1
|
Tran TQN, Park SA, Rijal S, Jung W, Han SK. Potential anti-nociceptive effect of beta-ionone on orofacial pain through GABA and glycine mimetic action on substantia gelatinosa neurons of trigeminal subnucleus caudalis in mice. Neuroscience 2025; 573:85-95. [PMID: 40107602 DOI: 10.1016/j.neuroscience.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) plays a crucial role in integrating and regulating nociceptive inputs related to orofacial region. Although beta-ionone has been identified for its biomedical properties, its nociceptive effect was not fully studied. This study employed a whole-cell patch-clamp technique in juvenile mice to investigate the direct membrane effects of beta-ionone on SG neurons of the Vc. In a high chloride pipette solution, beta-ionone induced consistent inward currents which were unaffected in the presence of tetrodotoxin, CNQX and AP5 but declined in the presence of strychnine and picrotoxin. Beta-ionone also demonstrated the ability to increase the effect of glycine and GABA and decrease the spontaneous neuronal activities of SG neurons of the Vc. Electrophysiological findings suggest the antinociceptive effect of beta-ionone via GABA-, glycine-mimetic action on SG neurons. Formalin-induced orofacial pain model in mice was subsequently performed, which showed beta-ionone's significant dose-dependent antinociceptive effects during both phase 1 and 2. In summary, our results suggest the possible anti-nociceptive effect of beta-ionone through glycine and GABA mimetic actions on SG neuron of the Vc in mice, indicating its potential as a target for modulating orofacial pain.
Collapse
Affiliation(s)
- Thi Quynh Nhu Tran
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea; Faculty of Odonto - Stomatology, University of Medicine and Pharmacy, Hue University, Hue, Viet Nam
| | - Seon Ah Park
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea
| | - Santosh Rijal
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea; Division of Physiology, Department of Oral Biology, Yonsei University, College of Dentistry, Seoul, Republic of Korea
| | - Won Jung
- Department of Oral Medicine, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry & Institute of Oral Bioscience, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
2
|
Alvares FBV, Ferreira LC, Silva JO, Lima AMS, Feitosa TF, Vilela VLR. Acaricidal efficacy of the monoterpene linalool against the cattle tick Rhipicephalus microplus and its synergistic potential with cypermethrin. EXPERIMENTAL & APPLIED ACAROLOGY 2025; 94:45. [PMID: 40097703 DOI: 10.1007/s10493-025-01011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025]
Abstract
This study evaluated the acaricidal activity of the natural terpene linalool against Rhipicephalus microplus larvae. Four tick populations from different cattle farms with a history of acaricide resistance were selected. The Larval Packet Test (LPT) was used to determine the lethal concentrations (LC50 and LC90) of linalool, cypermethrin, and the combination of LC50 linalool and cypermethrin. Linalool was tested at concentrations ranging from 0.0975 to 50%, while cypermethrin was tested between 0.01% and 3%. The results demonstrated that linalool alone had LC50 values varying across the populations, ranging from 0.5 to 4.33%, and LC90 values ranging from 2.57 to 7.61%. When linalool was combined with cypermethrin, the required concentrations of cypermethrin to achieve LC50 and LC90 were significantly reduced (p ≤ 0.05). This reduction in cypermethrin dosage was observed across all tested populations, indicating that linalool can enhance the acaricidal efficacy of cypermethrin. Integrating linalool with cypermethrin could therefore be valuable for tick management strategies, particularly in reducing reliance on high doses of these acaricides.
Collapse
Affiliation(s)
- Felipe Boniedj Ventura Alvares
- Programa de Pós-Graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande (UFCG), Patos, Paraíba, Brazil
| | - Larissa Claudino Ferreira
- Programa de Pós-Graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande (UFCG), Patos, Paraíba, Brazil
| | - Jordania Oliveira Silva
- Departamento de Medicina Veterinária, Instituto Federal da Paraíba (IFPB), Sousa, Paraíba, Brazil
| | - Ana Maria Santos Lima
- Departamento de Medicina Veterinária, Instituto Federal da Paraíba (IFPB), Sousa, Paraíba, Brazil
| | - Thais Ferreira Feitosa
- Departamento de Medicina Veterinária, Instituto Federal da Paraíba (IFPB), Sousa, Paraíba, Brazil
| | - Vinícius Longo R Vilela
- Programa de Pós-Graduação em Ciência e Saúde Animal, Universidade Federal de Campina Grande (UFCG), Patos, Paraíba, Brazil.
- Departamento de Medicina Veterinária, Instituto Federal da Paraíba (IFPB), Sousa, Paraíba, Brazil.
| |
Collapse
|
3
|
Babaker MA, Ibolgasm Alazabi N, Haredy SA, Mohamed Algohary A, Anwar MM, Yousef EM, Ahmed-Farid OA. Mitigative and neuroprotective effects of Lavandula angustifolia essential oil on serotonin syndrome-induced neurotoxicity in male albino rats. Drug Chem Toxicol 2025:1-19. [PMID: 39894758 DOI: 10.1080/01480545.2025.2458618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
The term serotonin syndrome (SS) is a potentially life-threatening devastating condition triggered by the excessive accumulation of serotonin, often due to an overdose or the concurrent use of multiple serotonergic drugs. Lavandula angustifolia (lavender), a known plant from the Lamiaceae family, is very rich in essential oils, minerals, and tannins. This study aimed to elucidate the detrimental effects of SS on the brain and to evaluate the neuroprotective potential of L. angustifolia essential oil. Male rats were randomly divided into the following groups: control (Group 1); L. angustifolia-treated (Group 2); ondansetron-treated high-dose (Group 3); sertraline-treated high-dose (Group 4); low-dose ondansetron + sertraline-treated (Group 5); high-dose ondansetron + sertraline-treated (Group 6); low-dose ondansetron + sertraline + L. angustifolia-treated (Group 7); and high-dose ondansetron + sertraline + L. angustifolia-treated (Group 8). Neurotransmitter levels, dopamine metabolites, and expressed cytokines were quantified. Additionally, histological assessment of the hippocampus was performed. The results revealed significant disruptions in neurotransmitter and amino acid levels within the hippocampus across the treated groups. Notably, the high-dose ondansetron + sertraline group presented pronounced increases in serotonin, 5-HIAA, and proinflammatory cytokines, resulting in neurotoxicity and pronounced alterations in the hippocampus. Conversely, treatment with L. angustifolia significantly attenuated these neurotoxic effects. The findings suggest that L. angustifolia confers neuroprotection against the deleterious effects of SS, particularly by counteracting the neurotoxic impact of combined serotonin 5-HT3 receptor antagonists and serotonin reuptake inhibitors within the hippocampus. These findings highlight the potential of L. angustifolia as a natural therapeutic agent for mitigating SS-induced neurotoxicity.
Collapse
Affiliation(s)
- Manal A Babaker
- Department of Chemistry, Faculty of science, Majmaah University, Al Majmaah, Saudi Arabia
| | | | - Shimaa A Haredy
- Department of Physiology, Egyptian Drug Authority, Giza, Egypt
| | - Ayman Mohamed Algohary
- Department of Chemistry, Faculty of science, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mai M Anwar
- Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Einas M Yousef
- Department of Anatomy & Genetics, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Islam MT, Al Hasan MS, Ferdous J, Mia E, Yana NT, Ansari IA, Ansari SA, Islam MA, Coutinho HDM. Gaba Aergic sedative prospection of sclareol-linalool co-treatment: An antagonistic intervention through in vivo and in silico studies. Neurosci Lett 2025; 845:138060. [PMID: 39586457 DOI: 10.1016/j.neulet.2024.138060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Sleep disturbance causes many health problems in humans worldwide. This study evaluated the effects and possible mechanisms of sclareol (SCL) and/or linalool (LIN) through in vivo and in silico studies. For this, young chicks SCL (5, 10, and 20 mg/kg) and/or LIN (50 mg/kg) were orally administered thirty minutes before to the thiopental sodium (TS)-induced chicks with or without the standard drug diazepam (DZP: 3 mg/kg). Incidence, onset, and duration of sleep were then noted. The results suggest that SCL dose-dependently increased the onset and decreased the duration of sleep in animals. In contrast, LIN50 significantly (p < 0.05) decreased onset and increased sleep duration. SCL20 combined with LIN50 and/or DZP3 modulated the sleep parameters in animals. In combination, LIN50 showed better effects with DZP3, where the percentage decrease in latency and increase in sleep duration were 54.20 and 168.65 %, respectively. SCL20 when combined with LIN50 + DZP3 also modulated the onset and duration of sleep in animals. Further, in silico studies suggest that SCL and LIN have binding affinities with the 6X3X protein of the GABAA receptor (α1 and β2 subunits) of -6.9 and -6.8 kcal/mol, respectively. The standard drug DZP showed a binding affinity of -5.0 kcal/mol. Taken together, SCL may exert an angiogenic-like effect and antagonize LIN and/or DZP-mediated sedative effects in TS-induced chicks, possibly through the GABAA receptor α1 and β2 subunits interaction pathway.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh.
