1
|
Li T, Borg AJE, Krammer L, Breinbauer R, Nidetzky B. One-Pot Hetero-Di-C-Glycosylation of the Natural Polyphenol Phloretin by a Single C-Glycosyltransferase With Broad Sugar Substrate Specificity. Biotechnol Bioeng 2025; 122:1296-1304. [PMID: 39918272 PMCID: PMC11975207 DOI: 10.1002/bit.28948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 04/08/2025]
Abstract
The structural motif of hetero-di-C-glycosyl compound is prominent in plant polyphenol natural products and involves two different glycosyl residues (e.g., β-d-glucosyl, β-d-xylosyl) attached to carbons of the same phenolic ring. Polyphenol hetero-di-C-glycosides attract attention as specialized ingredients of herbal medicines and their tailored synthesis by enzymatic C-glycosylation is promising to overcome limitations of low natural availability and to expand molecular diversity to new-to-nature glycoside structures. However, installing these di-C-glycoside structures with synthetic precision and efficiency is challenging. Here we have characterized the syntheses of C-β-galactosyl-C-β-glucosyl and C-β-glucosyl-C-β-xylosyl structures on the phloroglucinol ring of the natural polyphenol phloretin, using kumquat (Fortunella crassifolia) C-glycosyltransferase (FcCGT). The FcCGT uses uridine 5'-diphosphate (UDP)-galactose (5 mU/mg) and UDP-xylose (0.3 U/mg) at lower activity than UDP-glucose (3 U/mg). The 3'-C-β-glucoside (nothofagin) is ~10-fold less reactive than non-glycosylated phloretin with all UDP-sugars, suggesting the practical order of hetero-di-C-glycosylation as C-galactosylation or C-xylosylation of phloretin followed by C-glucosylation of the resulting mono-C-glycoside. Each C-glycosylation performed in the presence of twofold excess of UDP-sugar proceeds to completion and appears to be effectively irreversible, as evidenced by the absence of glycosyl residue exchange at extended reaction times. Synthesis of C-β-glucosyl-C-β-xylosyl phloretin is shown at 10 mM concentration in quantitative conversion using cascade reaction of FcCGT and UDP-xylose synthase, allowing for in situ formation of UDP-xylose from the more expedient donor substrate UDP-glucuronic acid. The desired di-C-glycoside with Xyl or Gal was obtained as a single product of the synthesis and its structure was confirmed by NMR.
Collapse
Affiliation(s)
- Tuo Li
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyGrazAustria
| | - Annika J. E. Borg
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyGrazAustria
- Austrian Centre of Industrial Biotechnology (acib)GrazAustria
| | - Leo Krammer
- Institute of Organic ChemistryGraz University of TechnologyGrazAustria
| | - Rolf Breinbauer
- Institute of Organic ChemistryGraz University of TechnologyGrazAustria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical EngineeringGraz University of TechnologyGrazAustria
- Austrian Centre of Industrial Biotechnology (acib)GrazAustria
| |
Collapse
|
2
|
Hussnaetter KP, Palm P, Pich A, Franzreb M, Rapp E, Elling L. Strategies for Automated Enzymatic Glycan Synthesis (AEGS). Biotechnol Adv 2023; 67:108208. [PMID: 37437855 DOI: 10.1016/j.biotechadv.2023.108208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Glycans are the most abundant biopolymers on earth and are constituents of glycoproteins, glycolipids, and proteoglycans with multiple biological functions. The availability of different complex glycan structures is of major interest in biotechnology and basic research of biological systems. High complexity, establishment of general and ubiquitous synthesis techniques, as well as sophisticated analytics, are major challenges in the development of glycan synthesis strategies. Enzymatic glycan synthesis with Leloir-glycosyltransferases is an attractive alternative to chemical synthesis as it can achieve quantitative regio- and stereoselective glycosylation in a single step. Various strategies for synthesis of a wide variety of different glycan structures has already be established and will exemplarily be discussed in the scope of this review. However, the application of enzymatic glycan synthesis in an automated system has high demands on the equipment, techniques, and methods. Different automation approaches have already been shown. However, while these techniques have been applied for several glycans, only a few strategies are able to conserve the full potential of enzymatic glycan synthesis during the process - economical and enzyme technological recycling of enzymes is still rare. In this review, we show the major challenges towards Automated Enzymatic Glycan Synthesis (AEGS). First, we discuss examples for immobilization of glycans or glycosyltransferases as an important prerequisite for the embedment and implementation in an enzyme reactor. Next, improvement of bioreactors towards automation will be described. Finally, analysis and monitoring of the synthesis process are discussed. Furthermore, automation processes and cycle design are highlighted. Accordingly, the transition of recent approaches towards a universal automated glycan synthesis platform will be projected. To this end, this review aims to describe essential key features for AEGS, evaluate the current state-of-the-art and give thought- encouraging impulses towards future full automated enzymatic glycan synthesis.
