1
|
Leimkühler S. 2-Thiouridine formation in Escherichia coli: a critical review. J Bacteriol 2025; 207:e0042024. [PMID: 39660893 PMCID: PMC11784392 DOI: 10.1128/jb.00420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability, and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in prokaryotes and eukaryotes. The s2 group of s2U34 stabilizes anticodon structure, confers ribosome-binding ability to tRNA, and improves reading frame maintenance. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides of s2U34, such as the L-cysteine desulfurase IscS and the tRNA thiouridylase MnmA in Escherichia coli. Until recently, the mechanism of sulfur transfer in E. coli was considered to involve persulfide chemistry; however, a newly proposed mechanism suggests the involvement of a [4Fe-4S] cluster bound to MnmA. This review provides a critical appraisal of recent evidence for [4Fe-4S]-dependent or [4Fe-4S]-independent tRNA thiolation in 2-thiouridine formation.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Brandenburg, Germany
| |
Collapse
|
2
|
Gervason S, Sen S, Fontecave M, Golinelli-Pimpaneau B. [4Fe-4S]-dependent enzymes in non-redox tRNA thiolation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119807. [PMID: 39106920 DOI: 10.1016/j.bbamcr.2024.119807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024]
Abstract
Post-transcriptional modification of nucleosides in transfer RNAs (tRNAs) is an important process for accurate and efficient translation of the genetic information during protein synthesis in all domains of life. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A), within tRNAs. Whereas the mechanism that has prevailed for decades involved persulfide chemistry, more and more tRNA thiolation enzymes have now been shown to contain a [4Fe-4S] cluster. This review summarizes the information over the last ten years concerning the biochemical, spectroscopic and structural characterization of [4Fe-4S]-dependent non-redox tRNA thiolation enzymes.
Collapse
Affiliation(s)
- Sylvain Gervason
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Sambuddha Sen
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris cedex 05, France.
| |
Collapse
|
3
|
Eastman KAS, Jochimsen AS, Bandarian V. Intermolecular electron transfer in radical SAM enzymes as a new paradigm for reductive activation. J Biol Chem 2023; 299:105058. [PMID: 37460016 PMCID: PMC10470005 DOI: 10.1016/j.jbc.2023.105058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Radical S-adenosyl-L-methionine (rSAM) enzymes bind one or more Fe-S clusters and catalyze transformations that produce complex and structurally diverse natural products. One of the clusters, a 4Fe-4S cluster, binds and reductively cleaves SAM to generate the 5'-deoxyadenosyl radical, which initiates the catalytic cycle by H-atom transfer from the substrate. The role(s) of the additional auxiliary Fe-S clusters (ACs) remains largely enigmatic. The rSAM enzyme PapB catalyzes the formation of thioether cross-links between the β-carbon of an Asp and a Cys thiolate found in the PapA peptide. One of the two ACs in the protein binds to the substrate thiol where, upon formation of a thioether bond, one reducing equivalent is returned to the protein. However, for the next catalytic cycle to occur, the protein must undergo an electronic state isomerization, returning the electron to the SAM-binding cluster. Using a series of iron-sulfur cluster deletion mutants, our data support a model whereby the isomerization is an obligatorily intermolecular electron transfer event that can be mediated by redox active proteins or small molecules, likely via the second AC in PapB. Surprisingly, a mixture of FMN and NADPH is sufficient to support both the reductive and the isomerization steps. These findings lead to a new paradigm involving intermolecular electron transfer steps in the activation of rSAM enzymes that require multiple iron-sulfur clusters for turnover. The implications of these results for the biological activation of rSAM enzymes are discussed.
Collapse
Affiliation(s)
| | | | - Vahe Bandarian
- University of Utah, Department of Chemistry, Salt Lake City, Utah, USA.
| |
Collapse
|
4
|
Namkoong G, Suess DLM. Cluster-selective 57Fe labeling of a Twitch-domain-containing radical SAM enzyme. Chem Sci 2023; 14:7492-7499. [PMID: 37449070 PMCID: PMC10337720 DOI: 10.1039/d3sc02016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023] Open
Abstract
57Fe-specific techniques such as Mössbauer spectroscopy are invaluable tools in mechanistic studies of Fe-S proteins. However, they remain underutilized for proteins that bind multiple Fe-S clusters because such proteins are typically uniformly enriched with 57Fe. As a result, it can be unclear which spectroscopic responses derive from which cluster, and this in turn obscures the chemistry that takes place at each cluster. Herein, we report a facile method for cluster-selective 57Fe enrichment based on exchange between the protein's Fe-S clusters and exogenous Fe ions. Through a combination of inductively coupled plasma mass spectrometric and 57Fe Mössbauer spectroscopic analysis, we show that, of the two [Fe4S4] clusters in BtrN (a Twitch-domain-containing radical S-adenosyl-l-methionine (SAM) enzyme), the Fe ions in the SAM-binding cluster undergo faster exchange with exogenous Fe2+; the auxiliary cluster is essentially inert under the reaction conditions. Exploiting this rate difference allows for either of the two [Fe4S4] clusters to be selectively labeled: the SAM-binding cluster can be labeled by exchanging unlabeled BtrN with 57Fe2+, or the auxiliary cluster can be labeled by exchanging fully labeled BtrN with natural abundance Fe2+. The labeling selectivity likely originates primarily from differences in the clusters' accessibility to small molecules, with secondary contributions from the different redox properties of the clusters. This method for cluster-selective isotopic labeling could in principle be applied to any protein that binds multiple Fe-S clusters so long as the clusters undergo exchange with exogenous Fe ions at sufficiently different rates.
