 , United States
| | - Tatiana Miti
- Department of Physics , University of South Florida , Tampa , Florida 33620 , United States
| | - Filip Hasecke
- Institut für Physikalische Biologie , Heinrich-Heine-Universität , 40204 Düsseldorf , Germany
| | - Georg Meisl
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K
| | - Wolfgang Hoyer
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , U.K.,Institute of Complex Systems (ICS-6), Structural Biochemistry , Research Centre Jülich , 52425 Jülich , Germany
| | - Martin Muschol
- Department of Physics , University of South Florida , Tampa , Florida 33620 , United States
| | - Ghanim Ullah
- Department of Physics , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
11
|
Wang B, Queenan BN, Wang S, Nilsson KPR, Bazan GC. Precisely Defined Conjugated Oligoelectrolytes for Biosensing and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806701. [PMID: 30698856 DOI: 10.1002/adma.201806701] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Conjugated oligoelectrolytes (COEs) are a relatively new class of synthetic organic molecules with, as of yet, untapped potential for use in organic optoelectronic devices and bioelectronic systems. COEs also offer a novel molecular approach to biosensing, bioimaging, and disease therapy. Substantial progress has been made in the past decade at the intersection of chemistry, materials science, and the biological sciences developing COEs and their polymer analogues, namely, conjugated polyelectrolytes (CPEs), into synthetic systems with biological and biomedical utility. CPEs have traditionally attracted more attention in arenas of sensing, imaging, and therapy. However, the precisely defined molecular structures and interactions of COEs offer potential key advantages over CPEs, including higher reliability and fluorescence quantum efficiency, larger diversity of subcellular targeting strategies, and improved selectivity to biomolecules. Here, the unique-and sometimes overlooked-properties of COEs are discussed and the noticeable progress in their use for biological sensing, imaging, and therapy is reviewed.
Collapse
Affiliation(s)
- Bing Wang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Bridget N Queenan
- Department of Mechanical Engineering, Neuroscience Research Institute, University of California, Santa Barbara, CA, 93106, USA
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - K Peter R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, SE, -581 83, Sweden
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
12
|
Michno W, Nyström S, Wehrli P, Lashley T, Brinkmalm G, Guerard L, Syvänen S, Sehlin D, Kaya I, Brinet D, Nilsson KPR, Hammarström P, Blennow K, Zetterberg H, Hanrieder J. Pyroglutamation of amyloid-βx-42 (Aβx-42) followed by Aβ1-40 deposition underlies plaque polymorphism in progressing Alzheimer's disease pathology. J Biol Chem 2019; 294:6719-6732. [PMID: 30814252 PMCID: PMC6497931 DOI: 10.1074/jbc.ra118.006604] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Amyloid-β (Aβ) pathology in Alzheimer's disease (AD) is characterized by the formation of polymorphic deposits comprising diffuse and cored plaques. Because diffuse plaques are predominantly observed in cognitively unaffected, amyloid-positive (CU-AP) individuals, pathogenic conversion into cored plaques appears to be critical to AD pathogenesis. Herein, we identified the distinct Aβ species associated with amyloid polymorphism in brain tissue from individuals with sporadic AD (s-AD) and CU-AP. To this end, we interrogated Aβ polymorphism with amyloid conformation–sensitive dyes and a novel in situ MS paradigm for chemical characterization of hyperspectrally delineated plaque morphotypes. We found that maturation of diffuse into cored plaques correlated with increased Aβ1–40 deposition. Using spatial in situ delineation with imaging MS (IMS), we show that Aβ1–40 aggregates at the core structure of mature plaques, whereas Aβ1–42 localizes to diffuse amyloid aggregates. Moreover, we observed that diffuse plaques have increased pyroglutamated Aβx-42 levels in s-AD but not CU-AP, suggesting an AD pathology–related, hydrophobic functionalization of diffuse plaques facilitating Aβ1–40 deposition. Experiments in tgAPPSwe mice verified that, similar to what has been observed in human brain pathology, diffuse deposits display higher levels of Aβ1–42 and that Aβ plaque maturation over time is associated with increases in Aβ1–40. Finally, we found that Aβ1–40 deposition is characteristic for cerebral amyloid angiopathy deposition and maturation in both humans and mice. These results indicate that N-terminal Aβx-42 pyroglutamation and Aβ1–40 deposition are critical events in priming and maturation of pathogenic Aβ from diffuse into cored plaques, underlying neurotoxic plaque development in AD.