Collapse
Affiliation(s)
- Kai Philip Hussnaetter
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry and DWI Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Matthias Franzreb
- Karlsruher Institute of Technology (KIT), Institute of Functional Interfaces, Hermann v. Helmholtz, Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestrasse 20 * ZENIT, 39120 Magdeburg, Germany; Max Planck Institute for Dynamics of Complex Technical System, Bioprocess Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany.
| |
Collapse
|
3
|
Computational Insight into Intraspecies Distinctions in Pseudoalteromonas distincta: Carotenoid-like Synthesis Traits and Genomic Heterogeneity. Int J Mol Sci 2023; 24:ijms24044158. [PMID: 36835570 PMCID: PMC9966250 DOI: 10.3390/ijms24044158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Advances in the computational annotation of genomes and the predictive potential of current metabolic models, based on more than thousands of experimental phenotypes, allow them to be applied to identify the diversity of metabolic pathways at the level of ecophysiology differentiation within taxa and to predict phenotypes, secondary metabolites, host-associated interactions, survivability, and biochemical productivity under proposed environmental conditions. The significantly distinctive phenotypes of members of the marine bacterial species Pseudoalteromonas distincta and an inability to use common molecular markers make their identification within the genus Pseudoalteromonas and prediction of their biotechnology potential impossible without genome-scale analysis and metabolic reconstruction. A new strain, KMM 6257, of a carotenoid-like phenotype, isolated from a deep-habituating starfish, emended the description of P. distincta, particularly in the temperature growth range from 4 to 37 °C. The taxonomic status of all available closely related species was elucidated by phylogenomics. P. distincta possesses putative methylerythritol phosphate pathway II and 4,4'-diapolycopenedioate biosynthesis, related to C30 carotenoids, and their functional analogues, aryl polyene biosynthetic gene clusters (BGC). However, the yellow-orange pigmentation phenotypes in some strains coincide with the presence of a hybrid BGC encoding for aryl polyene esterified with resorcinol. The alginate degradation and glycosylated immunosuppressant production, similar to brasilicardin, streptorubin, and nucleocidines, are the common predicted features. Starch, agar, carrageenan, xylose, lignin-derived compound degradation, polysaccharide, folate, and cobalamin biosynthesis are all strain-specific.
Collapse
|
4
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
5
|
Enzyme cascades for the synthesis of nucleotide sugars: Updates to recent production strategies. Carbohydr Res 2023; 523:108727. [PMID: 36521208 DOI: 10.1016/j.carres.2022.108727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022]
Abstract
Nucleotide sugars play an elementary role in nature as building blocks of glycans, polysaccharides, and glycoconjugates used in the pharmaceutical, cosmetics, and food industries. As substrates of Leloir-glycosyltransferases, nucleotide sugars are essential for chemoenzymatic in vitro syntheses. However, high costs and the limited availability of nucleotide sugars prevent applications of biocatalytic cascades on a large industrial scale. Therefore, the focus is increasingly on nucleotide sugar synthesis strategies to make significant application processes feasible. The chemical synthesis of nucleotide sugars and their derivatives is well established, but the yields of these processes are usually low. Enzyme catalysis offers a suitable alternative here, and in the last 30 years, many synthesis routes for nucleotide sugars have been discovered and used for production. However, many of the published procedures shy away from assessing the practicability of their processes. With this review, we give an insight into the development of the (chemo)enzymatic nucleotide sugar synthesis pathways of the last years and present an assessment of critical process parameters such as total turnover number (TTN), space-time yield (STY), and enzyme loading.
Collapse
|
6
|
Wang S, Zhang J, Wei F, Li W, Wen L. Facile Synthesis of Sugar Nucleotides from Common Sugars by the Cascade Conversion Strategy. J Am Chem Soc 2022; 144:9980-9989. [PMID: 35583341 DOI: 10.1021/jacs.2c03138] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sugar nucleotides are essential glycosylation donors in the carbohydrate metabolism. Naturally, most sugar nucleotides are derived from a limited number of common sugar nucleotides by de novo biosynthetic pathways, undergoing single or multiple reactions such as dehydration, epimerization, isomerization, oxidation, reduction, amination, and acetylation reactions. However, it is widely believed that such complex bioconversions are not practical for synthetic use due to the high preparation cost and great difficulties in product isolation. Therefore, most of the discovered sugar nucleotides are not readily available. Here, based on de novo biosynthesis mainly, 13 difficult-to-access sugar nucleotides were successfully prepared from two common sugars D-Man and sucrose in high yields, at a multigram scale, and without the need for tedious purification manipulations. This work demonstrated that de novo biosynthesis, although undergoing complex reactions, is also practical and cost-effective for synthetic use by employing a cascade conversion strategy.