Collapse
Affiliation(s)
- Gil Namkoong
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
5
|
Lund T, Kulkova MY, Jersie-Christensen R, Atlung T. Essentiality of the Escherichia coli YgfZ Protein for the In Vivo Thiomethylation of Ribosomal Protein S12 by the RimO Enzyme. Int J Mol Sci 2023; 24:ijms24054728. [PMID: 36902159 PMCID: PMC10002905 DOI: 10.3390/ijms24054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Enzymes carrying Iron-Sulfur (Fe-S) clusters perform many important cellular functions and their biogenesis require complex protein machinery. In mitochondria, the IBA57 protein is essential and promotes assembly of [4Fe-4S] clusters and their insertion into acceptor proteins. YgfZ is the bacterial homologue of IBA57 but its precise role in Fe-S cluster metabolism is uncharacterized. YgfZ is needed for activity of the radical S-adenosyl methionine [4Fe-4S] cluster enzyme MiaB which thiomethylates some tRNAs. The growth of cells lacking YgfZ is compromised especially at low temperature. The RimO enzyme is homologous to MiaB and thiomethylates a conserved aspartic acid in ribosomal protein S12. To quantitate thiomethylation by RimO, we developed a bottom-up LC-MS2 analysis of total cell extracts. We show here that the in vivo activity of RimO is very low in the absence of YgfZ and independent of growth temperature. We discuss these results in relation to the hypotheses relating to the role of the auxiliary 4Fe-4S cluster in the Radical SAM enzymes that make Carbon-Sulfur bonds.
Collapse
|
6
|
Jansing M, Mielenbrink S, Rosenbach H, Metzger S, Span I. Maturation strategy influences expression levels and cofactor occupancy in Fe-S proteins. J Biol Inorg Chem 2023; 28:187-204. [PMID: 36527507 PMCID: PMC9981529 DOI: 10.1007/s00775-022-01972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
Iron-sulfur clusters are ubiquitous cofactors required for fundamental biological processes. Structural and spectroscopic analysis of Fe-S proteins is often limited by low cluster occupancy in recombinantly produced proteins. In this work, we report a systematic comparison of different maturation strategies for three well-established [4Fe-4S] proteins. Aconitase B, HMBPP reductase (IspH), and quinolinate synthase (NadA) were used as model proteins as they have previously been characterized. The protein production strategies include expression of the gene of interest in BL21(DE3) cells, maturation of the apo protein using chemical or semi-enzymatic reconstitution, co-expression with two different plasmids containing the iron-sulfur cluster (isc) or sulfur formation (suf) operon, a cell strain lacking IscR, the transcriptional regulator of the ISC machinery, and an engineered "SufFeScient" derivative of BL21(DE3). Our results show that co-expression of a Fe-S biogenesis pathway influences the protein yield and the cluster content of the proteins. The presence of the Fe-S cluster is contributing to correct folding and structural stability of the proteins. In vivo maturation reduces the formation of Fe-S aggregates, which occur frequently when performing chemical reconstitution. Furthermore, we show that the in vivo strategies can be extended to the radical SAM protein ThnB, which was previously only maturated by chemical reconstitution. Our results shed light on the differences of in vitro and in vivo Fe-S cluster maturation and points out the pitfalls of chemical reconstitution.
Collapse
Affiliation(s)
- Melissa Jansing
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Steffen Mielenbrink
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sabine Metzger
- MS-Platform Biocenter, Cluster of Excellence on Plant Science (CEPLAS), University of Cologne, Zülpicher Strasse 47B, 50674 Cologne, Germany
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany. .,Bioanorganische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058, Erlangen, Germany.
