1
|
Curtis ER, Jones CM, Martínez TJ. Initial Conditions for Excited-State Dynamics in Solvated Systems: A Case Study. J Phys Chem B 2025; 129:2030-2042. [PMID: 39931914 DOI: 10.1021/acs.jpcb.4c06536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Simulating excited-state dynamics or computing spectra for molecules in condensed phases requires sampling the ground state to generate initial conditions. Initial conditions (or snapshots for spectra) are typically produced by QM/MM Boltzmann sampling following MM equilibration or optimization. Given the switch from a MM to a QM/MM potential energy surface, one should discard a set period of time (which we call the "healing time") from the beginning of the QM/MM trajectory. Ideally, the healing time is as short as possible (to avoid unnecessary computational effort), but long enough to equilibrate to the QM/MM ground state distribution. Healing times in previous studies range from tens of femtoseconds to tens of picoseconds, suggesting the need for guidelines to choose a healing time. We examine the effect of healing time on the nonadiabatic dynamics and spectrum of a first-generation Donor-Acceptor Stenhouse Adduct in chloroform. Insufficient healing times skew the branching ratio of ground state products and alter the relaxation time for one pathway. The influence of the healing time on the absorption spectrum is less pronounced, warning that the spectrum is not a sensitive indicator for the quality of a set of initial conditions for dynamics. We demonstrate that a reasonable estimate for the healing time can be obtained by monitoring the solute temperature during the healing trajectory. We suggest that this procedure should become standard practice for determining healing times to generate initial conditions for nonadiabatic QM/MM simulations in large molecules and condensed phases.
Collapse
Affiliation(s)
- Ethan R Curtis
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Chey M Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| |
Collapse
|
2
|
Xu W, Xu H, Zhu M, Wen J. Ultrafast dynamics in spatially confined photoisomerization: accelerated simulations through machine learning models. Phys Chem Chem Phys 2024; 26:25994-26003. [PMID: 39370956 DOI: 10.1039/d4cp01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This study sheds light on the exploration of photoresponsive host-guest systems, highlighting the intricate interplay between confined spaces and photosensitive guest molecules. Conducting nonadiabatic molecular dynamics (NAMD) simulations based on electronic structure calculations for such large systems remains a formidable challenge. By leveraging machine learning (ML) as an accelerator for NAMD simulations, we analytically constructed excited-state potential energy surfaces along relevant collective variables to investigate photoisomerization processes efficiently. Combining the quantum mechanics/molecular mechanics (QM/MM) methodology with ML-based NAMD simulations, we elucidated the reaction pathways and identified the key degrees of freedom as reaction coordinates leading to conical intersections. A machine learning-based nonadiabatic dynamics model has been developed to compare the excited-state dynamics of the guest molecule, benzopyran, in both the gas phase and its behavior within the confined space of cucurbit[5]uril. This comparative analysis was designed to determine the influence of the environment on the photoisomerization rate of the guest molecule. The results underscore the effectiveness of ML models in simulating trajectory evolution in a cost-effective manner. This research offers a practical approach to accelerate NAMD simulations in large-scale systems of photochemical reactions, with potential applications in other host-guest complex systems.