Collapse
Affiliation(s)
- Shasha Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiang Su 210023, China
| | - Jiabin Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Fangyu Wei
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanjin Li
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Media, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiang Su 210023, China
| |
Collapse
|
7
|
Morales-Contreras JA, Rodríguez-Pérez JE, Álvarez-González CA, Martínez-López MC, Juárez-Rojop IE, Ávila-Fernández Á. Potential applications of recombinant bifidobacterial proteins in the food industry, biomedicine, process innovation and glycobiology. Food Sci Biotechnol 2021; 30:1277-1291. [PMID: 34721924 DOI: 10.1007/s10068-021-00957-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
Bifidobacterial proteins have been widely studied to elucidate the metabolic mechanisms of diet adaptation and survival of Bifidobacteria, among others. The use of heterologous expression systems to obtain proteins in sufficient quantities to be characterized has been essential in these studies. L. lactis and the same Bifidobacterium as expression systems highlight ways to corroborate some of the functions attributed to these proteins. The most studied proteins are enzymes related to carbohydrate metabolism, particularly glycosidases, due to their potential application in the synthesis of neoglycoconjugates, prebiotic neooligosaccharides, and active metabolites as well as their high specificity and efficiency in processing glycoconjugates. In this review, we classified the recombinant bifidobacterial proteins reported to date whose characterization has demonstrated their usefulness or their ability to produce a product of commercial interest for the food industry, biomedicine, process innovation and glycobiology. Future directions for their study are also discussed. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00957-1.
Collapse
Affiliation(s)
- José A Morales-Contreras
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Jessica E Rodríguez-Pérez
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Carlos A Álvarez-González
- Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Mirian C Martínez-López
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| | - Isela E Juárez-Rojop
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico.,Laboratorio de Acuacultura, DACBiol-UJAT, Carr. Villahermosa-Cárdenas Km 0.5, 86139 Villahermosa, Tabasco Mexico
| | - Ángela Ávila-Fernández
- Centro de Investigación, DACS-Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez no. 2838-A. Col. Tamulté, 86150 Villahermosa, Centro, Tabasco Mexico
| |
Collapse
|
8
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
10
|
Qiao M, Li B, Ji Y, Lin L, Linhardt R, Zhang X. Synthesis of selected unnatural sugar nucleotides for biotechnological applications. Crit Rev Biotechnol 2020; 41:47-62. [PMID: 33153306 DOI: 10.1080/07388551.2020.1844623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sugar nucleotides are the principal building blocks for the synthesis of most complex carbohydrates and are crucial intermediates in carbohydrate metabolism. Uridine diphosphate (UDP) monosaccharides are among the most common sugar nucleotide donors and are transferred to glycosyl acceptors by glycosyltransferases or synthases in glycan biosynthetic pathways. These natural nucleotide donors have great biological importance, however, the synthesis and application of unnatural sugar nucleotides that are not available from in vivo biosynthesis are not well explored. In this review, we summarize the progress in the preparation of unnatural sugar nucleotides, in particular, the widely studied UDP-GlcNAc/GalNAc analogs. We focus on the "two-block" synthetic pathway that is initiated from monosaccharides, in which the first block is the synthesis of sugar-1-phosphate and the second block is the diphosphate bond formation. The biotechnological applications of these unnatural sugar nucleotides showing their physiological and pharmacological potential are discussed.
Collapse
Affiliation(s)
- Meng Qiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Nanjing, China
| | - Robert Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Li S, Wang J, Zang L, Zhu H, Guo J, Zhang J, Wen L, Chen Y, Li Y, Chen X, Wang PG, Li J. Production of Glycopeptide Derivatives for Exploring Substrate Specificity of Human OGA Toward Sugar Moiety. Front Chem 2019; 6:646. [PMID: 30693278 PMCID: PMC6340312 DOI: 10.3389/fchem.2018.00646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 01/10/2023] Open
Abstract
O-GlcNAcase (OGA) is the only enzyme responsible for removing N-acetyl glucosamine (GlcNAc) attached to serine and threonine residues on proteins. This enzyme plays a key role in O-GlcNAc metabolism. However, the structural features of the sugar moiety recognized by human OGA (hOGA) remain unclear. In this study, a set of glycopeptides with modifications on the GlcNAc residue, were prepared in a recombinant full-length human OGT-catalyzed reaction, using chemoenzymatically synthesized UDP-GlcNAc derivatives. The resulting glycopeptides were used to evaluate the substrate specificity of hOGA toward the sugar moiety. This study will provide insights into the exploration of probes for O-GlcNAc modification, as well as a better understanding of the roles of O-GlcNAc in cellular physiology.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Jiajia Wang
- School of Basic Medical Sciences, Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China.,Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Lanlan Zang
- Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Hailiang Zhu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jiabin Zhang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, United States
| | - Yi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, United States.,State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|