| |
Collapse
|
7
|
Chatterjee S, Hausinger RP. Sulfur incorporation into biomolecules: recent advances. Crit Rev Biochem Mol Biol 2022; 57:461-476. [PMID: 36403141 PMCID: PMC10192010 DOI: 10.1080/10409238.2022.2141678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022]
Abstract
Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Robert P. Hausinger
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Monfort B, Want K, Gervason S, D’Autréaux B. Recent Advances in the Elucidation of Frataxin Biochemical Function Open Novel Perspectives for the Treatment of Friedreich’s Ataxia. Front Neurosci 2022; 16:838335. [PMID: 35310092 PMCID: PMC8924461 DOI: 10.3389/fnins.2022.838335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
Friedreich’s ataxia (FRDA) is the most prevalent autosomic recessive ataxia and is associated with a severe cardiac hypertrophy and less frequently diabetes. It is caused by mutations in the gene encoding frataxin (FXN), a small mitochondrial protein. The primary consequence is a defective expression of FXN, with basal protein levels decreased by 70–98%, which foremost affects the cerebellum, dorsal root ganglia, heart and liver. FXN is a mitochondrial protein involved in iron metabolism but its exact function has remained elusive and highly debated since its discovery. At the cellular level, FRDA is characterized by a general deficit in the biosynthesis of iron-sulfur (Fe-S) clusters and heme, iron accumulation and deposition in mitochondria, and sensitivity to oxidative stress. Based on these phenotypes and the proposed ability of FXN to bind iron, a role as an iron storage protein providing iron for Fe-S cluster and heme biosynthesis was initially proposed. However, this model was challenged by several other studies and it is now widely accepted that FXN functions primarily in Fe-S cluster biosynthesis, with iron accumulation, heme deficiency and oxidative stress sensitivity appearing later on as secondary defects. Nonetheless, the biochemical function of FXN in Fe-S cluster biosynthesis is still debated. Several roles have been proposed for FXN: iron chaperone, gate-keeper of detrimental Fe-S cluster biosynthesis, sulfide production stimulator and sulfur transfer accelerator. A picture is now emerging which points toward a unique function of FXN as an accelerator of a key step of sulfur transfer between two components of the Fe-S cluster biosynthetic complex. These findings should foster the development of new strategies for the treatment of FRDA. We will review here the latest discoveries on the biochemical function of frataxin and the implication for a potential therapeutic treatment of FRDA.
Collapse
|
9
|
Prediction of the Iron–Sulfur Binding Sites in Proteins Using the Highly Accurate Three-Dimensional Models Calculated by AlphaFold and RoseTTAFold. INORGANICS 2021. [DOI: 10.3390/inorganics10010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AlphaFold and RoseTTAFold are deep learning-based approaches that predict the structure of proteins from their amino acid sequences. Remarkable success has recently been achieved in the prediction accuracy of not only the fold of the target protein but also the position of its amino acid side chains. In this article, I question the accuracy of these methods to predict iron–sulfur binding sites. I analyze three-dimensional models calculated by AlphaFold and RoseTTAFold of Fe–S–dependent enzymes, for which no structure of a homologous protein has been solved experimentally. In all cases, the amino acids that presumably coordinate the cluster were gathered together and facing each other, which led to a quite accurate model of the Fe–S cluster binding site. Yet, cysteine candidates were often involved in intramolecular disulfide bonds, and the number and identity of the protein amino acids that should ligate the cluster were not always clear. The experimental structure determination of the protein with its Fe–S cluster and in complex with substrate/inhibitor/product is still needed to unambiguously visualize the coordination state of the cluster and understand the conformational changes occurring during catalysis.
Collapse
|
10
|
Lewis JK, Jochimsen AS, Lefave SJ, Young AP, Kincannon WM, Roberts AG, Kieber-Emmons MT, Bandarian V. New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products. Biochemistry 2021; 60:3347-3361. [PMID: 34730336 DOI: 10.1021/acs.biochem.1c00469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribosomally synthesized post-translationally modified peptides (RiPPs) are ubiquitous and represent a structurally diverse class of natural products. The ribosomally encoded precursor polypeptides are often extensively modified post-translationally by enzymes that are encoded by coclustered genes. Radical S-adenosyl-l-methionine (SAM) enzymes catalyze numerous chemically challenging transformations. In RiPP biosynthetic pathways, these transformations include the formation of C-H, C-C, C-S, and C-O linkages. In this paper, we show that the Geobacter lovleyi sbtM gene encodes a radical SAM protein, SbtM, which catalyzes the cyclization of a Cys/SeCys residue in a minimal peptide substrate. Biochemical studies of this transformation support a mechanism involving H-atom abstraction at the C-3 of the substrate Cys to initiate the chemistry. Several possible cyclization products were considered. The collective biochemical, spectroscopic, mass spectral, and computational observations point to a thiooxazole as the product of the SbtM-catalyzed modification. To our knowledge, this is the first example of a radical SAM enzyme that catalyzes a transformation involving a SeCys-containing peptide and represents a new paradigm for formation of oxazole-containing RiPP natural products.