Collapse
Affiliation(s)
- Weijia Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Haoyang Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Jin Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Polonius S, Lehrner D, González L, Mai S. Resolving Photoinduced Femtosecond Three-Dimensional Solute-Solvent Dynamics through Surface Hopping Simulations. J Chem Theory Comput 2024; 20:4738-4750. [PMID: 38768386 PMCID: PMC11171268 DOI: 10.1021/acs.jctc.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Photoinduced dynamics in solution is governed by mutual solute-solvent interactions, which give rise to phenomena like solvatochromism, the Stokes shift, dual fluorescence, or charge transfer. Understanding these phenomena requires simulating the solute's photoinduced dynamics and simultaneously resolving the three-dimensional solvent distribution dynamics. If using trajectory surface hopping (TSH) to this aim, thousands of trajectories are required to adequately sample the time-dependent three-dimensional solvent distribution functions, and thus resolve the solvent dynamics with sub-Ångstrom and femtosecond accuracy and sufficiently low noise levels. Unfortunately, simulating thousands of trajectories with TSH in the framework of hybrid quantum mechanical/molecular mechanical (QM/MM) can be prohibitively expensive when employing ab initio electronic structure methods. To tackle this challenge, we recently introduced a computationally efficient approach that combines efficient linear vibronic coupling models with molecular mechanics (LVC/MM) via electrostatic embedding [Polonius et al., JCTC 2023, 19, 7171-7186]. This method provides solvent-embedded, nonadiabatically coupled potential energy surfaces while scaling similarly to MM force fields. Here, we employ TSH with LVC/MM to unravel the photoinduced dynamics of two small thiocarbonyl compounds solvated in water. We describe how to estimate the number of trajectories required to produce nearly noise-free three-dimensional solvent distribution functions and present an analysis based on approximately 10,000 trajectories propagated for 3 ps. In the electronic ground state, both molecules exhibit in-plane hydrogen bonds to the sulfur atom. Shortly after excitation, these bonds are broken and reform perpendicular to the molecular plane on timescales that differ by an order of magnitude due to steric effects. We also show that the solvent relaxation dynamics is coupled to the electronic dynamics, including intersystem crossing. These findings are relevant to advance the understanding of the coupled solute-solvent dynamics of solvated photoexcited molecules, e.g., biologically relevant thio-nucleobases.
Collapse
Affiliation(s)
- Severin Polonius
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - David Lehrner
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
4
|
Turi L, Baranyi B, Madarász Á. 2-in-1 Phase Space Sampling for Calculating the Absorption Spectrum of the Hydrated Electron. J Chem Theory Comput 2024; 20:4265-4277. [PMID: 38727675 PMCID: PMC11137824 DOI: 10.1021/acs.jctc.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
The investigation of vibrational effects on absorption spectrum calculations often employs Wigner sampling or thermal sampling. While Wigner sampling incorporates zero-point energy, it may not be suitable for flexible systems. Thermal sampling is applicable to anharmonic systems yet treats nuclei classically. The application of generalized smoothed trajectory analysis (GSTA) as a postprocessing method allows for the incorporation of nuclear quantum effects (NQEs), combining the advantages of both sampling methods. We demonstrate this approach in computing the absorption spectrum of a hydrated electron. Theoretical exploration of the hydrated electron and its embryonic forms, such as water cluster anions, poses a significant challenge due to the diffusivity of the excess electron and the continuous motion of water molecules. In many previous studies, the wave nature of atomic nuclei is often neglected, despite the substantial impact of NQEs on thermodynamic and spectroscopic properties, particularly for hydrogen atoms. In our studies, we examine these NQEs for the excess electrons in various water systems. We obtained structures from mixed classical-quantum simulations for water cluster anions and the hydrated electron by incorporating the quantum effects of atomic nuclei with the filtration of the classical trajectories. Absorption spectra were determined at different theoretical levels. Our results indicate significant NQEs, red shift, and broadening of the spectra for hydrated electron systems. This study demonstrates the applicability of GSTA to complex systems, providing insights into NQEs on energetic and structural properties.