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Jannatul Ferdous
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh; Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Microbial Biotechnology Division, National Institute of Biotechnology, Dhaka 1349, Bangladesh
| | - Emon Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Noshin Tasnim Yana
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj 8100, Bangladesh
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin 10124, Italy
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Amirul Islam
- Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh; Department of Pharmacy, East West University, Dhaka 1212, Bangladesh
| | | |
Collapse
|
5
|
Antar A, Abdel-Rehiem ES, Al-Khalaf AA, Abuelsaad ASA, Abdel-Gabbar M, Shehab GMG, Abdel-Aziz AM. Therapeutic Efficacy of Lavandula dentata's Oil and Ethanol Extract in Regulation of the Neuroinflammation, Histopathological Alterations, Oxidative Stress, and Restoring Balance Treg Cells Expressing FoxP3+ in a Rat Model of Epilepsy. Pharmaceuticals (Basel) 2024; 18:35. [PMID: 39861097 PMCID: PMC11768170 DOI: 10.3390/ph18010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Despite the availability of antiepileptic drugs (AEDs) that can manage seizures, they often come with cognitive side effects. Furthermore, the role of oxidative stress and neuroinflammatory responses in epilepsy and the limitations of current AEDs necessitate exploring alternative therapeutic options. Medicinal plants, e.g., Lavandula dentata L., are rich in phenolic compounds and may provide neuroprotective and anti-inflammatory benefits. However, limited research evaluates their effectiveness in modulating neuroinflammation and histopathological changes in epilepsy models. Therefore, the current study hypothesized that treating Lavandula dentata L. extract or essential oils may reduce neuroinflammatory responses and mitigate histopathological changes in the brain, providing a natural alternative or adjunct therapy for epilepsy management. Methods: Five groups of male Wistar rats were used: control, pilocarpine-treated epileptic, valproic acid (VPA-treated epileptic), L. dentata extract, and essential oils. Numerous electrolyte levels, monoamine levels, neurotransmitter levels, and the mRNA expression of specific gate channel subtypes were evaluated in homogenate brain tissue. Additionally, histological changes in various brain regions were investigated. Results: The investigation revealed that the extract and essential oils obtained from L. dentata L. exhibited the ability to improve the modulation of electrolytes and ions across voltage- and ligand-gated ion channels. Furthermore, it was revealed that they could decrease neuronal excitability by facilitating repolarization. Moreover, L. dentata's oil and ethanol extract re-balances T-reg/Th-17 cytokines, restoring the pro/anti-inflammatory cytokines and Treg markers, e.g., FOXP3 and CTLA-4, to their normal level. Conclusions: The present work confirms that the extract and essential oils of L. dentata L. have different activities to ameliorate the progression of histopathological alterations. Therefore, when used in conjunction with other AEDs, the extract and essential oils of L. dentata can slow the progression of epileptogenesis.
Collapse
Affiliation(s)
- Aziza Antar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Eman S. Abdel-Rehiem
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt; (A.A.); (M.A.-G.)
| | - Gaber M. G. Shehab
- Department of Biochemistry, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ayman M. Abdel-Aziz
- Zoology Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
6
|
Feng P, Chen J, Chen X, Tang M, Song N, Zhang L, He T. Comparing Effects of Aromatherapy with Five Herbs Essential Oils on PCPA-induced Insomnia Mice. J Microbiol Biotechnol 2024; 35:e2409021. [PMID: 39848678 PMCID: PMC11813366 DOI: 10.4014/jmb.2409.09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 01/25/2025]
Abstract
Delayed treatment of insomnia-related symptoms can harm physical health and increase the psychological burden. In addition to oral medications and some physical therapies, aromatherapy can help overcome some treatment-related side effects. Herein, parachlorophenylalanine (PCPA)-induced insomnia was established in Kunming (KM) mice, which were subjected to aromatherapy using five plants (Jasminum sambac, Magnolia denudata, Rosa rugosa, Aloysia citriodora, and Abies balsamea) essential oils (EOs). To determine the sleep-inducing effect of the five EOs, the rate of change in body weight, sleep latency, and total sleep time in mice were measured. Specific serum indices were used to evaluate the therapeutic effects of the tested drugs and PCPA modeling. Gas chromatography-mass spectrometry (GC-MS) was employed to identify active components in EOs. The five EOs contained multiple identical constituents and were rich in terpenoids, such as α-farnesene (28.42%), linalool (68.84%), and citronellol (23.78%). The EOs exhibiting varying effects on insomnia-induced weight loss. Nissl staining was used to examine and the number of neurons was elevated in the EO-treated groups when compared with the PCPA-induced group; however, the neuronal number was reduced in the hypothalamic tissues of the R. rugosa EO (RREO)-treated group. All EOs upregulated the expression of 5-HT1A and GABAARα1, as demonstrated by immunohistochemistry, western blotting, and reverse transcription-quantitative PCR results. In addition, EOs of A. citriodora and A. balsamea significantly upregulated the expression of 5HT1A protein, whereas EOs of J. sambac and M. denudata exerted significantly different effects when compared with the model group, as determined by western blotting.
Collapse
Affiliation(s)
- Peipei Feng
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Jingyi Chen
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Xiaolu Chen
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Minghui Tang
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| | - Ni Song
- Guangdong He Ji Biotech Co., Ltd., Guangzhou 510000, P.R. China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, P.R. China
| | - Tinggang He
- Hua An Tang Biotech Group Co., Ltd., Guangzhou 510000, P.R. China
| |
Collapse
|
7
|
Meha N, Deepa Y, Mooventhan A, Edminchrista S, Madhumitha S, Pugazharasi KS. Effect of Lavender Oil Leg Massage on Physical, Cognitive, and Psychological Variables of Patients with Hypertension: A Randomized Controlled Trial. Int J Ther Massage Bodywork 2024; 17:15-22. [PMID: 39267900 PMCID: PMC11329283 DOI: 10.3822/ijtmb.v17i3.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Background Hypertension (HTN) is one of the most important non-communicable risk factors that cause cardiovascular diseases. Complementary therapies including massage and aromatherapy are widely used in the management of HTN. However, studies on aromatherapy massage in HTN are limited. Thus, this study was conducted to evaluate the effect of lavender oil leg massage on physical (cardiopulmonary function), cognitive, and psychological variables of patients with HTN. Materials and methods A parallel-group randomized controlled trial, comprising 100 HTN patients aged 44.99 ± 5.39 years who were recruited and randomly divided into the study group (SG) and control group (CG), was conducted. The SG received lavender oil leg massage, while the CG received supine rest for 20 min. Outcome variables like blood pressure (BP), pulse rate (PR), random blood sugar (RBS) level, oxygen saturation, pulmonary function, oral temperature, trail making test (TMT) A and B, and state anxiety and mindfulness were assessed before and after the intervention. Results The within-group analysis showed a significant improvement in systolic blood pressure, diastolic blood pressure, PR, RBS, TMT-A, TMT-B, and state mindfulness both in the SG and CG. However, a significant reduction in state anxiety was observed only in the SG unlike the CG. Moreover, the between-group analysis showed a significant improvement in state mindfulness and state anxiety in the SG compared to the CG. Conclusion The results of this study suggest that lavender oil leg massage is effective in reducing BP and RBS, and improving cognitive function in hypertensive patients. In addition, it is more effective in reducing anxiety and improving mindfulness than rest in supine position in patients with HTN.