Collapse
Affiliation(s)
- Wojciech Michno
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Sofie Nyström
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Patrick Wehrli
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Tammaryn Lashley
- the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Gunnar Brinkmalm
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Laurent Guerard
- the Center for Cellular Imaging, Core Facilities, Sahlgrenska Academy at the University of Gothenburg, 41390 Gothenburg, Sweden
| | - Stina Syvänen
- the Department of Public Health and Caring Sciences, Uppsala University, 75236 Uppsala, Sweden
| | - Dag Sehlin
- the Department of Public Health and Caring Sciences, Uppsala University, 75236 Uppsala, Sweden
| | - Ibrahim Kaya
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Dimitri Brinet
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - K Peter R Nilsson
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Per Hammarström
- the Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping, Sweden
| | - Kaj Blennow
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden.,the Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden.,the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom.,the Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden.,the UK Dementia Research Institute at UCL, London WC1E 6BT, United Kingdom, and
| | - Jörg Hanrieder
- From the Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden, .,the Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|
13
|
Skamris T, Marasini C, Madsen KL, Foderà V, Vestergaard B. Early Stage Alpha-Synuclein Amyloid Fibrils are Reservoirs of Membrane-Binding Species. Sci Rep 2019; 9:1733. [PMID: 30741994 PMCID: PMC6370759 DOI: 10.1038/s41598-018-38271-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/19/2018] [Indexed: 11/16/2022] Open
Abstract
The presence of αSN fibrils indisputably associates with the development of synucleinopathies. However, while certain fibril morphologies have been linked to downstream pathological phenotypes, others appear less harmful, leading to the concept of fibril strains, originally described in relation to prion disease. Indeed, the presence of fibrils does not associate directly with neurotoxicity. Rather, it has been suggested that the toxic compounds are soluble amyloidogenic oligomers, potentially co-existing with fibrils. Here, combining synchrotron radiation circular dichroism, transmission electron microscopy and binding assays on native plasma membrane sheets, we reveal distinct biological and biophysical differences between initial and matured fibrils, transformed within the timespan of few days. Immature fibrils are reservoirs of membrane-binding species, which in response to even gentle experimental changes release into solution in a reversible manner. In contrast, mature fibrils, albeit macroscopically indistinguishable from their less mature counterparts, are structurally robust, shielding the solution from the membrane active soluble species. We thus show that particular biological activity resides transiently with the fibrillating sample, distinct for one, but not the other, spontaneously formed fibril polymorph. These results shed new light on the principles of fibril polymorphism with consequent impact on future design of assays and therapeutic development.
Collapse
Affiliation(s)
- Thomas Skamris
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Carlotta Marasini
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kenneth L Madsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, The Panum Institute, Maersk Tower 7.5, 2200, Copenhagen, Denmark
| | - Vito Foderà
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Zhang J, Konsmo A, Sandberg A, Wu X, Nyström S, Obermüller U, Wegenast-Braun BM, Konradsson P, Lindgren M, Hammarström P. Phenolic Bis-styrylbenzo[c]-1,2,5-thiadiazoles as Probes for Fluorescence Microscopy Mapping of Aβ Plaque Heterogeneity. J Med Chem 2019; 62:2038-2048. [DOI: 10.1021/acs.jmedchem.8b01681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Zhang
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Audun Konsmo
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Alexander Sandberg
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Xiongyu Wu
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Sofie Nyström
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Ulrike Obermüller
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- DZNE−German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Bettina M. Wegenast-Braun
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- DZNE−German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Peter Konradsson
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Per Hammarström
- Division of Chemistry, Department of Physics Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
15
|
Congo Red and amyloids: history and relationship. Biosci Rep 2019; 39:BSR20181415. [PMID: 30567726 PMCID: PMC6331669 DOI: 10.1042/bsr20181415] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
Staining with Congo Red (CR) is a qualitative method used for the identification of amyloids in vitro and in tissue sections. However, the drawbacks and artefacts obtained when using this dye can be found both in vitro and in vivo. Analysis of scientific data from previous studies shows that CR staining alone is not sufficient for confirmation of the amyloid nature of protein aggregates in vitro or for diagnosis of amyloidosis in tissue sections. In the present paper, we describe the characteristics and limitations of other methods used for amyloid studies. Our historical review on the use of CR staining for amyloid studies may provide insight into the pitfalls and caveats related to this technique for researchers considering using this dye.