Collapse
Affiliation(s)
- László Turi
- Institute
of Chemistry, ELTE, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Bence Baranyi
- Institute
of Chemistry, ELTE, Eötvös
Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary
| | - Ádám Madarász
- Research
Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
5
|
Franz J, Oelschlegel M, Zobel JP, Hua SA, Borter JH, Schmid L, Morselli G, Wenger OS, Schwarzer D, Meyer F, González L. Bifurcation of Excited-State Population Leads to Anti-Kasha Luminescence in a Disulfide-Decorated Organometallic Rhenium Photosensitizer. J Am Chem Soc 2024; 146. [PMID: 38598687 PMCID: PMC11046484 DOI: 10.1021/jacs.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
We report a rhenium diimine photosensitizer equipped with a peripheral disulfide unit on one of the bipyridine ligands, [Re(CO)3(bpy)(S-Sbpy4,4)]+ (1+, bpy = 2,2'-bipyridine, S-Sbpy4,4 = [1,2]dithiino[3,4-c:6,5-c']dipyridine), showing anti-Kasha luminescence. Steady-state and ultrafast time-resolved spectroscopies complemented by nonadiabatic dynamics simulations are used to disclose its excited-state dynamics. The calculations show that after intersystem crossing the complex evolves to two different triplet minima: a (S-Sbpy4,4)-ligand-centered excited state (3LC) lying at lower energy and a metal-to-(bpy)-ligand charge transfer (3MLCT) state at higher energy, with relative yields of 90% and 10%, respectively. The 3LC state involves local excitation of the disulfide group into the antibonding σ* orbital, leading to significant elongation of the S-S bond. Intriguingly, it is the higher-lying 3MLCT state, which is assigned to display luminescence with a lifetime of 270 ns: a signature of anti-Kasha behavior. This assignment is consistent with an energy barrier ≥ 0.6 eV or negligible electronic coupling, preventing reaction toward the 3LC state after the population is trapped in the 3MLCT state. This study represents a striking example on how elusive excited-state dynamics of transition-metal photosensitizers can be deciphered by synergistic experiments and state-of-the-art calculations. Disulfide functionalization lays the foundation of a new design strategy toward harnessing excess energy in a system for possible bimolecular electron or energy transfer reactivity.
Collapse
Affiliation(s)
- Julia Franz
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Manuel Oelschlegel
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - J. Patrick Zobel
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| | - Shao-An Hua
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Jan-Hendrik Borter
- Department
of Dynamics at Surfaces, Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Lucius Schmid
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Giacomo Morselli
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St.-Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Dirk Schwarzer
- Department
of Dynamics at Surfaces, Max-Planck-Institute
for Multidisciplinary Sciences, Am Faßberg 11, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
- International
Center for Advanced Studies of Energy Conversion (ICASEC), D-37077 Göttingen, Germany
| | - Leticia González
- Institute
of Theoretical Chemistry, University of
Vienna, Währinger Straße 17, A-1090 Vienna, Austria
- Vienna Research
Platform for Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Polonius S, Zhuravel O, Bachmair B, Mai S. LVC/MM: A Hybrid Linear Vibronic Coupling/Molecular Mechanics Model with Distributed Multipole-Based Electrostatic Embedding for Highly Efficient Surface Hopping Dynamics in Solution. J Chem Theory Comput 2023; 19:7171-7186. [PMID: 37788824 PMCID: PMC10601485 DOI: 10.1021/acs.jctc.3c00805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 10/05/2023]
Abstract
We present a theoretical framework for a hybrid linear vibronic coupling model electrostatically embedded into a molecular mechanics environment, termed the linear vibronic coupling/molecular mechanics (LVC/MM) method, for the surface hopping including arbitrary coupling (SHARC) molecular dynamics package. Electrostatic embedding is realized through the computation of interactions between environment point charges and distributed multipole expansions (DMEs, up to quadrupoles) that represent each electronic state and transition densities in the diabatic basis. The DME parameters are obtained through a restrained electrostatic potential (RESP) fit, which we extended to yield higher-order multipoles. We also implemented in SHARC a scheme for achieving roto-translational invariance of LVC models as well as a general quantum mechanics/molecular mechanics (QM/MM) interface, an OpenMM interface, and restraining potentials for simulating liquid droplets. Using thioformaldehyde in water as a test case, we demonstrate that LVC/MM can accurately reproduce the solvation structure and energetics of rigid solutes, with errors on the order of 1-2 kcal/mol compared to a BP86/MM reference. The implementation in SHARC is shown to be very efficient, enabling the simulation of trajectories on the nanosecond time scale in a matter of days.