Collapse
Affiliation(s)
- N Meha
- Department of Manipulative Therapies, Government Yoga and Naturopathy Medical College, The Tamil Nadu Dr. M. G. R. Medical University, Chennai, India
| | - Y Deepa
- Department of Manipulative Therapies, Government Yoga and Naturopathy Medical College, The Tamil Nadu Dr. M. G. R. Medical University, Chennai, India
| | - A Mooventhan
- Department of Research, Government Yoga and Naturopathy Medical College, The Tamil Nadu Dr. M. G. R. Medical University, Chennai, India
| | | | - S Madhumitha
- Department of Manipulative Therapies, Government Yoga and Naturopathy Medical College, The Tamil Nadu Dr. M. G. R. Medical University, Chennai, India
| | - K S Pugazharasi
- Department of Manipulative Therapies, Government Yoga and Naturopathy Medical College, The Tamil Nadu Dr. M. G. R. Medical University, Chennai, India
| |
Collapse
|
8
|
Fonsêca DV, da Silva PR, Pires HFO, Rocha JS, de Oliveira LEG, Reis FMS, Cavalho EBM, Pazos NDN, de Sousa NF, Guedes EC, Ribeiro LR, de Cassia S Sá R, Salvadori MGSS, Sousa DP, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Anticonvulsant activity of Tetrahydrolinalool: behavioral, electrophysiological, and molecular docking approaches. ChemMedChem 2024; 19:e202400135. [PMID: 38687623 DOI: 10.1002/cmdc.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Tetrahydrolinalool (THL) is an acyclic monoterpene alcohol, produced during linalol metabolism and also a constituent of essential oils. As described in the literature, many monoterpenes present anticonvulsant properties, and thus we became interested in evaluating the anticonvulsant activity of Tetrahydrolinalool using in mice model as well as in silico approaches. Our results demonstrated that THL increased latency to seizure onset and also reduced the mortality, in picrotoxin induced seizure tests. The results may be related to GABAergic regulation, which was also suggested in seizure testing induced by 3-mercapto-propionic acid. In the strychnine-induced seizure testing, none of the groups pretreated with THL modulated the parameters indicative of anticonvulsant effect. The electrophysiological results revealed that THL treatment reduces seizures induced by pentylenetetrazole. The in silico molecular docking studies showed that the interaction between THL and a GABAA receptor model formed a stable complex, in comparison to the crystaligraphic structure of diazepam, a structurally related ligand. In conclusion, all the evidences showed that THL presents effective anticonvulsant activity related to the GABAergic pathway, being a candidate for treatment of epileptic syndromes.
Collapse
Affiliation(s)
- Diogo V Fonsêca
- Department: Postgraduate Program in Biosciences - PPGB, Institution: Federal University of Vale do São Francisco - UNIVASF, Petrolina/PE, Brazil
| | - Pablo R da Silva
- Department: Postgraduate Program in Dentistry, Departament of Clinic and Social Dentistry, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Hugo F O Pires
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Juliana S Rocha
- Department: Postgraduate Program in Biosciences - PPGB, Institution: Federal University of Vale do São Francisco - UNIVASF, Petrolina/PE, Brazil
| | - Leandra Eugênia G de Oliveira
- Department: Department of Biological Sciences, Institution: State University of Southwest Bahia (UESB), Rua José Moreira Sobrinho s/n, Jequiezinho, Jequie, BA, 45210-506, Brazil
| | - Flavia M S Reis
- Department: Collegiate of Pharmaceutical Sciences, Postgraduate Program in Health and Biological Sciences, Institution: Federal University of Vale do São Francisco, Petrolina, PE, 56304-917, Brazil
| | - Erika B M Cavalho
- Department: Collegiate of Pharmaceutical Sciences, Postgraduate Program in Health and Biological Sciences, Institution: Federal University of Vale do São Francisco, Petrolina, PE, 56304-917, Brazil
| | - Natalia D N Pazos
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Natália F de Sousa
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Erika C Guedes
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Leandro R Ribeiro
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Rita de Cassia S Sá
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Mirian G S S Salvadori
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Damião P Sousa
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Marcus T Scotti
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Cicero F B Felipe
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Reinaldo N de Almeida
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| | - Luciana Scotti
- Department: Postgraduate Program in Natural and Synthetic Bioactive Produtcs, Center of Health Science, Institution: Federal University of Paraíba (UFPB) Jardim Universitário, S/N - Campus I -, Castelo Branco, João Pessoa, PB, 58051-900, Brazil
| |
Collapse
|
9
|
Azimzadeh M, Noorbakhshnia M. Maternal linalool treatment protects against radiofrequency wave-induced deteriorations in adolescent rats: A behavioral and electrophysiological study. Sci Rep 2024; 14:17257. [PMID: 39060318 PMCID: PMC11282235 DOI: 10.1038/s41598-024-68103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Recent years, the rapid advancement of technology has raised concerns. We studied the effects of prenatal exposure to 900 MHz radiofrequency (RF) from mobile phones and the protective effects of linalool on learning and memory, and anxiety in adolescent male and female offspring rats. Pregnant rats were divided into four groups: control, wave, wave + linalool, and linalool. Rats received linalool (25mg/kg) by gavage for 21 days. Irradiation was conducted from day 0 to day 21 of pregnancy. Offsprings underwent behavioral and electrophysiological tests on days 50 and 60 after birth. Exposure to RF during pregnancy caused anxiety-like behavior in the EPM test and impairment of learning and memory in the Morris water maze and shuttle box tests. Electrophysiological properties and synaptic plasticity of the dorsal hippocampal CA3-CA1 synapse showed a decrease in fEPSP amplitude and slope. The trace element levels in both male and female offspring were consistent across all groups compared to their respective controls. In the hippocampus tissue, the levels of Fe, Cu, and Mn, as well as the Cu/Zn ratio, were significantly higher in the exposed groups (wave groups) compared to their controls. Moreover, Zn levels were significantly lower in the hippocampus tissue of the exposed groups. Linalool administration mitigated the excessive increase in Fe, Cu, Mn, and Cu/Zn ratio and normalized the disrupted levels of trace elements, except for Zn levels in both male and female offspring. Sex differences were observed in the EPM and shuttle box tests, females were more sensitive than males. In summary, our study demonstrates that prenatal exposure to mobile phone radiation induces stress-like behaviors, disrupts learning and memory, alters hippocampal electrophysiological properties and trace element balance in offspring. Treatment with linalool mitigates these deleterious effects, highlighting its potential as a therapeutic intervention. These findings contribute to our understanding of the impact of prenatal environmental exposures on neurodevelopment and offer insights into potential strategies for neuroprotection.
Collapse
Affiliation(s)
- Mansour Azimzadeh
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Noorbakhshnia
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
10
|
Jongsma E, Grigolon G, Baumann J, Weinkove D, Ewald CY, Wandrey F, Grothe T. Timut Pepper Extract Slows Age-Dependent Decline of Mobility and Collagen Loss and Promotes Longevity. Nutrients 2024; 16:2122. [PMID: 38999870 PMCID: PMC11243454 DOI: 10.3390/nu16132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Investigations into human longevity are increasingly focusing on healthspan enhancement, not just lifespan extension. Lifestyle modifications and nutritional choices, including food supplements, can significantly affect aging and general health. Phytochemicals in centenarians' diets, such as those found in Timut pepper, a Nepalese spice with various medicinal properties, may contribute to their longevity. Similarly, Sichuan pepper, a related species, has demonstrated anti-inflammatory and neuroprotective activities. With the broader purpose of uncovering a novel treatment to address aging and its comorbidities, this study aims to investigate the potential lifespan- and healthspan-promoting effects of Timut pepper using the model organism Caenorhabditis elegans. We show that Timut pepper extract extends C. elegans' lifespan at different maintenance temperatures and increases the proportion of active nematodes in their early adulthood. In addition, we show that Timut pepper extract enhances speed and distance moved as the nematodes age. Finally, Timut pepper extract assures extracellular matrix homeostasis by slowing the age-dependent decline of collagen expression.
Collapse
Affiliation(s)
- Elisabeth Jongsma
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | | | - Julia Baumann
- Mibelle Group Biochemistry, Mibelle AG, 5033 Buchs, Switzerland
| | - David Weinkove
- Magnitude Biosciences Ltd., NETPark Plexus, Thomas Wright Way, Sedgefield TS21 3FD, UK
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | | | - Torsten Grothe
- Mibelle Group Biochemistry, Mibelle AG, 5033 Buchs, Switzerland
| |
Collapse
|
11
|
Napavichayanun S, Sujarit AS, Pienpinijtham P, Sarikaphuti A, Aramwit P. Effect of Lavandula angustifolia and Cananga odorata on decrease of blood pressure in high blood pressure volunteers: A randomized controlled trial. Explore (NY) 2024; 20:520-526. [PMID: 38087747 DOI: 10.1016/j.explore.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/18/2023] [Accepted: 11/28/2023] [Indexed: 06/16/2024]
Abstract
INTRODUCTION Hypertension is one of the most dangerous diseases. However, medicine for hypertension may cause adverse effects. Thus, alternative treatments may be beneficial to patients. The aims of the study were to evaluate efficacy and safety of sticker pads containing lavender and ylang ylang oil (LY pads) on decrease blood pressure. MATERIALS AND METHODS The LY pads had been developed since 2018. The safety of LY pads in healthy volunteers' study and the efficacy and safety of LY pads in high blood pressure volunteers' study were conducted at Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand in October 2020 to December 2022. In the safety of LY pads in healthy volunteers' study, the LY pad was attached to the shirts of 56 healthy volunteers for 2 h. Adverse reactions, irritation score, and quality of life were assessed. In the efficacy and safety of the LY pads in high blood pressure volunteers' study, 34 high blood pressure volunteers were randomly divided into the LY group or the placebo group. The volunteers attached the pad to their shirt for 14 days. Blood pressure, pulse rate, and adverse reactions were investigated. RESULTS The LY pad was safe for humans. Using the LY pad for 2 h had no significant adverse reactions in healthy volunteers. Moreover, it significantly improved quality of life (p<0.05). The blood pressure of the LY pad group after at least 3 days use was significantly lower than before using the pad (p<0.05). The systolic blood pressure difference and pulse rate difference were also superior in the LY pad group compared to the placebo group (p<0.05). CONCLUSIONS The LY pad was safe in healthy volunteers and could reduce blood pressure in high blood pressure volunteers without adverse effects. Thus, it may be a supportive or alternative treatment for hypertension.