Collapse
Affiliation(s)
- Julia K Lewis
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew S Jochimsen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Sarah J Lefave
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anthony P Young
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - William M Kincannon
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew T Kieber-Emmons
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
11
|
Biochemical Approaches to Probe the Role of the Auxiliary Iron-Sulfur Cluster of Lipoyl Synthase from Mycobacterium Tuberculosis. Methods Mol Biol 2021. [PMID: 34292556 DOI: 10.1007/978-1-0716-1605-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Lipoic acid is an essential sulfur-containing cofactor used by several multienzyme complexes involved in energy metabolism and the breakdown of certain amino acids. It is composed of n-octanoic acid with sulfur atoms appended at C6 and C8. Lipoic acid is biosynthesized de novo in its cofactor form, in which it is covalently bound in an amide linkage to a target lysyl residue on a lipoyl carrier protein (LCP). The n-octanoyl moiety of the cofactor is derived from type 2 fatty acid biosynthesis and is transferred to an LCP to afford an octanoyllysyl amino acid. Next, lipoyl synthase (LipA in bacteria) catalyzes the attachment of the two sulfur atoms to afford the intact cofactor. LipA is a radical S-adenosylmethionine (SAM) enzyme that contains two [4Fe-4S] clusters. One [4Fe-4S] cluster is used to facilitate a reductive cleavage of SAM to render the highly oxidizing 5'-deoxyadenosyl 5'-radical needed to abstract C6 and C8 hydrogen atoms to allow for sulfur attachment. By contrast, the second cluster is the sulfur source, necessitating its destruction during turnover. In Escherichia coli, this auxiliary cluster can be restored after each turnover by NfuA or IscU, which are two iron-sulfur cluster carrier proteins that are implicated in iron-sulfur cluster biogenesis. In this chapter, we describe methods for purifying and characterizing LipA and NfuA from Mycobacterium tuberculosis, a human pathogen for which endogenously synthesized lipoic acid is essential. These studies provide the foundation for assessing lipoic acid biosynthesis as a potential target for the design of novel antituberculosis agents.
Collapse
|
12
|
Zhou J, Pecqueur L, Aučynaitė A, Fuchs J, Rutkienė R, Vaitekūnas J, Meškys R, Boll M, Fontecave M, Urbonavičius J, Golinelli‐Pimpaneau B. Structural Evidence for a [4Fe‐5S] Intermediate in the Non‐Redox Desulfuration of Thiouracil. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Jonathan Fuchs
- Faculty of Biology—Microbiology University of Freiburg 79104 Freiburg Germany
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
| | - Matthias Boll
- Faculty of Biology—Microbiology University of Freiburg 79104 Freiburg Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology Institute of Biochemistry Life Sciences Center Vilnius University Vilnius Lithuania
- Department of Chemistry and Bioengineering Vilnius Gediminas Technical University Vilnius Lithuania
| | - Béatrice Golinelli‐Pimpaneau
- Laboratoire de Chimie des Processus Biologiques UMR 8229 CNRS Collège de France Sorbonne Université Paris CEDEX 05 France
| |
Collapse
|
13
|
Kang W, Rettberg LA, Stiebritz MT, Jasniewski AJ, Tanifuji K, Lee CC, Ribbe MW, Hu Y. X‐Ray Crystallographic Analysis of NifB with a Full Complement of Clusters: Structural Insights into the Radical SAM‐Dependent Carbide Insertion During Nitrogenase Cofactor Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wonchull Kang
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Lee A. Rettberg
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Martin T. Stiebritz
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Andrew J. Jasniewski
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Kazuki Tanifuji
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Chi Chung Lee
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| | - Markus W. Ribbe
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
- Department of Chemistry University of California, Irvine Irvine CA 92697-2025 USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry University of California, Irvine Irvine CA 92697-3900 USA
| |
Collapse
|
14
|
Kang W, Rettberg LA, Stiebritz MT, Jasniewski AJ, Tanifuji K, Lee CC, Ribbe MW, Hu Y. X-Ray Crystallographic Analysis of NifB with a Full Complement of Clusters: Structural Insights into the Radical SAM-Dependent Carbide Insertion During Nitrogenase Cofactor Assembly. Angew Chem Int Ed Engl 2020; 60:2364-2370. [PMID: 33035363 DOI: 10.1002/anie.202011367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/27/2020] [Indexed: 12/13/2022]
Abstract
NifB is an essential radical SAM enzyme required for the assembly of an 8Fe core of the nitrogenase cofactor. Herein, we report the X-ray crystal structures of Methanobacterium thermoautotrophicum NifB without (apo MtNifB) and with (holo MtNifB) a full complement of three [Fe4 S4 ] clusters. Both apo and holo MtNifB contain a partial TIM barrel core, but unlike apo MtNifB, holo MtNifB is fully assembled and competent in cofactor biosynthesis. The radical SAM (RS)-cluster is coordinated by three Cys, and the adjacent K1- and K2-clusters, representing the precursor to an 8Fe cofactor core, are each coordinated by one His and two Cys. Prediction of substrate channels, combined with in silico docking of SAM in holo MtNifB, suggests the binding of SAM between the RS- and K2-clusters and putative paths for entry of SAM and exit of products of SAM cleavage, thereby providing important mechanistic insights into the radical SAM-dependent carbide insertion concomitant with cofactor core formation.