Collapse
Affiliation(s)
- Severin Polonius
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Oleksandra Zhuravel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Brigitta Bachmair
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Research
Platform on Accelerating Photoreaction Discovery (ViRAPID), University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
7
|
Prlj A, Hollas D, Curchod BFE. Deciphering the Influence of Ground-State Distributions on the Calculation of Photolysis Observables. J Phys Chem A 2023; 127:7400-7409. [PMID: 37556330 PMCID: PMC10493954 DOI: 10.1021/acs.jpca.3c02333] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Nonadiabatic molecular dynamics offers a powerful tool for studying the photochemistry of molecular systems. Key to any nonadiabatic molecular dynamics simulation is the definition of its initial conditions (ICs), ideally representing the initial molecular quantum state of the system of interest. In this work, we provide a detailed analysis of how ICs may influence the calculation of experimental observables by focusing on the photochemistry of methylhydroperoxide (MHP), the simplest and most abundant organic peroxide in our atmosphere. We investigate the outcome of trajectory surface hopping simulations for distinct sets of ICs sampled from different approximate quantum distributions, namely harmonic Wigner functions and ab initio molecular dynamics using a quantum thermostat (QT). Calculating photoabsorption cross-sections, quantum yields, and translational kinetic energy maps from the results of these simulations reveals the significant effect of the ICs, in particular when low-frequency (∼ a few hundred cm-1) normal modes are connected to the photophysics of the molecule. Overall, our results indicate that sampling ICs from ab initio molecular dynamics using a QT is preferable for flexible molecules with photoactive low-frequency modes. From a photochemical perspective, our nonadiabatic dynamics simulations offer an explanation for a low-energy tail observed at high excitation energy in the translational kinetic energy map of MHP.
Collapse
Affiliation(s)
- Antonio Prlj
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
- Division
of Physical Chemistry, Ruđer Bošković
Institute, Zagreb 10000, Croatia
| | - Daniel Hollas
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Basile F. E. Curchod
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
8
|
Šrut A, Lear BJ, Krewald V. The Marcus dimension: identifying the nuclear coordinate for electron transfer from ab initio calculations. Chem Sci 2023; 14:9213-9225. [PMID: 37655015 PMCID: PMC10466304 DOI: 10.1039/d3sc01402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/06/2023] [Indexed: 09/02/2023] Open
Abstract
The Marcus model forms the foundation for all modern discussion of electron transfer (ET). In this model, ET results in a change in diabatic potential energy surfaces, separated along an ET nuclear coordinate. This coordinate accounts for all nuclear motion that promotes electron transfer. It is usually assumed to be dominated by a collective asymmetric vibrational motion of the redox sites involved in the ET. However, this coordinate is rarely quantitatively specified. Instead, it remains a nebulous concept, rather than a tool for gaining true insight into the ET pathway. Herein, we describe an ab initio approach for quantifying the ET coordinate and demonstrate it for a series of dinitroradical anions. Using sampling methods at finite temperature combined with density functional theory calculations, we find that the electron transfer can be followed using the energy separation between potential energy surfaces and the extent of electron localization. The precise nuclear motion that leads to electron transfer is then obtained as a linear combination of normal modes. Once the coordinate is identified, we find that evolution along it results in a change in diabatic state and optical excitation energy, as predicted by the Marcus model. Thus, we conclude that a single dimension of the electron transfer described in Marcus-Hush theory can be described as a well-defined nuclear motion. Importantly, our approach allows the separation of the intrinsic electron transfer coordinate from other structural relaxations and environmental influences. Furthermore, the barrier separating the adiabatic minima was found to be sufficiently thin to enable heavy-atom tunneling in the ET process.