Collapse
Affiliation(s)
- Supamas Napavichayanun
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
| | - Alisara Sangviroon Sujarit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Prompong Pienpinijtham
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand; Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Ariya Sarikaphuti
- School of Anti-Aging and Regenerative Medicine, Mae FahLuang University, Bangkok, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
12
|
Stasiłowicz-Krzemień A, Szymanowska D, Szulc P, Cielecka-Piontek J. Antimicrobial, Probiotic, and Immunomodulatory Potential of Cannabis sativa Extract and Delivery Systems. Antibiotics (Basel) 2024; 13:369. [PMID: 38667045 PMCID: PMC11047504 DOI: 10.3390/antibiotics13040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
The compounds present in hemp show multidirectional biological activity. It is related to the presence of secondary metabolites, mainly cannabinoids, terpenes, and flavonoids, and the synergy of their biological activity. The aim of this study was to assess the activity of the Henola Cannabis sativae extract and its combinations with selected carriers (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer, magnesium aluminometasilicate, and hydroxypropyl-β-cyclodextrin) in terms of antimicrobial, probiotic, and immunobiological effects. As a result of the conducted research, the antimicrobial activity of the extract was confirmed in relation to the following microorganisms: Clostridium difficile, Listeria monocytogenes, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus pyrogenes, Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aereuginosa, and Candida albicans (microorganism count was reduced from ~102 CFU mL-1 to <10 CFU mL-1 in most cases). Additionally, for the system with hydroxypropyl-β-cyclodextrin, a significant probiotic potential against bacterial strains was established for strains Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus rhamnosus, Lactobacillus reuteri, Pediococcus pentosaceus, Lactococcus lactis, Lactobacillus fermentum, and Streptococcus thermophilus (microorganism count was increased from ~102 to 104-107). In terms of immunomodulatory properties, it was determined that the tested extract and the systems caused changes in IL-6, IL-8, and TNF-α levels.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Daria Szymanowska
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
13
|
Devinsky O, Jones NA, Cunningham MO, Jayasekera BAP, Devore S, Whalley BJ. Cannabinoid treatments in epilepsy and seizure disorders. Physiol Rev 2024; 104:591-649. [PMID: 37882730 DOI: 10.1152/physrev.00049.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cannabis has been used to treat convulsions and other disorders since ancient times. In the last few decades, preclinical animal studies and clinical investigations have established the role of cannabidiol (CBD) in treating epilepsy and seizures and support potential therapeutic benefits for cannabinoids in other neurological and psychiatric disorders. Here, we comprehensively review the role of cannabinoids in epilepsy. We briefly review the diverse physiological processes mediating the central nervous system response to cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol, and terpenes. Next, we characterize the anti- and proconvulsive effects of cannabinoids from animal studies of acute seizures and chronic epileptogenesis. We then review the clinical literature on using cannabinoids to treat epilepsy, including anecdotal evidence and case studies as well as the more recent randomized controlled clinical trials that led to US Food and Drug Administration approval of CBD for some types of epilepsy. Overall, we seek to evaluate our current understanding of cannabinoids in epilepsy and focus future research on unanswered questions.
Collapse
Affiliation(s)
- Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, United States
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York, United States
| | | | - Mark O Cunningham
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - B Ashan P Jayasekera
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Neurosurgery, Royal Victoria Hospital, Newcastle upon Tyne, United Kingdom
| | - Sasha Devore
- Department of Neurology, NYU Grossman School of Medicine, New York, New York, United States
| | | |
Collapse
|
14
|
Bavarsad NH, Bagheri S, Kourosh-Arami M, Komaki A. Aromatherapy for the brain: Lavender's healing effect on epilepsy, depression, anxiety, migraine, and Alzheimer's disease: A review article. Heliyon 2023; 9:e18492. [PMID: 37554839 PMCID: PMC10404968 DOI: 10.1016/j.heliyon.2023.e18492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Neurological diseases affect the nervous system, including the brain, spinal cord, cranial nerves, nerve roots, autonomic nervous system, neuromuscular junctions, and muscles. Herbal medicine has long been used to cure these diseases. One of these plants is lavender, which is composed of various compounds, including terpenes, such as linalool, limonene, triterpenes, linalyl acetate, alcohols, ketones, polyphenols, coumarins, cineole, and flavonoids. In this review, the literature was searched using scientific search engines and databases (Google Scholar, Science Direct, Scopus, and PubMed) for papers published between 1982 and 2020 via keywords, including review, lavender, and neurological disorders. This plant exerts its healing effect on many diseases, such as anxiety and depression through an inhibitory effect on GABA. The anti-inflammatory effects of this plant have also been documented. It improves depression by regulating glutamate receptors and inhibiting calcium channels and serotonergic factors, such as SERT. Its antiepileptic mechanism is due to an increase in the inhibitory effect of GABA and potassium current and a decrease in sodium current. Therefore, many vegetable oils are also used in herbal medicine. In this review, the healing effect of lavender on several neurological disorders, including epilepsy, depression, anxiety, migraine, and Alzheimer's disease was investigated. All findings strongly support the traditional uses of lavender. More clinical studies are needed to investigate the effect of the plants' pharmacological active constituents on the treatment of life-threatening diseases in humans. The limitations of this study are the low quality and the limited number of clinical studies. Different administration methods of lavender are one of the limitations of this review.
Collapse
Affiliation(s)
- Nazanin Hatami Bavarsad
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
15
|
Bappi MH, Prottay AAS, Kamli H, Sonia FA, Mia MN, Akbor MS, Hossen MM, Awadallah S, Mubarak MS, Islam MT. Quercetin Antagonizes the Sedative Effects of Linalool, Possibly through the GABAergic Interaction Pathway. Molecules 2023; 28:5616. [PMID: 37513487 PMCID: PMC10384931 DOI: 10.3390/molecules28145616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Sedatives promote calmness or sleepiness during surgery or severely stressful events. In addition, depression is a mental health issue that negatively affects emotional well-being. A group of drugs called anti-depressants is used to treat major depressive illnesses. The aim of the present work was to evaluate the effects of quercetin (QUR) and linalool (LIN) on thiopental sodium (TS)-induced sleeping mice and to investigate the combined effects of these compounds using a conventional co-treatment strategy and in silico studies. For this, the TS-induced sleeping mice were monitored to compare the occurrence, latency, and duration of the sleep-in response to QUR (10, 25, 50 mg/kg), LIN (10, 25, 50 mg/kg), and diazepam (DZP, 3 mg/kg, i.p.). Moreover, an in silico investigation was undertaken to assess this study's putative modulatory sedation mechanism. For this, we observed the ability of test and standard medications to interact with various gamma-aminobutyric acid A receptor (GABAA) subunits. Results revealed that QUR and LIN cause dose-dependent antidepressant-like and sedative-like effects in animals, respectively. In addition, QUR-50 mg/kg and LIN-50 mg/kg and/or DZP-3 mg/kg combined were associated with an increased latency period and reduced sleeping times in animals. Results of the in silico studies demonstrated that QUR has better binding interaction with GABAA α3, β1, and γ2 subunits when compared with DZP, whereas LIN showed moderate affinity with the GABAA receptor. Taken together, the sleep duration of LIN and DZP is opposed by QUR in TS-induced sleeping mice, suggesting that QUR may be responsible for providing sedation-antagonizing effects through the GABAergic interaction pathway.