Collapse
Affiliation(s)
- Wonchull Kang
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Lee A Rettberg
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Martin T Stiebritz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Andrew J Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Kazuki Tanifuji
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Chi Chung Lee
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA.,Department of Chemistry, University of California, Irvine, Irvine, CA, 92697-2025, USA
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA
| |
Collapse
|
15
|
Zhou J, Pecqueur L, Aučynaitė A, Fuchs J, Rutkienė R, Vaitekūnas J, Meškys R, Boll M, Fontecave M, Urbonavičius J, Golinelli-Pimpaneau B. Structural Evidence for a [4Fe-5S] Intermediate in the Non-Redox Desulfuration of Thiouracil. Angew Chem Int Ed Engl 2020; 60:424-431. [PMID: 32929873 DOI: 10.1002/anie.202011211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Indexed: 11/10/2022]
Abstract
We recently discovered a [Fe-S]-containing protein with in vivo thiouracil desulfidase activity, dubbed TudS. The crystal structure of TudS refined at 1.5 Å resolution is reported; it harbors a [4Fe-4S] cluster bound by three cysteines only. Incubation of TudS crystals with 4-thiouracil trapped the cluster with a hydrosulfide ligand bound to the fourth non-protein-bonded iron, as established by the sulfur anomalous signal. This indicates that a [4Fe-5S] state of the cluster is a catalytic intermediate in the desulfuration reaction. Structural data and site-directed mutagenesis indicate that a water molecule is located next to the hydrosulfide ligand and to two catalytically important residues, Ser101 and Glu45. This information, together with modeling studies allow us to propose a mechanism for the unprecedented non-redox enzymatic desulfuration of thiouracil, in which a [4Fe-4S] cluster binds and activates the sulfur atom of the substrate.
Collapse
Affiliation(s)
- Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Agota Aučynaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jonathan Fuchs
- Faculty of Biology-Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Justas Vaitekūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Matthias Boll
- Faculty of Biology-Microbiology, University of Freiburg, 79104, Freiburg, Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| | - Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Sorbonne Université, Paris CEDEX 05, France
| |
Collapse
|
16
|
Trindade IB, Invernici M, Cantini F, Louro RO, Piccioli M. PRE-driven protein NMR structures: an alternative approach in highly paramagnetic systems. FEBS J 2020; 288:3010-3023. [PMID: 33124176 DOI: 10.1111/febs.15615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/10/2020] [Accepted: 10/28/2020] [Indexed: 01/29/2023]
Abstract
Metalloproteins play key roles across biology, and knowledge of their structure is essential to understand their physiological role. For those metalloproteins containing paramagnetic states, the enhanced relaxation caused by the unpaired electrons often makes signal detection unfeasible near the metal center, precluding adequate structural characterization right where it is more biochemically relevant. Here, we report a protein structure determination by NMR where two different sets of restraints, one containing Nuclear Overhauser Enhancements (NOEs) and another containing Paramagnetic Relaxation Enhancements (PREs), are used separately and eventually together. The protein PioC from Rhodopseudomonas palustris TIE-1 is a High Potential Iron-Sulfur Protein (HiPIP) where the [4Fe-4S] cluster is paramagnetic in both oxidation states at room temperature providing the source of PREs used as alternative distance restraints. Comparison of the family of structures obtained using NOEs only, PREs only, and the combination of both reveals that the pairwise root-mean-square deviation (RMSD) between them is similar and comparable with the precision within each family. This demonstrates that, under favorable conditions in terms of protein size and paramagnetic effects, PREs can efficiently complement and eventually replace NOEs for the structural characterization of small paramagnetic metalloproteins and de novo-designed metalloproteins by NMR. DATABASES: The 20 conformers with the lowest target function constituting the final family obtained using the full set of NMR restraints were deposited to the Protein Data Bank (PDB ID: 6XYV). The 20 conformers with the lowest target function obtained using NOEs only (PDB ID: 7A58) and PREs only (PDB ID: 7A4L) were also deposited to the Protein Data Bank. The chemical shift assignments were deposited to the BMRB (code 34487).
Collapse
Affiliation(s)
- Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Michele Invernici
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Bimai O, Arragain S, Golinelli-Pimpaneau B. Structure-based mechanistic insights into catalysis by tRNA thiolation enzymes. Curr Opin Struct Biol 2020; 65:69-78. [PMID: 32652441 DOI: 10.1016/j.sbi.2020.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
In all domains of life, ribonucleic acid (RNA) maturation includes post-transcriptional chemical modifications of nucleosides. Many sulfur-containing nucleosides have been identified in transfer RNAs (tRNAs), such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), 2-methylthioadenosine (ms2A). These modifications are essential for accurate and efficient translation of the genetic code from messenger RNA (mRNA) for protein synthesis. This review summarizes the recent discoveries concerning the mechanistic and structural characterization of tRNA thiolation enzymes that catalyze the non-redox substitution of oxygen for sulfur in nucleosides. Two mechanisms have been described. One involves persulfide formation on catalytic cysteines, while the other uses a [4Fe-4S] cluster, chelated by three conserved cysteines only, as a sulfur carrier.