Collapse
Affiliation(s)
- Adam Šrut
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University University Park PA 16802 USA
| | - Vera Krewald
- Department of Chemistry, Theoretical Chemistry, TU Darmstadt Peter-Grünberg-Straße 4 64287 Darmstadt Germany
| |
Collapse
|
9
|
Mandal M, Rajak K, Maiti B. Mechanistic Insight and Intersystem Crossing Dynamics of the C( 3P) + H 2CO/D 2CO Reaction. J Phys Chem A 2023. [PMID: 37209129 DOI: 10.1021/acs.jpca.3c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The reaction of atomic carbon, C(3P), with H2CO has been investigated using the direct dynamics trajectory surface hopping (DDTSH) method with Tully's fewest switches algorithm. The lowest lying ground triplet and single states are considered for the dynamics study at a reagent collision energy of 8.0 kcal/mol. From the trajectory calculations, we observed that CH2 + CO and H + HCCO are the two major product channels for the title reaction. The insertion mechanism of the C(3P) + H2CO reaction is rather complex and is followed by three distinct intermediates with no entrance channel barrier to the reaction on the B3LYP/6-31G(d,p) potential energy surfaces. The triplet insertion complexes are formed by three different approaches; "Sideways", "End-on" and "Head-on" attack of the triplet carbon atom toward H2CO molecule. Our dynamics calculations predict a new product channel (H + HCCO(X 2A'')) with a contribution of ∼46% of the overall products formation via ketocarbene intermediate through "Head-on" approach. Despite the weak spin-orbit coupling (SOC) interactions, intersystem crossing (ISC) via a ketocarbene intermediate has a small but significant contribution, about 2.3%, for the CH2 + CO channel. To understand the kinetic isotope effects on the reaction dynamics, we have extended our study for the C(3P) + D2CO reaction. It is seen that isotopic substitution of both the H atoms has a small reduction in the extent of ISC dynamics for the carbene formation. Our results, certainly, reveal the importance of the ketocarbene intermediate and the H + HCCO products channel as one of the major product formation channels in the title reaction, which was not reported earlier.
Collapse
Affiliation(s)
- Mrinmoy Mandal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Karunamoy Rajak
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Biswajit Maiti
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
10
|
Valverde D, Mai S, Canuto S, Borin AC, González L. Ultrafast Intersystem Crossing Dynamics of 6-Selenoguanine in Water. JACS AU 2022; 2:1699-1711. [PMID: 35911449 PMCID: PMC9327080 DOI: 10.1021/jacsau.2c00250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rationalizing the photochemistry of nucleobases where an oxygen is replaced by a heavier atom is essential for applications that exploit near-unity triplet quantum yields. Herein, we report on the ultrafast excited-state deactivation mechanism of 6-selenoguanine (6SeGua) in water by combining nonadiabatic trajectory surface-hopping dynamics with an electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) scheme. We find that the predominant relaxation mechanism after irradiation starts on the bright singlet S2 state that converts internally to the dark S1 state, from which the population is transferred to the triplet T2 state via intersystem crossing and finally to the lowest T1 state. This S2 → S1 → T2 → T1 deactivation pathway is similar to that observed for the lighter 6-thioguanine (6tGua) analogue, but counterintuitively, the T1 lifetime of the heavier 6SeGua is shorter than that of 6tGua. This fact is explained by the smaller activation barrier to reach the T1/S0 crossing point and the larger spin-orbit couplings of 6SeGua compared to 6tGua. From the dynamical simulations, we also calculate transient absorption spectra (TAS), which provide two time constants (τ1 = 131 fs and τ2 = 191 fs) that are in excellent agreement with the experimentally reported value (τexp = 130 ± 50 fs) (Farrel et al. J. Am. Chem. Soc. 2018, 140, 11214). Intersystem crossing itself is calculated to occur with a time scale of 452 ± 38 fs, highlighting that the TAS is the result of a complex average of signals coming from different nonradiative processes and not intersystem crossing alone.
Collapse
Affiliation(s)
- Danillo Valverde
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Sebastian Mai
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Sylvio Canuto
- Institute
of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo CEP 05508-090, Brazil
| | - Antonio Carlos Borin
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, São Paulo CEP 05508-000, Brazil
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
11
|
Zederkof DB, Møller KB, Nielsen MM, Haldrup K, González L, Mai S. Resolving Femtosecond Solvent Reorganization Dynamics in an Iron Complex by Nonadiabatic Dynamics Simulations. J Am Chem Soc 2022; 144:12861-12873. [PMID: 35776920 PMCID: PMC9305979 DOI: 10.1021/jacs.2c04505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The ultrafast dynamical
response of solute–solvent interactions
plays a key role in transition metal complexes, where charge transfer
states are ubiquitous. Nonetheless, there exist very few excited-state
simulations of transition metal complexes in solution. Here, we carry
out a nonadiabatic dynamics study of the iron complex [Fe(CN)4(bpy)]2– (bpy = 2,2′-bipyridine)
in explicit aqueous solution. Implicit solvation models were found
inadequate for reproducing the strong solvatochromism in the absorption
spectra. Instead, direct solute–solvent interactions, in the
form of hydrogen bonds, are responsible for the large observed solvatochromic
shift and the general dynamical behavior of the complex in water.