Collapse
Affiliation(s)
- Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Hossam Kamli
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Nayem Mia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Munnaf Hossen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
16
|
Staben J, Koch M, Reid K, Muckerheide J, Gilman L, McGuinness F, Kiesser S, Oswald IWH, Koby KA, Martin TJ, Kaplan JS. Cannabidiol and cannabis-inspired terpene blends have acute prosocial effects in the BTBR mouse model of autism spectrum disorder. Front Neurosci 2023; 17:1185737. [PMID: 37397463 PMCID: PMC10311644 DOI: 10.3389/fnins.2023.1185737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Cannabidiol (CBD) is a non-intoxicating phytocannabinoid with increasing popularity due to its purported therapeutic efficacy for numerous off-label conditions including anxiety and autism spectrum disorder (ASD). Those with ASD are commonly deficient in endogenous cannabinoid signaling and GABAergic tone. CBD has a complex pharmacodynamic profile that includes enhancing GABA and endocannabinoid signaling. Thus, there is mechanistic justification for investigating CBD's potential to improve social interaction and related symptoms in ASD. Recent clinical trials in children with ASD support CBD's beneficial effects in numerous comorbid symptoms, but its impact on social behavior is understudied. Methods Here, we tested the prosocial and general anxiolytic efficacy of a commercially available CBD-rich broad spectrum hemp oil delivered by repeated puff vaporization and consumed via passive inhalation in the female cohort of the BTBR strain, a common inbred mouse line for preclinical assessment of ASD-like behaviors. Results We observed that CBD enhanced prosocial behaviors using the 3-Chamber Test with a different vapor dose-response relationship between prosocial behavior and anxiety-related behavior on the elevated plus maze. We also identified that inhalation of a vaporized terpene blend from the popular OG Kush cannabis strain increased prosocial behavior independently of CBD and acted together with CBD to promote a robust prosocial effect. We observed similar prosocial effects with two additional cannabis terpene blends from the Do-Si-Dos and Blue Dream strains, and further reveal that these prosocial benefits rely on the combination of multiple terpenes that comprise the blends. Discussion Our results illustrate the added benefit of cannabis terpene blends for CBD-based treatment of ASD.
Collapse
Affiliation(s)
- Jenika Staben
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Megan Koch
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Keelee Reid
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Jessica Muckerheide
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Lauren Gilman
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Finn McGuinness
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| | - Sarina Kiesser
- Scientific Technical Services, Western Washington University, Bellingham, WA, United States
| | - Iain W. H. Oswald
- Department of Research and Development, Abstrax Tech, Inc., Tustin, CA, United States
| | - Kevin A. Koby
- Department of Research and Development, Abstrax Tech, Inc., Tustin, CA, United States
| | - Thomas J. Martin
- Department of Research and Development, Abstrax Tech, Inc., Tustin, CA, United States
| | - Joshua S. Kaplan
- Department of Psychology, Behavioral Neuroscience Program, Western Washington University, Bellingham, WA, United States
| |
Collapse
|
17
|
Rayff da Silva P, de Andrade JC, de Sousa NF, Portela ACR, Oliveira Pires HF, Remígio MCRB, da Nóbrega Alves D, de Andrade HHN, Dias AL, Salvadori MGDSS, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Felipe CFB, de Almeida RN, Scotti L. Computational Studies Applied to Linalool and Citronellal Derivatives Against Alzheimer's and Parkinson's Disorders: A Review with Experimental Approach. Curr Neuropharmacol 2023; 21:842-866. [PMID: 36809939 PMCID: PMC10227923 DOI: 10.2174/1570159x21666230221123059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's and Parkinson's are neurodegenerative disorders that affect a great number of people around the world, seriously compromising the quality of life of individuals, due to motor and cognitive damage. In these diseases, pharmacological treatment is used only to alleviate symptoms. This emphasizes the need to discover alternative molecules for use in prevention. Using Molecular Docking, this review aimed to evaluate the anti-Alzheimer's and anti-Parkinson's activity of linalool and citronellal, as well as their derivatives. Before performing Molecular Docking simulations, the compounds' pharmacokinetic characteristics were evaluated. For Molecular Docking, 7 chemical compounds derived from citronellal, and 10 compounds derived from linalool, and molecular targets involved in Alzheimer's and Parkinson's pathophysiology were selected. According to the Lipinski rules, the compounds under study presented good oral absorption and bioavailability. For toxicity, some tissue irritability was observed. For Parkinson-related targets, the citronellal and linalool derived compounds revealed excellent energetic affinity for α-Synuclein, Adenosine Receptors, Monoamine Oxidase (MAO), and Dopamine D1 receptor proteins. For Alzheimer disease targets, only linalool and its derivatives presented promise against BACE enzyme activity. The compounds studied presented high probability of modulatory activity against the disease targets under study, and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Anne Caroline Ribeiro Portela
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Maria Caroline Rodrigues Bezerra Remígio
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Danielle da Nóbrega Alves
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Humberto Hugo Nunes de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T. Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
18
|
Schmiedhofer P, Vogel FD, Koniuszewski F, Ernst M. Cys-loop receptors on cannabinoids: All high? Front Physiol 2022; 13:1044575. [PMID: 36439263 PMCID: PMC9682269 DOI: 10.3389/fphys.2022.1044575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Endocannabinoids (eCBS) are endogenously derived lipid signaling molecules that serve as tissue hormones and interact with multiple targets, mostly within the endocannabinoid system (ECS). The ECS is a highly conserved regulatory system involved in homeostatic regulation, organ formation, and immunomodulation of chordates. The term “cannabinoid” evolved from the distinctive class of plant compounds found in Cannabis sativa, an ancient herb, due to their action on CB1 and CB2 receptors. CB1/2 receptors are the primary targets for eCBs, but their effects are not limited to the ECS. Due to the high interest and extensive research on the ECS, knowledge on its constituents and physiological role is substantial and still growing. Crosstalk and multiple targeting of molecules are common features of endogenous and plant compounds. Cannabimimetic molecules can be divided according to their origin, natural or synthetic, including phytocannabinoids (pCB’s) or synthetic cannabinoids (sCB’s). The endocannabinoid system (ECS) consists of receptors, transporters, enzymes, and signaling molecules. In this review, we focus on the effects of cannabinoids on Cys-loop receptors. Cys-loop receptors belong to the class of membrane-bound pentameric ligand gated ion channels, each family comprising multiple subunits. Mammalians possess GABA type A receptors (GABAAR), glycine receptors (GlyR), serotonin receptors type 3 (5-HT3R), and nicotinic acetylcholine receptors (nAChR). Several studies have shown different modulatory effects of CBs on multiple members of the Cys-loop receptor family. We highlight the existing knowledge, especially on subunits and protein domains with conserved binding sites for CBs and their possible pharmacological and physiological role in epilepsy and in chronic pain. We further discuss the potential for cannabinoids as first line treatments in epilepsy, chronic pain and other neuropsychiatric conditions, indicated by their polypharmacology and therapeutic profile.
Collapse
Affiliation(s)
- Philip Schmiedhofer
- SBR Development Holding, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| | - Florian Daniel Vogel
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University Vienna, Vienna, Austria
- *Correspondence: Philip Schmiedhofer, ; Margot Ernst,
| |
Collapse
|
19
|
Seizure treatment with olfactory training: a preliminary trial. Neurol Sci 2022; 43:6901-6907. [DOI: 10.1007/s10072-022-06376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
|
20
|
Mohammadi F, Moradi M, Niazi A, Jamali J. The Impact of Aromatherapy with Citrus Aurantium Essential Oil on Sleep Quality in Pregnant Women with Sleep Disorders: A Randomized Controlled Clinical Trial. INTERNATIONAL JOURNAL OF COMMUNITY BASED NURSING AND MIDWIFERY 2022; 10:160-171. [PMID: 35855386 PMCID: PMC9287566 DOI: 10.30476/ijcbnm.2022.92696.1900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/19/2022]
Abstract
Background Sleep disorders are so prevalent during pregnancy. The present study was conducted to investigate the impact of aromatherapy with Citrus aurantium essential oil on sleep quality in pregnant women with sleep disorders. Methods This randomized clinical trial study was conducted on 68 pregnant women in their 28-34 weeks of pregnancy who sufferred sleep disorders and referred to Jiroft health centers in 2021 (January-June). Those meeting the inclusion criteria were divided into the intervention and placebo groups, using random sequence generated through the randomization website. They were given five drops of Citrus aurantium essential oil and the placebo twice a day, every day for one month in the form of facemasks which they inhaled through normal breathing for 20 minutes. Sleep quality was assessed before the intervention and one month after the start of the intervention. The demographic questionnaire and Pittsburgh Sleep Quality Index (PSQI) were used for collecting the data. Data analysis was performed using SPSS 24 software. The Mann-Whitney-U, Wilcoxon and fisher exact tests were carried out. P-value<0.05 was considered statistically significant. Results Before the intervention, the mean and standard deviation scores of pregnant women's sleep quality in the intervention (9.89±3.00) and placebo (8.12±2.53) groups were not significantly different (P=0.10). One month after the intervention, the score was significantly lower in the intervention group (4.37±1.85) than the placebo group (8.48±2.62) (P<0.001). Conclusion Based on the results of the present study, it seems that aromatherapy with Citrus aurantium essential oil enhances the sleep quality in pregnant women with sleep disorders, so it can be used to diminish sleep disorders in these women.Trial Registration Number: IRCT20200512047414N1.