Collapse
Affiliation(s)
- Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris Sciences et Lettres, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| | - Simon Arragain
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris Sciences et Lettres, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris Sciences et Lettres, 11 Place Marcelin Berthelot, 75231 Paris cedex 05, France.
| |
Collapse
|
18
|
The [4Fe-4S] cluster of sulfurtransferase TtuA desulfurizes TtuB during tRNA modification in Thermus thermophilus. Commun Biol 2020; 3:168. [PMID: 32265486 PMCID: PMC7138817 DOI: 10.1038/s42003-020-0895-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
TtuA and TtuB are the sulfurtransferase and sulfur donor proteins, respectively, for biosynthesis of 2-thioribothymidine (s2T) at position 54 of transfer RNA (tRNA), which is responsible for adaptation to high temperature environments in Thermus thermophilus. The enzymatic activity of TtuA requires an iron-sulfur (Fe-S) cluster, by which a sulfur atom supplied by TtuB is transferred to the tRNA substrate. Here, we demonstrate that the Fe-S cluster directly receives sulfur from TtuB through its inherent coordination ability. TtuB forms a [4Fe-4S]-TtuB intermediate, but that sulfur is not immediately released from TtuB. Further desulfurization assays and mutation studies demonstrated that the release of sulfur from the thiocarboxylated C-terminus of TtuB is dependent on adenylation of the substrate tRNA, and the essential residue for TtuB desulfurization was identified. Based on these findings, the molecular mechanism of sulfur transfer from TtuB to Fe-S cluster is proposed. Chen et al. demonstrate how the Fe-S cluster receives sulfur from TtuB, a ubiquitin-like sulfur donor during tRNA modification. They find that the release of sulfur from the thiocarboxylated C-terminus of TtuB depends on the adenylation of the substrate tRNA. This study provides molecular insights into the sulfur modification of tRNA.
Collapse
|
19
|
Zhang B, Arcinas AJ, Radle MI, Silakov A, Booker SJ, Krebs C. First Step in Catalysis of the Radical S-Adenosylmethionine Methylthiotransferase MiaB Yields an Intermediate with a [3Fe-4S] 0-Like Auxiliary Cluster. J Am Chem Soc 2020; 142:1911-1924. [PMID: 31899624 PMCID: PMC7008301 DOI: 10.1021/jacs.9b11093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The enzyme MiaB catalyzes the attachment of a methylthio (-SCH3) group at the C2 position of N6-(isopentenyl)adenosine (i6A) in the final step of the biosynthesis of the hypermodified tRNA nucleotide 2-methythio-N6-(isopentenyl)adenosine (ms2i6A). MiaB belongs to the expanding subgroup of enzymes of the radical S-adenosylmethionine (SAM) superfamily that harbor one or more auxiliary [4Fe-4S] clusters in addition to the [4Fe-4S] cluster that all family members require for the reductive cleavage of SAM to afford the common 5'-deoxyadenosyl 5'-radical (5'-dA•) intermediate. While the role of the radical SAM cluster in generating the 5'-dA• is well understood, the detailed role of the auxiliary cluster, which is essential for MiaB catalysis, remains unclear. It has been proposed that the auxiliary cluster may serve as a coordination site for exogenously derived sulfur destined for attachment to the substrate or that the cluster itself provides the sulfur atom and is sacrificed during turnover. In this work, we report spectroscopic and biochemical evidence that the auxiliary [4Fe-4S]2+ cluster in Bacteroides thetaiotaomicron (Bt) MiaB is converted to a [3Fe-4S]0-like cluster during the methylation step of catalysis. Mössbauer characterization of the MiaB [3Fe-4S]0-like cluster revealed unusual spectroscopic properties compared to those of other well-characterized cuboidal [3Fe-4S]0 clusters. Specifically, the Fe sites of the mixed-valent moiety do not have identical Mössbauer parameters. Our results support a mechanism where the auxiliary [4Fe-4S] cluster is the direct sulfur source during catalysis.
Collapse
|
20
|
Pu T, Mei Z, Zhang W, Liang WJ, Zhou X, Liang J, Deng Z, Wang Z. An in vitro DNA phosphorothioate modification reaction. Mol Microbiol 2019; 113:452-463. [PMID: 31749226 DOI: 10.1111/mmi.14430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/10/2019] [Accepted: 11/17/2019] [Indexed: 12/25/2022]
Abstract
Phosphorothioation (PT) involves the replacement of a nonbridging phosphate oxygen on the DNA backbone with sulfur. In bacteria, the procedure is both sequence- and stereo-specific. We reconstituted the PT reaction using purified DndCDE from Salmonella enterica and IscS from Escherichia coli. We determined that the in vitro process of PT was oxygen sensitive. Only one strand on a double-stranded (ds) DNA substrate was modified in the reaction. The modification was dominant between G and A in the GAAC/GTTC conserved sequence. The modification between G and T required the presence of PT between G and A on the opposite strand. Cysteine, S-adenosyl methionine (SAM) and the formation of an iron-sulfur cluster in DndCDE (DndCDE-FeS) were essential for the process. Results from SAM cleavage reactions support the supposition that PT is a radical SAM reaction. Adenosine triphosphate (ATP) promoted the reaction but was not essential. The data and conclusions presented suggest that the PT reaction in bacteria involves three steps. The first step is the binding of DndCDE-FeS to DNA and searching for the modification sequence, possibly with the help of ATP. Cysteine locks DndCDE-FeS to the modification site with an appropriate protein conformation. SAM triggers the radical SAM reaction to complete the oxygen-sulfur swapping.