Collapse
|
16
|
Rouhbakhsh Z, Aili D, Martinsson E, Svärd A, Bäck M, Housaindokht MR, Nilsson KPR, Selegård R. Self-Assembly of a Structurally Defined Chiro-Optical Peptide-Oligothiophene Hybrid Material. ACS OMEGA 2018; 3:15066-15075. [PMID: 31458172 PMCID: PMC6643387 DOI: 10.1021/acsomega.8b02153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/12/2018] [Indexed: 06/10/2023]
Abstract
Conducting polymers are routinely used in optoelectronic biomaterials, but large polymer polydispersity and poor aqueous compatibility complicate integration with biomolecular templates and development of discrete and defined supramolecular complexes. Herein, we report on a chiro-optical hybrid material generated by the self-assembly of an anionic peptide and a chemically defined cationic pentameric thiophene in aqueous environment. The peptide acts as a stereochemical template for the thiophene and adopts an α-helical conformation upon association, inducing optical activity in the thiophene π-π* transition region. Theoretical calculations confirm the experimentally observed induced structural changes and indicate the importance of electrostatic interactions in the complex. The association process is also probed at the substrate-solvent interface using peptide-functionalized gold nanoparticles, indicating that the peptide can also act as a scaffold when immobilized, resulting in structurally well-defined supramolecular complexes. The hybrid complex could rapidly be assembled, and the kinetics of the formation could be monitored by utilizing the local surface plasmon resonance originating from the gold nanoparticles. We foresee that these findings will aid in designing novel hybrid materials and provide a possible route for the development of functional optoelectronic interfaces for both biomaterials and energy harvesting applications.
Collapse
Affiliation(s)
- Zeinab Rouhbakhsh
- Laboratory
of Molecular Materials, Division of Molecular Physics,
Department of Physics, Chemistry and Biology, and Division of Chemistry, Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
- Biophysical
Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran
| | - Daniel Aili
- Laboratory
of Molecular Materials, Division of Molecular Physics,
Department of Physics, Chemistry and Biology, and Division of Chemistry, Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Erik Martinsson
- Laboratory
of Molecular Materials, Division of Molecular Physics,
Department of Physics, Chemistry and Biology, and Division of Chemistry, Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Anna Svärd
- Laboratory
of Molecular Materials, Division of Molecular Physics,
Department of Physics, Chemistry and Biology, and Division of Chemistry, Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Marcus Bäck
- Laboratory
of Molecular Materials, Division of Molecular Physics,
Department of Physics, Chemistry and Biology, and Division of Chemistry, Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Mohammad R. Housaindokht
- Biophysical
Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 91775-1436 Mashhad, Iran
| | - K. Peter R. Nilsson
- Laboratory
of Molecular Materials, Division of Molecular Physics,
Department of Physics, Chemistry and Biology, and Division of Chemistry, Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| | - Robert Selegård
- Laboratory
of Molecular Materials, Division of Molecular Physics,
Department of Physics, Chemistry and Biology, and Division of Chemistry, Department
of Physics, Chemistry and Biology, Linköping
University, 581 83 Linköping, Sweden
| |
Collapse
|
17
|
Michno W, Kaya I, Nyström S, Guerard L, Nilsson KPR, Hammarström P, Blennow K, Zetterberg H, Hanrieder J. Multimodal Chemical Imaging of Amyloid Plaque Polymorphism Reveals Aβ Aggregation Dependent Anionic Lipid Accumulations and Metabolism. Anal Chem 2018; 90:8130-8138. [DOI: 10.1021/acs.analchem.8b01361] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Ibrahim Kaya
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Sofie Nyström
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | - Laurent Guerard
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- IMCF Biozentrum, University of Basel, Basel, Switzerland
| | | | - Per Hammarström
- IFM-Department of Chemistry, Linköping University, Linköping, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
18
|
de Freitas MS, Rezaei Araghi R, Brandenburg E, Leiterer J, Emmerling F, Folmert K, Gerling-Driessen UIM, Bardiaux B, Böttcher C, Pagel K, Diehl A, Berlepsch HV, Oschkinat H, Koksch B. The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide. J Struct Biol 2018; 203:263-272. [PMID: 29857134 DOI: 10.1016/j.jsb.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/15/2023]
Abstract
Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson's and Alzheimer's diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements.