Collapse
Affiliation(s)
- Freshteh Mohammadi
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Moradi
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran,
Nursing and Midwifery Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azin Niazi
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Jamali
- Department of Epidemiology and Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022; 61:e202202866. [PMID: 35522818 PMCID: PMC9541901 DOI: 10.1002/anie.202202866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Odorants are relatively small molecules which are easily taken up and distributed in the human body. Despite their relevance in everyday life, however, only a limited amount of evidence about their metabolism, pathways, and bioactivities in the human body exists. With this Review, we aim to encourage future interdisciplinary research on the function and mechanisms of the biotransformation of odorants, involving different disciplines such as nutrition, medicine, biochemistry, chemistry, and sensory sciences. Starting with a general overview of the different ways of odorant uptake and enzymes involved in the metabolism of odorants, a more precise description of biotransformation processes and their function in the oral cavity, the nose, the lower respiratory tract (LRT), and the gastrointestinal tract (GIT) is given together with an overview of the different routes of odorant excretion. Finally, perspectives for future research are discussed.
Collapse
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Marcel W Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation, Flavour perception: from molecule to behavior, FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry and Pharmacy, Henkestr. 9, 91054, Erlangen, GERMANY
| |
Collapse
|
22
|
Kornbausch N, Debong MW, Buettner A, Heydel JM, Loos H. Odorant Metabolism in Humans. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicole Kornbausch
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Marcel W. Debong
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Andrea Buettner
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy GERMANY
| | - Jean-Marie Heydel
- Centre des Sciences du Goût et de l'Alimentation: Centre des Sciences du Gout et de l'Alimentation Flavour perception: from molecule to behavior FRANCE
| | - Helene Loos
- Friedrich-Alexander-Universität Erlangen-Nürnberg Chemistry and Pharmacy Henkestr. 9 91054 Erlangen GERMANY
| |
Collapse
|
23
|
Hartley N, McLachlan CS. Aromas Influencing the GABAergic System. Molecules 2022; 27:molecules27082414. [PMID: 35458615 PMCID: PMC9026314 DOI: 10.3390/molecules27082414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aromas have a powerful influence in our everyday life and are known to exhibit an array of pharmacological properties, including anxiolytic, anti-stress, relaxing, and sedative effects. Numerous animal and human studies support the use of aromas and their constituents to reduce anxiety-related symptoms and/or behaviours. Although the exact mechanism of how these aromas exert their anxiolytic effects is not fully understood, the GABAergic system is thought to be primarily involved. The fragrance emitted from a number of plant essential oils has shown promise in recent studies in modulating GABAergic neurotransmission, with GABAA receptors being the primary therapeutic target. This review will explore the anxiolytic and sedative properties of aromas found in common beverages, such as coffee, tea, and whisky as well aromas found in food, spices, volatile organic compounds, and popular botanicals and their constituents. In doing so, this review will focus on these aromas and their influence on the GABAergic system and provide greater insight into viable anxiety treatment options.
Collapse
Affiliation(s)
- Neville Hartley
- Department of Naturopathy and Western Herbal Medicine, Health Faculty, Fortitude Valley Campus, Torrens University Australia, Brisbane, QLD 4006, Australia
- Correspondence:
| | - Craig S. McLachlan
- Centre for Healthy Futures, Health Faculty, Surry Hills Campus, Torrens University Australia, Sydney, NSW 2010, Australia;
| |
Collapse
|
24
|
Yunusoğlu O. Rewarding effect of ethanol-induced conditioned place preference in mice: Effect of the monoterpenoid linalool. Alcohol 2022; 98:55-63. [PMID: 34800613 DOI: 10.1016/j.alcohol.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/01/2022]
Abstract
Alcohol addiction is a chronic relapsing disease that is progressive and has severe detrimental health outcomes. The use of natural products has become popular for the treatment of side effects of drugs and substance abuse. Linalool is a monoterpenoid that exhibits several effects on the central nervous system. Linalool was identified to have beneficial effects on different mechanisms that are relevant in drug addiction or substance use disorder. The primary aim of the present study was to evaluate the therapeutic effect of linalool on the rewarding properties of alcohol in mice. Conditioned place preference (CPP) was established by intraperitoneal (i.p.) injection of ethanol (2 g/kg) during an 8-day conditioning trial. The effects of acamprosate and linalool on the rewarding properties of ethanol were tested in mice who received linalool (12.5, 25, and 50 mg/kg, i.p.) and acamprosate (300 mg/kg, i.p.) 30 min before each ethanol injection. CPP was extinguished by repeated testing, throughout which conditioned mice were administered daily linalool. Mice were lastly examined for reinstatement provoked by i.p. administration of single low-dose ethanol (0.4 g/kg, i.p.). Treatment with linalool reduced the acquisition and reinstatement, and precipitated the extinction of ethanol-induced CPP in mice. Acquisition and reinstatement of alcohol-induced CPP were significantly reduced by acamprosate, which also precipitated extinction. Ethanol alone and the combination with linalool or acamprosate did not alter locomotor activity. The results of this study suggest that linalool may have pharmacological effects for the treatment of alcohol addiction. In addition, further investigation is required to fully explore the benefits and possible adverse effects of linalool on alcohol addiction.
Collapse
|
25
|
Malloggi E, Menicucci D, Cesari V, Frumento S, Gemignani A, Bertoli A. Lavender aromatherapy: A systematic review from essential oil quality and administration methods to cognitive enhancing effects. Appl Psychol Health Well Being 2021; 14:663-690. [PMID: 34611999 PMCID: PMC9291879 DOI: 10.1111/aphw.12310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
Modern society is reviving the practice of aromatherapy, and lavender is reported being the most worldwide purchased plant for essential oil (EO) extraction. Since recent studies reported cognitive enhancing effects of lavender besides the hypno-inducing effects, a literature review is needed. Considering EO quality and diffusion devices, we conducted a systematic review on the effects of lavender EO inhalation on arousal, attention and memory in healthy subjects. Starting from this new multidisciplinary perspective, cognitive effects were reviewed to link outcomes to effective and reproducible protocols. A systematic search on MEDLINE, ERIC, PsycInfo, Google Scholar, and Scopus databases using Cognitive Atlas and plant-related keywords was conducted. Among the 1,203 articles yielded, 11 met eligibility criteria. Subjects administered with lavender EO displayed arousal decrease and sustained attention increase. Controversial results emerged regarding memory. Lack of EO quality assessment and protocols heterogeneity did not allow assessing whether different EO composition differentially modulates cognition and whether placebo effect can be discerned from EO effect itself. However, GABAergic pathway modulation exerted by linalool, a major lavender EO constituent, might explain cognitive functions empowerment. We speculate aromatherapy could be a burgeoning cognition enhancing tool, although further investigation is required to reach robust conclusions.
Collapse
Affiliation(s)
- Eleonora Malloggi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Sergio Frumento
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
26
|
Yunusoğlu O. Linalool attenuates acquisition and reinstatement and accelerates the extinction of nicotine-induced conditioned place preference in male mice. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:422-432. [PMID: 33852814 DOI: 10.1080/00952990.2021.1898627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Nicotine is the addictive agent in tobacco products. The monoterpene linalool is the main ingredient in the essential oils of various aromatic plants. It has previously been demonstrated that linalool has beneficial effects on some mechanisms that are important in drug addiction.Objectives: The goal of the current study was to investigate the effect of linalool on nicotine-induced conditioned place preference (CPP) in male mice.Methods: CPP was induced by administering intraperitoneal (i.p.) injection of nicotine (0.5 mg/kg) during the conditioning phase. The effects of nicotinic acetylcholine receptor partial agonist varenicline and linalool on the rewarding characteristics of nicotine were tested in mice with administration of linalool (12.5, 25, and 50 mg/kg, i.p.), varenicline (2 mg/kg, i.p.) or saline 30 minutes before nicotine injection. CPP was extinguished by repeated testing, during which conditioned mice were administered varenicline and linalool every day. One day after the last extinction trial, mice that received linalool, varenicline or saline 30 minutes before a priming injection of nicotine (0.1 mg/kg, i.p.) were immediately tested for reinstatement of CPP.Results: Linalool attenuated nicotine acquisition (50 mg/kg, p < .01) and reinstatement (25 and 50 mg/kg, respectively p < .05, p < .01) and accelerated the extinction of nicotine-induced CPP (50 mg/kg, p < .05). Linalool exhibited similar effects on the reference drug varenicline in the CPP phases.Conclusion: These results suggest that linalool may be helpful as an adjuvant for the treatment of nicotine use disorder.