Collapse
Affiliation(s)
- Tianning Pu
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhiling Mei
- Shanghai Thinkgene Biotech CO., LTD, Shanghai, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei-Jun Liang
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, UK
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Wang Z, Ma T, Huang Y, Wang J, Chen Y, Kistler HC, Ma Z, Yin Y. A fungal ABC transporter FgAtm1 regulates iron homeostasis via the transcription factor cascade FgAreA-HapX. PLoS Pathog 2019; 15:e1007791. [PMID: 31545842 PMCID: PMC6788720 DOI: 10.1371/journal.ppat.1007791] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Iron homeostasis is important for growth, reproduction and other metabolic processes in all eukaryotes. However, the functions of ATP-binding cassette (ABC) transporters in iron homeostasis are largely unknown. Here, we found that one ABC transporter (named FgAtm1) is involved in regulating iron homeostasis, by screening sensitivity to iron stress for 60 ABC transporter mutants of Fusarium graminearum, a devastating fungal pathogen of small grain cereal crops worldwide. The lack of FgAtm1 reduces the activity of cytosolic Fe-S proteins nitrite reductase and xanthine dehydrogenase, which causes high expression of FgHapX via activating transcription factor FgAreA. FgHapX represses transcription of genes for iron-consuming proteins directly but activates genes for iron acquisition proteins by suppressing another iron regulator FgSreA. In addition, the transcriptional activity of FgHapX is regulated by the monothiol glutaredoxin FgGrx4. Furthermore, the phosphorylation of FgHapX, mediated by the Ser/Thr kinase FgYak1, is required for its functions in iron homeostasis. Taken together, this study uncovers a novel regulatory mechanism of iron homeostasis mediated by an ABC transporter in an important pathogenic fungus. Essential element iron plays important roles in many cellular processes in all organisms. The function of an ATP-binding cassette (ABC) transporter Atm1 in iron homeostasis has been characterized in Saccharomyces cerevisiae. Our study found that FgAtm1 regulates iron homeostasis via the transcription factor cascade FgAreA-HapX in F. graminearum and the function of FgHapX is dependent on its interaction with FgGrx4 and phosphorylation by the Ser/Thr kinase FgYak1. This study reveals a novel regulatory mechanism of iron homeostasis in an important plant pathogenic fungus, and advances our understanding in iron homeostasis and functions of ABC transporters in eukaryotes.
Collapse
Affiliation(s)
- Zhihui Wang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Tianling Ma
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yunyan Huang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - H. Corby Kistler
- United States Department of Agriculture, Agricultural Research Service, St. Paul, Minnesota, United States of America
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- * E-mail: (ZM); (YY)
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Institute of Biotechnology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
- * E-mail: (ZM); (YY)
| |
Collapse
|
22
|
Barrio M, Fourmond V. Redox (In)activations of Metalloenzymes: A Protein Film Voltammetry Approach. ChemElectroChem 2019. [DOI: 10.1002/celc.201901028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Melisa Barrio
- CNRSAix-Marseille Université, BIP UMR 7281 31 chemin J. Aiguier F-13402 Marseille cedex 20 France
| | - Vincent Fourmond
- CNRSAix-Marseille Université, BIP UMR 7281 31 chemin J. Aiguier F-13402 Marseille cedex 20 France
| |
Collapse
|
23
|
Camponeschi F, Muzzioli R, Ciofi-Baffoni S, Piccioli M, Banci L. Paramagnetic 1H NMR Spectroscopy to Investigate the Catalytic Mechanism of Radical S-Adenosylmethionine Enzymes. J Mol Biol 2019; 431:4514-4522. [PMID: 31493409 DOI: 10.1016/j.jmb.2019.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
Iron-sulfur clusters in radical S-adenosylmethionine (SAM) enzymes catalyze an astonishing array of complex and chemically challenging reactions across all domains of life. Here we showed that 1H NMR spectroscopy experiments tailored to reveal hyperfine-shifted signals of metal-ligands is a powerful tool to monitor the binding of SAM and of the octanoyl-peptide substrate to the two [4Fe-4S] clusters of human lipoyl synthase. The paramagnetically shifted signals of the iron-ligands were specifically assigned to each of the two bound [4Fe-4S] clusters, and then used to examine the interaction of SAM and substrate molecules with each of the two [4Fe-4S] clusters of human lipoyl synthase. 1H NMR spectroscopy can therefore contribute to the description of the catalityc mechanism of radical SAM enzymes.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Riccardo Muzzioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
24
|
Kincannon WM, Bruender NA, Bandarian V. A Radical Clock Probe Uncouples H Atom Abstraction from Thioether Cross-Link Formation by the Radical S-Adenosyl-l-methionine Enzyme SkfB. Biochemistry 2018; 57:4816-4823. [PMID: 29965747 PMCID: PMC6094349 DOI: 10.1021/acs.biochem.8b00537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Sporulation
killing factor (SKF) is a ribosomally synthesized and
post-translationally modified peptide (RiPP) produced by Bacillus. SKF contains a thioether cross-link between the α-carbon
at position 40 and the thiol of Cys32, introduced by a member of the
radical S-adenosyl-l-methionine (SAM) superfamily,
SkfB. Radical SAM enzymes employ a 4Fe–4S cluster to bind and
reductively cleave SAM to generate a 5′-deoxyadenosyl radical.