Collapse
Affiliation(s)
- Mônica Santos de Freitas
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem, Av. Carlos Chagas Filho 373, Rio de Janeiro, Brazil
| | - Raheleh Rezaei Araghi
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Enrico Brandenburg
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Jork Leiterer
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Kristin Folmert
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Ulla I M Gerling-Driessen
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Benjamin Bardiaux
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, 75015 Paris, France
| | - Christoph Böttcher
- Freie Universität Berlin, Research Center for Electron Microscopy, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Kevin Pagel
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Anne Diehl
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Hans V Berlepsch
- Freie Universität Berlin, Research Center for Electron Microscopy, Fabeckstrasse 36a, 14195 Berlin, Germany
| | - Hartmut Oschkinat
- Leibniz-Institut für Molekulare Pharmakologie, Department NMR-Supported Structural Biology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany; Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany.
| | - Beate Koksch
- Freie Universität Berlin, Department of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany.
| |
Collapse
|
19
|
Jonson M, Nyström S, Sandberg A, Carlback M, Michno W, Hanrieder J, Starkenberg A, Nilsson KPR, Thor S, Hammarström P. Aggregated Aβ1-42 Is Selectively Toxic for Neurons, Whereas Glial Cells Produce Mature Fibrils with Low Toxicity in Drosophila. Cell Chem Biol 2018; 25:595-610.e5. [PMID: 29657084 DOI: 10.1016/j.chembiol.2018.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
The basis for selective vulnerability of certain cell types for misfolded proteins (MPs) in neurodegenerative diseases is largely unknown. This knowledge is crucial for understanding disease progression in relation to MPs spreading in the CNS. We assessed this issue in Drosophila by cell-specific expression of human Aβ1-42 associated with Alzheimer's disease. Expression of Aβ1-42 in various neurons resulted in concentration-dependent severe neurodegenerative phenotypes, and intraneuronal ring-tangle-like aggregates with immature fibril properties when analyzed by aggregate-specific ligands. Unexpectedly, expression of Aβ1-42 from a pan-glial driver produced a mild phenotype despite massive brain load of Aβ1-42 aggregates, even higher than in the strongest neuronal driver. Glial cells formed more mature fibrous aggregates, morphologically distinct from aggregates found in neurons, and was mainly extracellular. Our findings implicate that Aβ1-42 cytotoxicity is both cell and aggregate morphotype dependent.
Collapse
Affiliation(s)
- Maria Jonson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Alexander Sandberg
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Marcus Carlback
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Mölndal, Sweden; Department of Molecular Neuroscience, Institute of Neurology, University College London, London W1C3BG, UK
| | - Annika Starkenberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-581 85, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden
| | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linköping University, Linköping SE-581 85, Sweden
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping SE-581 83, Sweden.
| |
Collapse
|
20
|
Fändrich M, Nyström S, Nilsson KPR, Böckmann A, LeVine H, Hammarström P. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J Intern Med 2018; 283:218-237. [PMID: 29360284 PMCID: PMC5820168 DOI: 10.1111/joim.12732] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The accumulation of misfolded proteins (MPs), both unique and common, for different diseases is central for many chronic degenerative diseases. In certain patients, MP accumulation is systemic (e.g. TTR amyloid), and in others, this is localized to a specific cell type (e.g. Alzheimer's disease). In neurodegenerative diseases, NDs, it is noticeable that the accumulation of MP progressively spreads throughout the nervous system. Our main hypothesis of this article is that MPs are not only markers but also active carriers of pathogenicity. Here, we discuss studies from comprehensive molecular approaches aimed at understanding MP conformational variations (polymorphism) and their bearing on spreading of MPs, MP toxicity, as well as MP targeting in imaging and therapy. Neurodegenerative disease (ND) represents a major and growing societal challenge, with millions of people worldwide suffering from Alzheimer's or Parkinson's diseases alone. For all NDs, current treatment is palliative without addressing the primary cause and is not curative. Over recent years, particularly the shape-shifting properties of misfolded proteins and their spreading pathways have been intensively researched. The difficulty in addressing ND has prompted most major pharma companies to severely downsize their nervous system disorder research. Increased academic research is pivotal for filling this void and to translate basic research into tools for medical professionals. Recent discoveries of targeting drug design against MPs and improved model systems to study structure, pathology spreading and toxicity strongly encourage future studies along these lines to provide an opportunity for selective imaging, prognostic diagnosis and therapy.