Collapse
Affiliation(s)
- Oruç Yunusoğlu
- Department of Pharmacology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
27
|
Burke H, Jiang S, Chatham P, Stern TA. Delirium After Withdrawal From Valerian Root: A Case Report. PSYCHOSOMATICS 2020; 61:787-790. [DOI: 10.1016/j.psym.2020.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
|
28
|
Aghamiri H, Shafaroodi H, Asgarpanah J. Anticonvulsant Activity of Essential Oil From Leaves of Zhumeria majdae (Rech.) in Mice: The Role of GABA A Neurotransmission and the Nitric Oxide Pathway. Clin Transl Sci 2020; 13:785-797. [PMID: 32027449 PMCID: PMC7359939 DOI: 10.1111/cts.12767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The essential oil from the leaves of Zhumeria majdae Rech. (ZMEO) has been shown to have several beneficial effects in the clinic. In this work we examined the anticonvulsant activities of ZMEO in an experimental mouse model of seizure and aimed to identify any possible underlying mechanisms. ZMEO (5, 10, 20, and 40 mg/kg intraperitoneally (i.p.)) or diazepam, as the reference anticonvulsant drug (25, 50 and 100 µg/kg i.p.), were administered 60 minutes prior to pentylenetetrazol (PTZ) injection (intravenously (i.v.) or i.p.) and changes in threshold, latency, and frequency of clonic seizure were examined. The PTZ i.p.-induced model of seizure was also applied for examining the protective effects of ZMEO pretreatment against PTZ-induced mortality. In some studies, the anticonvulsant effect of the combination of diazepam and ZMEO was also studied. The protective effects of ZMEO against hindlimb tonic extensions (HLTEs) were also examined by maximal electroshock (MES) seizure testing. The γ-aminobutyric acid (GABA)ergic mechanism and nitric oxide (NO) pathway involvement in anticonvulsant activity of ZMEO were assessed by pretreating animals with flumazenil, Nω -nitro-L-arginine methyl ester (L-NAME), aminoguanidine, and L-arginine in a PTZ-induced model of seizure. Administration of 20 mg/kg ZMEO significantly increased chronic seizure threshold and latency while reducing frequency of convulsions and mortality in the PTZ-induced model. In the doses studied, ZMEO could not protect mice from HLTE and mortality induced by MES. Pretreatment with L-arginine and diazepam potentiated the anticonvulsant effects of ZMEO, whereas pretreatment with L-NAME, aminoguanidine, and flumazenil reversed anticonvulsant activity. The anticonvulsant activity of ZMEO may be mediated in part through a GABAergic mechanism and the NO signaling pathway.
Collapse
Affiliation(s)
- Helia Aghamiri
- Department of Pharmacology and ToxicologyFaculty of Pharmacy and Pharmaceutical SciencesTehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of PharmacologySchool of MedicineIran University of Medical SciencesTehranIran
| | - Hamed Shafaroodi
- Department of PharmacologySchool of MedicineTehran University of Medical SciencesTehranIran
| | - Jinous Asgarpanah
- Department of PharmacognosyFaculty of Pharmacy and Pharmaceutical SciencesTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
29
|
Melo CR, Oliveira BMS, Santos ACC, Silva JE, Ribeiro GT, Blank AF, Araújo APA, Bacci L. Synergistic effect of aromatic plant essential oils on the ant Acromyrmex balzani (Hymenoptera: Formicidae) and antifungal activity on its symbiotic fungus Leucoagaricus gongylophorus (Agaricales: Agaricaceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:17303-17313. [PMID: 32157534 DOI: 10.1007/s11356-020-08170-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Leaf-cutting ants have great potential for damage to agricultural and forest crops. Although chemical control is the most used method for the management of this pest, more friendly alternative methods have been investigated. Thus, this study aimed to evaluate the insecticidal and antifungal potential of essential oils obtained from Aristolochia trilobata, as well as the potential of two chemotypes of Myrcia lundiana and their major compounds (isopulegol and citral) on Acromyrmex balzani and its symbiotic fungus Leucoagaricus gongylophorus. Toxicity and synergism and/or antagonism tests were performed using essential oils and their major compounds on A. balzani ants. The antifungal activity of these compounds was tested on the fungus L. gongylophorus. The essential oils and their major compounds were toxic to A. balzani. The mixture of essential oils of A. trilobata with those of M. lundiana had higher toxicity to the ants. This synergistic effect is mainly due to the interactions between the citral compound and the major compounds present in A. trilobata essential oil. The essential oils of M. lundiana chemotypes showed antifungal properties against L. gongylophorus, and the citral compound proved to have fungicidal activity. These results show that the use of M. lundiana and A. trilobata essential oils and their major compounds is a potential alternative for the management of leaf-cutting ants A. balzani, as they have a toxic effect on worker ants and antifungal activity on their symbiotic fungus.
Collapse
Affiliation(s)
- Carlisson R Melo
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, 49035-660, Brazil
| | - Bruna Maria S Oliveira
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, 49035-660, Brazil
| | - Ane Caroline C Santos
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, 49035-660, Brazil
| | - Jefferson E Silva
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, 49035-660, Brazil
| | - Genésio T Ribeiro
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, 49035-660, Brazil
| | - Arie F Blank
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, 49035-660, Brazil
| | - Ana Paula A Araújo
- Ecology Department, Universidade Federal de Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Leandro Bacci
- Department of Agronomic Engineering, Universidade Federal de Sergipe, São Cristóvão, SE, 49035-660, Brazil.
| |
Collapse
|
30
|
Couic-Marinier F, Laurain-Mattar D. Huile essentielle de Lavande aspic. ACTUALITES PHARMACEUTIQUES 2020. [DOI: 10.1016/j.actpha.2019.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Benkherouf AY, Logrén N, Somborac T, Kortesniemi M, Soini SL, Yang B, Salo-Ahen OMH, Laaksonen O, Uusi-Oukari M. Hops compounds modulatory effects and 6-prenylnaringenin dual mode of action on GABA A receptors. Eur J Pharmacol 2020; 873:172962. [PMID: 32001220 DOI: 10.1016/j.ejphar.2020.172962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 02/05/2023]
Abstract
Hops (Humulus lupulus L.), a major component of beer, contain potentially neuroactive compounds that made it useful in traditional medicine as a sleeping aid. The present study aims to investigate the individual components in hops acting as allosteric modulators in GABAA receptors and bring further insight into the mode of action behind the sedative properties of hops. GABA-potentiating effects were measured using [3H]ethynylbicycloorthobenzoate (EBOB) radioligand binding assay in native GABAA receptors. Flumazenil sensitivity of GABA-potentiating effects, [3H]Ro 15-4513, and [3H]flunitrazepam binding assays were used to examine the binding to the classical benzodiazepines site. Humulone (alpha acid) and 6-prenylnaringenin (prenylflavonoid) were the most potent compounds displaying a modulatory activity at low micromolar concentrations. Humulone and 6-prenylnaringenin potentiated GABA-induced displacement of [3H]EBOB binding in a concentration-dependent manner where the IC50 values for this potentiation in native GABAA receptors were 3.2 μM and 3.7 μM, respectively. Flumazenil had no significant effects on humulone- or 6-prenylnaringenin-induced displacement of [3H]EBOB binding. [3H]Ro 15-4513 and [3H]flunitrazepam displacements were only minor with humulone but surprisingly prominent with 6-prenylnaringenin despite its flumazenil-insensitive modulatory activity. Thus, we applied molecular docking methods to investigate putative binding sites and poses of 6-prenylnaringenin at the GABAA receptor α1β2γ2 isoform. Radioligand binding and docking results suggest a dual mode of action by 6-prenylnaringenin on GABAA receptors where it may act as a positive allosteric modulator at α+β- binding interface as well as a null modulator at the flumazenil-sensitive α+γ2- binding interface.
Collapse
Affiliation(s)
- Ali Y Benkherouf
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Nora Logrén
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Tamara Somborac
- Pharmaceutical Sciences Laboratory and Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Maaria Kortesniemi
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Sanna L Soini
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory and Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Oskar Laaksonen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, Finland
| | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
32
|
Huff RM, Pitts RJ. An odorant receptor from Anopheles gambiae that demonstrates enantioselectivity to the plant volatile, linalool. PLoS One 2019; 14:e0225637. [PMID: 31751420 PMCID: PMC6872167 DOI: 10.1371/journal.pone.0225637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Insects express chemical receptors within sensory neurons that are activated by specific cues in the environment, thereby influencing the acquisition of critical resources. A significant gap in our current understanding of insect chemical ecology is defining the molecular mechanisms that underlie sensitivity to plant-emitted volatiles. Linalool is a commonly-occurring monoterpene that has various effects on insect behavior, either acting as an attractant or a repellent, and existing in nature as one of two possible stereoisomers, (R)-(-)-linalool and (S)-(+)-linalool. In this study, we have used a cell-based functional assay to identify linalool and structurally-related compounds as ligands of Odorant receptor 29, a labellum-expressed receptor in the malaria vector mosquito, Anopheles gambiae (AgamOr29). While (R)-(-)-linalool activates AgamOr29, a mixture of the (R) and (S) stereoisomers activates the receptor with higher potency, implying enantiomeric selectivity. Orthologs of Or29 are present in the genomes of Anophelines within the Cellia subgenus. The conservation of this receptor across Anopheline lineages suggests that this ecologically important compound might serve as an attraction cue for nectar-seeking mosquitoes. Moreover, the characterization of a mosquito terpene receptor could serve as a foundation for future ligand-receptor studies of plant volatiles and for the discovery of compounds that can be integrated into push-pull vector control strategies.