The simulations reveal an overall intersystem crossing time scale
of 0.21 ± 0.01 ps and a strong reliance of this process
on nuclear motion. A charge transfer character analysis shows a branched
decay mechanism from the initially excited singlet metal-to-ligand
charge transfer (1MLCT) states to triplet states of 3MLCT and metal-centered (3MC) character. We also
find that solvent reorganization after excitation is ultrafast, on
the order of 50 fs around the cyanides and slower around the
bpy ligand. In contrast, the nuclear vibrational dynamics, in the
form of Fe–ligand bond changes, takes place on slightly longer
time scales. We demonstrate that the surprisingly fast solvent reorganizing
should be observable in time-resolved X-ray solution scattering experiments,
as simulated signals show strong contributions from the solute–solvent
scattering cross term. Altogether, the simulations paint a comprehensive
picture of the coupled and concurrent electronic, nuclear, and solvent
dynamics and interactions in the first hundreds of femtoseconds after
excitation.
Collapse
Affiliation(s)
- Diana Bregenholt Zederkof
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark.,Scientific Instrument Femtosecond X-ray Experiments, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet, bygning 207, 2800 Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
12
|
Ten Brink M, Gräber S, Hopjan M, Jansen D, Stolpp J, Heidrich-Meisner F, Blöchl PE. Real-time non-adiabatic dynamics in the one-dimensional Holstein model: Trajectory-based vs exact methods. J Chem Phys 2022; 156:234109. [PMID: 35732530 DOI: 10.1063/5.0092063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We benchmark a set of quantum-chemistry methods, including multitrajectory Ehrenfest, fewest-switches surface-hopping, and multiconfigurational-Ehrenfest dynamics, against exact quantum-many-body techniques by studying real-time dynamics in the Holstein model. This is a paradigmatic model in condensed matter theory incorporating a local coupling of electrons to Einstein phonons. For the two-site and three-site Holstein model, we discuss the exact and quantum-chemistry methods in terms of the Born-Huang formalism, covering different initial states, which either start on a single Born-Oppenheimer surface, or with the electron localized to a single site. For extended systems with up to 51 sites, we address both the physics of single Holstein polarons and the dynamics of charge-density waves at finite electron densities. For these extended systems, we compare the quantum-chemistry methods to exact dynamics obtained from time-dependent density matrix renormalization group calculations with local basis optimization (DMRG-LBO). We observe that the multitrajectory Ehrenfest method, in general, only captures the ultrashort time dynamics accurately. In contrast, the surface-hopping method with suitable corrections provides a much better description of the long-time behavior but struggles with the short-time description of coherences between different Born-Oppenheimer states. We show that the multiconfigurational Ehrenfest method yields a significant improvement over the multitrajectory Ehrenfest method and can be converged to the exact results in small systems with moderate computational efforts. We further observe that for extended systems, this convergence is slower with respect to the number of configurations. Our benchmark study demonstrates that DMRG-LBO is a useful tool for assessing the quality of the quantum-chemistry methods.