Collapse
Affiliation(s)
- Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Sofie Nyström
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| | - K. Peter R. Nilsson
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367 Lyon, France
| | - Harry LeVine
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Per Hammarström
- Department of Physics, Chemistry and Biology, division of Chemistry, Linköping University, Linköping, Sweden
| |
Collapse
|
21
|
Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease. Proc Natl Acad Sci U S A 2017; 114:13018-13023. [PMID: 29158413 DOI: 10.1073/pnas.1713215114] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype.
Collapse
|
22
|
Nyström S, Bäck M, Nilsson KPR, Hammarström P. Imaging Amyloid Tissues Stained with Luminescent Conjugated Oligothiophenes by Hyperspectral Confocal Microscopy and Fluorescence Lifetime Imaging. J Vis Exp 2017. [PMID: 29155738 PMCID: PMC5755170 DOI: 10.3791/56279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proteins that deposit as amyloid in tissues throughout the body can be the cause or consequence of a large number of diseases. Among these we find neurodegenerative diseases such as Alzheimer's and Parkinson's disease afflicting primarily the central nervous system, and systemic amyloidosis where serum amyloid A, transthyretin and IgG light chains deposit as amyloid in liver, carpal tunnel, spleen, kidney, heart, and other peripheral tissues. Amyloid has been known and studied for more than a century, often using amyloid specific dyes such as Congo red and Thioflavin T (ThT) or Thioflavin (ThS). In this paper, we present heptamer-formyl thiophene acetic acid (hFTAA) as an example of recently developed complements to these dyes called luminescent conjugated oligothiophenes (LCOs). hFTAA is easy to use and is compatible with co-staining in immunofluorescence or with other cellular markers. Extensive research has proven that hFTAA detects a wider range of disease associated protein aggregates than conventional amyloid dyes. In addition, hFTAA can also be applied for optical assignment of distinct aggregated morphotypes to allow studies of amyloid fibril polymorphism. While the imaging methodology applied is optional, we here demonstrate hyperspectral imaging (HIS), laser scanning confocal microscopy and fluorescence lifetime imaging (FLIM). These examples show some of the imaging techniques where LCOs can be used as tools to gain more detailed knowledge of the formation and structural properties of amyloids. An important limitation to the technique is, as for all conventional optical microscopy techniques, the requirement for microscopic size of aggregates to allow detection. Furthermore, the aggregate should comprise a repetitive β-sheet structure to allow for hFTAA binding. Excessive fixation and/or epitope exposure that modify the aggregate structure or conformation can render poor hFTAA binding and hence pose limitations to accurate imaging.
Collapse
Affiliation(s)
| | - Marcus Bäck
- IFM-Department of Chemistry, Linköping University
| | | | | |
Collapse
|
23
|
Nyström S, Vahdat Shariat Panahi A, Nilsson KPR, Westermark P, Westermark GT, Hammarström P, Lundmark K. Seed-dependent templating of murine AA amyloidosis. Amyloid 2017; 24:140-141. [PMID: 28434369 DOI: 10.1080/13506129.2017.1290599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sofie Nyström
- a IFM-Chemistry, Linköping University , Linköping , Sweden
| | - Aida Vahdat Shariat Panahi
- b Department of Clinical Pathology and Clinical Genetics , Linköping University , Linköping , Sweden.,c Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | | | - Per Westermark
- d Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden , and
| | | | | | - Katarzyna Lundmark
- b Department of Clinical Pathology and Clinical Genetics , Linköping University , Linköping , Sweden
| |
Collapse
|