Collapse
Affiliation(s)
- Robert Mark Huff
- Department of Biology, Baylor University, Waco, Texas, United States of America
| | - R. Jason Pitts
- Department of Biology, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
33
|
Influence of lavender oil inhalation on vital signs and anxiety: A randomized clinical trial. Physiol Behav 2019; 211:112676. [PMID: 31505191 DOI: 10.1016/j.physbeh.2019.112676] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the effectiveness of lavender oil (Lavandula angustifolia Mill) inhalation on anxiety, mood, and vital signs (blood pressure, respiratory rate, heart rate, and saturation) of patients undergoing oral surgery. Vital signs were considered as primary outcome measures. Paired anxiety tests were used as secondary outcome measures. METHODS Patients who had dental anxiety according to the Dental Anxiety Questionnaire (DAQ) were enrolled in the study. One hundred twenty-six patients who were undergoing wisdom tooth removal under local anaesthesia were randomly assigned to the lavender oil and control groups. Paired anxiety tests (Modified Dental Anxiety Scale and State-Trait Anxiety Inventory-State Scale were performed. Vital signs were noted pre-, intra-, and post-operatively. Visual analogue scale (VAS) results were assessed. The patients' degree of satisfaction was noted. RESULTS Pre-operative anxiety levels were similar in both groups. Significant changes in blood pressure were observed in the lavender oil group post-operatively (p < .05). Most (79.4%) of the patients in the lavender oil group enjoyed the scent, 89.68% were satisfied with their experience, and 97.62% of the patients stated that they would prefer the same protocol when needed. CONCLUSION Inhalation of lavender oil, which is one of the most powerful anxiolytic essential oils, reduces peri-operative anxiety and can be prospectively considered in future studies for its potential sedative characteristics in patients undergoing surgical procedures under local anaesthesia. TRIAL REGISTRATION NUMBER NCT03722771 (Influence of Lavender Oil on Vital Signs in Oral Surgery Patients) https://clinicaltrials.gov/ct2/show/NCT03722771.
Collapse
|
34
|
Using the tools of proteomics to understand the pathogenesis of idiopathic inflammatory myopathies. Curr Opin Rheumatol 2019; 31:617-622. [PMID: 31385878 DOI: 10.1097/bor.0000000000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW One of the most important advances in medical research over the past 20 years has been the emergence of technologies to assess complex biological processes on a global scale. Although a great deal of attention has been given to genome-scale genetics and genomics technologies, the utility of studying the proteome in a comprehensive way is sometimes under-appreciated. In this review, we discuss recent advances in proteomics as applied to dermatomyositis/polymyositis as well as findings from other inflammatory diseases that may enlighten our understanding of dermatomyositis/polymyositis. RECENT FINDINGS Proteomic approaches have been used to investigate basic mechanisms contributing to lung and skin disease in dermatomyositis/polymyositis as well as to the muscle disease itself. In addition, proteomic approaches have been used to identify autoantibodies targeting the endothelium in juvenile dermatomyositis. Studies from other inflammatory diseases have shown the promise of using proteomics to characterize the composition of immune complexes and the protein cargoes of exosomes. SUMMARY There are many relevant scientific and clinical questions in dermatomyositis/polymyositis that can be addressed using proteomics approaches. Careful attention to both methodology and analytic approaches are required to obtain useful and reproducible data.
Collapse
|
35
|
Barrera-Sandoval AM, Osorio E, Cardona-Gómez GP. Microglial-targeting induced by intranasal linalool during neurological protection postischemia. Eur J Pharmacol 2019; 857:172420. [DOI: 10.1016/j.ejphar.2019.172420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
|
36
|
The Effects of Various Essential Oils on Epilepsy and Acute Seizure: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6216745. [PMID: 31239862 PMCID: PMC6556313 DOI: 10.1155/2019/6216745] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023]
Abstract
Many essential oils (EOs) have anticonvulsant activity and might benefit people with epilepsy. Lemongrass, lavender, clove, dill, and other EOs containing constituents such as asarone, carvone, citral, eugenol, or linalool are good candidates for evaluation as antiepileptic drugs. On the other hand, some EOs have convulsant effects and may trigger seizures in both epileptic and healthy individuals. Internal use of EOs like sage, hyssop, rosemary, camphor, pennyroyal, eucalyptus, cedar, thuja, and fennel can cause epileptic seizures because they contain thujone, 1,8-cineole, camphor, or pinocamphone, which have been identified as convulsive agents. While more research is needed to confirm their mechanisms of action, it appears that the convulsant or anticonvulsant properties of essential oils are largely due to (1) their ability to modulate the GABAergic system of neurotransmission and (2) their capacity to alter ionic currents through ion channels. This review presents a systematic analysis of the current research on EOs and epilepsy, including human case studies, animal models, and in vitro studies.
Collapse
|
37
|
Identification of odorous compounds in oak wood using odor extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/olfactometry. Anal Bioanal Chem 2018; 410:6595-6607. [DOI: 10.1007/s00216-018-1264-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 11/25/2022]
|
38
|
Oliveira Júnior RGD, Ferraz CAA, Silva JC, de Andrade Teles RB, Silva MG, Diniz TC, Dos Santos US, de Souza AVV, Nunes CEP, Salvador MJ, Lorenzo VP, Quintans Júnior LJ, Almeida JRGDS. Neuropharmacological effects of essential oil from the leaves of Croton conduplicatus Kunth and possible mechanisms of action involved. JOURNAL OF ETHNOPHARMACOLOGY 2018; 221:65-76. [PMID: 29627297 DOI: 10.1016/j.jep.2018.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Croton conduplicatus Kunth (Euphorbiaceae) is a Brazilian aromatic medicinal plant, widely known as "quebra-faca". In folk medicine, its leaves and stem-barks are used as a natural analgesic for the treatment of headaches. AIM OF THE STUDY In this study, we describe for the first time the neuropharmacological potential of the essential oil obtained from the leaves of Croton conduplicatus (EO) in experimental models of pain, anxiety and insomnia. The mechanisms of action involved in these activities were also investigated. MATERIAL AND METHODS Different experimental models were used to evaluate the antinociceptive (acetic acid, formalin-induced nociception and hot plate tests), anxiolytic (elevated plus maze and hole board tests) and sedative (thiopental-induced sleeping time) effects of EO in mice. EO was evaluated in three different doses (25, 50 and 100 mg/kg, i.p.) and compared with positive and negative controls in all experimental protocols. When appropriate, animals were pretreated with pharmacological antagonists (naloxone, atropine and flumazenil) in order to evaluate the mechanisms of action involved. A docking study also was performed to identify possible targets involved. RESULTS EO (25, 50 and 100 mg/kg, i.p.) demonstrated a significant antinociceptive activity in all experimental models. Pretreatment with naloxone or atropine reversed the antinociceptive response (p < 0.05), suggesting the involvement of opioid and muscarinic receptors, respectively. A docking study was performed with the major components identified in EO (1,8 cineole - 21.42%, spathulenol - 15.47%, p-cymene - 12.41% and caryophyllene oxide - 12.15%), demonstrating favorable interaction profile with different subtypes of muscarinic (M2, M3 and M4) and opioids (delta and mu) receptors. EO also showed anxiolytic (mainly at doses of 25 and 50 mg/kg, i.p.) and sedative (only at the dose of 100 mg/kg, i.p.) effects in mice. These pharmacological responses were reversed by flumazenil (p < 0.05), indicating possible involvement of GABAA receptors. CONCLUSION Our findings support the traditional use of this plant as a natural analgesic and suggest that EO is a multi-target natural product, presenting not only antinociceptive effect but also anxiolytic and sedative activities depending on the dose used.
Collapse
Affiliation(s)
- Raimundo Gonçalves de Oliveira Júnior
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Christiane Adrielly Alves Ferraz
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Juliane Cabral Silva
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Roxana Braga de Andrade Teles
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Mariana Gama Silva
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Tâmara Coimbra Diniz
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Uiliane Soares Dos Santos
- Empresa Brasileira de Pesquisa Agropecuária do Semiárido (EMBRAPA-Semiárido), Petrolina, Pernambuco, Brazil
| | | | | | - Marcos José Salvador
- Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vitor Prates Lorenzo
- Instituto Federal de Educação, Ciência e Tecnologia Sertão Pernambucano, Petrolina, Pernambuco, Brazil
| | | | | |
Collapse
|