SkfB utilizes this radical intermediate to abstract the α-H
atom at Met40 to initiate cross-linking. In addition to the cluster
that binds SAM, SkfB also has an auxiliary cluster, the function of
which is not known. We demonstrate that a substrate analogue with
a cyclopropylglycine (CPG) moiety replacing the wild-type Met40 side
chain forgoes thioether cross-linking for an alternative radical ring
opening of the CPG side chain. The ring opening reaction also takes
place with a catalytically inactive SkfB variant in which the auxiliary
Fe–S cluster is absent. Therefore, the CPG-containing peptide
uncouples H atom abstraction from thioether bond formation, limiting
the role of the auxiliary cluster to promoting thioether cross-link
formation. CPG proves to be a valuable tool for uncoupling H atom
abstraction from peptide modification in RiPP maturases and demonstrates
potential to leverage RS enzyme reactivity to create noncanonical
amino acids.
Collapse
Affiliation(s)
- William M Kincannon
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Nathan A Bruender
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Vahe Bandarian
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
25
|
Grell TJ, Young AP, Drennan CL, Bandarian V. Biochemical and Structural Characterization of a Schiff Base in the Radical-Mediated Biosynthesis of 4-Demethylwyosine by TYW1. J Am Chem Soc 2018; 140:6842-6852. [PMID: 29792696 PMCID: PMC5994729 DOI: 10.1021/jacs.8b01493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Indexed: 12/03/2022]
Abstract
TYW1 is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the condensation of pyruvate and N-methylguanosine to form the posttranscriptional modification, 4-demethylwyosine, in situ on transfer RNA (tRNA). Two mechanisms have been proposed for this transformation, with one of the possible mechanisms invoking a Schiff base intermediate formed between a conserved lysine residue and pyruvate. Utilizing a combination of mass spectrometry and X-ray crystallography, we have obtained evidence to support the formation of a Schiff base lysine adduct in TYW1. When 13C labeled pyruvate is used, the mass shift of the adduct matches that of the labeled pyruvate, indicating that pyruvate is the source of the adduct. Furthermore, a crystal structure of TYW1 provides visualization of the Schiff base lysine-pyruvate adduct, which is positioned directly adjacent to the auxiliary [4Fe-4S] cluster. The adduct coordinates the unique iron of the auxiliary cluster through the lysine nitrogen and a carboxylate oxygen, reminiscent of how the radical SAM [4Fe-4S] cluster is coordinated by SAM. The structure provides insight into the binding site for tRNA and further suggests how radical SAM chemistry can be combined with Schiff base chemistry for RNA modification.
Collapse
Affiliation(s)
- Tsehai
A. J. Grell
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony P. Young
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Department of Biology, and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vahe Bandarian
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Boss L, Oehme R, Billig S, Birkemeyer C, Layer G. The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during hemed1biosynthesis. FEBS J 2017; 284:4314-4327. [DOI: 10.1111/febs.14307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Linda Boss
- Institute of Biochemistry; Leipzig University; Germany
| | - Ramona Oehme
- Institute of Analytical Chemistry; Leipzig University; Germany
| | - Susan Billig
- Institute of Analytical Chemistry; Leipzig University; Germany
| | | | - Gunhild Layer
- Institute of Biochemistry; Leipzig University; Germany
| |
Collapse
|
27
|
Rosenzweig AC. A biochemical sulfur delivery service. Science 2017; 358:307-308. [DOI: 10.1126/science.aap9299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A steady supply of iron-sulfur clusters sustains biosynthesis of the lipoyl cofactor
Collapse
Affiliation(s)
- Amy C. Rosenzweig
- Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
28
|
Davis KM, Boal AK. Mechanism-Based Strategies for Structural Characterization of Radical SAM Reaction Intermediates. Methods Enzymol 2017; 595:331-359. [PMID: 28882206 DOI: 10.1016/bs.mie.2017.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
X-ray crystallographic characterization of enzymes at different stages in their reaction cycles can provide unique insight into the reaction pathway, the number and type of intermediates formed, and their structural context. The known mechanistic diversity in the radical S-adenosylmethionine (SAM) superfamily of enzymes makes it an appealing target for such studies as more than 100,000 sequences have been identified to date with wide-ranging reactivities that share a pattern of complex radical-mediated chemistry. Here, we review selected examples of radical SAM enzyme crystal structures representative of reactant, product, and intermediate state complexes with a particular emphasis on the strategies employed to capture these states. Broader application of structural characterization techniques to analyze mechanism and substrate specificity is certain to play an important role as more members of this family become tractable for biochemical study.
Collapse
Affiliation(s)
- Katherine M Davis
- Princeton University, Princeton, NJ, United States; The Pennsylvania State University, University Park, PA, United States
| | - Amie K Boal
- The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|