Collapse
Affiliation(s)
- M Ten Brink
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - S Gräber
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - M Hopjan
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - D Jansen
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - J Stolpp
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - F Heidrich-Meisner
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - P E Blöchl
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Avagliano D, Lorini E, González L. Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200381. [PMID: 35341304 PMCID: PMC8958275 DOI: 10.1098/rsta.2020.0381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/01/2021] [Indexed: 05/29/2023]
Abstract
The impact of different initial conditions in non-adiabatic trajectory surface hopping dynamics within a hybrid quantum mechanical/molecular mechanics scheme is investigated. The influence of a quantum sampling, based on a Wigner distribution, a fully thermal sampling, based on classical molecular dynamics, and a quantum sampled system, but thermally equilibrated with the environment, is investigated on the relaxation dynamics of solvated fulvene after light irradiation. We find that the decay from the first singlet excited state to the ground state shows high dependency on the initial condition and simulation parameters. The three sampling methods lead to different distributions of initial geometries and momenta, which then affect the fate of the excited state dynamics. We evaluated both the effect of sampling geometries and momenta, analysing how the ultrafast decay of fulvene changes accordingly. The results are expected to be of interest to decide how to initialize non-adiabatic dynamics in the presence of the environment. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
Collapse
Affiliation(s)
- Davide Avagliano
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Emilio Lorini
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Leticia González
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| |
Collapse
|
14
|
Prlj A, Marsili E, Hutton L, Hollas D, Shchepanovska D, Glowacki DR, Slavíček P, Curchod BFE. Calculating Photoabsorption Cross-Sections for Atmospheric Volatile Organic Compounds. ACS EARTH & SPACE CHEMISTRY 2022; 6:207-217. [PMID: 35087992 PMCID: PMC8785186 DOI: 10.1021/acsearthspacechem.1c00355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 05/30/2023]
Abstract
Characterizing the photochemical reactivity of transient volatile organic compounds (VOCs) in our atmosphere begins with a proper understanding of their abilities to absorb sunlight. Unfortunately, the photoabsorption cross-sections for a large number of transient VOCs remain unavailable experimentally due to their short lifetime or high reactivity. While structure-activity relationships (SARs) have been successfully employed to estimate the unknown photoabsorption cross-sections of VOCs, computational photochemistry offers another promising strategy to predict not only the vertical electronic transitions of a given molecule but also the width and shape of the bands forming its absorption spectrum. In this work, we focus on the use of the nuclear ensemble approach (NEA) to determine the photoabsorption cross-section of four exemplary VOCs, namely, acrolein, methylhydroperoxide, 2-hydroperoxy-propanal, and (microsolvated) pyruvic acid. More specifically, we analyze the influence that different strategies for sampling the ground-state nuclear density-Wigner sampling and ab initio molecular dynamics with a quantum thermostat-can have on the simulated absorption spectra. We highlight the potential shortcomings of using uncoupled harmonic modes within Wigner sampling of nuclear density to describe flexible or microsolvated VOCs and some limitations of SARs for multichromophoric VOCs. Our results suggest that the NEA could constitute a powerful tool for the atmospheric community to predict the photoabsorption cross-section for transient VOCs.
Collapse
Affiliation(s)
- Antonio Prlj
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Emanuele Marsili
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Lewis Hutton
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | - Daniel Hollas
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague, Technická 5, Prague 16628, Czech Republic
| | - Darya Shchepanovska
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K.
| | - David R. Glowacki
- ArtSci
International Foundation, 5th Floor Mariner House, Bristol BS1 4QD, U.K.
- CiTIUS
Intelligent Technologies Research Centre, Rúa de Jenaro de La Fuente, s/n, Santiago de Compostela 15705, A Coruña, Spain
| | - Petr Slavíček
- Department
of Physical Chemistry, University of Chemistry
and Technology, Prague, Technická 5, Prague 16628, Czech Republic
| | | |
Collapse
|
15
|
Fehér PP, Madarász Á, Stirling A. Multiscale Modeling of Electronic Spectra Including Nuclear Quantum Effects. J Chem Theory Comput 2021; 17:6340-6352. [PMID: 34582200 PMCID: PMC8515811 DOI: 10.1021/acs.jctc.1c00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Indexed: 11/28/2022]
Abstract
Theoretical prediction of electronic absorption spectra without input from experiments is no easy feat, as it requires addressing all of the factors that affect line shapes. In practice, however, the methodologies are limited to treat these ingredients only to a certain extent. Here, we present a multiscale protocol that addresses the temperature, solvent, and nuclear quantum effects as well as anharmonicity and the reconstruction of the final spectra from individual transitions. First, quantum mechanics/molecular mechanics (QM/MM) molecular dynamics is conducted to obtain trajectories of solute-solvent configurations, from which the corresponding quantum-corrected ensembles are generated through the generalized smoothed trajectory analysis (GSTA). The optical spectra of the ensembles are then produced by calculating vertical transitions using time-dependent density-functional theory (TDDFT) with implicit solvation. To obtain the final spectral shapes, the stick spectra from TDDFT are convoluted with Gaussian kernels where the half-widths are determined by a statistically motivated strategy. We have tested our method by calculating the UV-vis spectra of a recently discovered acridine photocatalyst in two redox states. Vibronic progressions and broadenings due to the finite lifetime of the excited states are not included in the methodology yet. Nuclear quantization affects the relative peak intensities and widths, which is necessary to reproduce the experimental spectrum. We have also found that using only the optimized geometry of each molecule works surprisingly well if a proper empirical broadening factor is applied. This is explained by the rigidity of the conjugated chromophore moieties of the selected molecules, which are mainly responsible for the excitations in the spectra. In contrast, we have also shown that other parts of the molecules are flexible enough to feature anharmonicities that impair the use of other techniques such as Wigner sampling.
Collapse
Affiliation(s)
- Péter P. Fehér
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Ádám Madarász
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - András Stirling
- Institute
of Organic Chemistry, Research Centre for
Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
- Department
of Chemistry, Eszterházy Károly
University, Leányka
u. 6, 3300 Eger, Hungary
| |
Collapse
|
16
|
Wernbacher AM, González L. The importance of finite temperature and vibrational sampling in the absorption spectrum of a nitro-functionalized Ru(ii) water oxidation catalyst. Phys Chem Chem Phys 2021; 23:17724-17733. [PMID: 34378587 PMCID: PMC8371993 DOI: 10.1039/d1cp02748d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/31/2021] [Indexed: 01/14/2023]
Abstract
Consideration of finite temperature and vibrational motion can be an essential component for accurate simulations of absorption spectra. Here we use finite-temperature Wigner phase-space sampling to investigate the intense absorption of the water oxidation catalyst Ru(dppip-NO2) in the visible (vis) region. The influence of vibrational and torsional motions as well as temperature effects are addressed for the different protonation forms of the pH-sensitive dppip-NO2 ligand of the catalyst. Excitations to the nitrophenyl group and π-system of dppip-NO2, which characterize the absorption band in the equilibrium spectra, experience energy shifts and a significant decrease in oscillator strength when nuclear motion is considered. The importance of excitations to the nitrophenyl group for the vis band is reduced in the spectra computed from the 300 K ensembles, which feature broad distributions of the corresponding dihedral angles. The effects of vibrational sampling on the absorption spectra may be attributed to nitrophenyl and, in particular, to NO2 torsional motions. We expect finite temperature and vibrational sampling to be important for simulating the absorption spectra of other transition metal complexes with flexible ligands or nitro-aromatic motifs.
Collapse
Affiliation(s)
- Anna M. Wernbacher
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna1090 ViennaWähringer Straße 17Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna1090 ViennaWähringer Straße 17Austria
| |
Collapse
|
17
|
Zobel JP, González L. The Quest to Simulate Excited-State Dynamics of Transition Metal Complexes. JACS AU 2021; 1:1116-1140. [PMID: 34467353 PMCID: PMC8397362 DOI: 10.1021/jacsau.1c00252] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 05/15/2023]
Abstract
This Perspective describes current computational efforts in the field of simulating photodynamics of transition metal complexes. We present the typical workflows and feature the strengths and limitations of the different contemporary approaches. From electronic structure methods suitable to describe transition metal complexes to approaches able to simulate their nuclear dynamics under the effect of light, we give particular attention to build a bridge between theory and experiment by critically discussing the different models commonly adopted in the interpretation of spectroscopic experiments and the simulation of particular observables. Thereby, we review all the studies of excited-state dynamics on transition metal complexes, both in gas phase and in solution from reduced to full dimensionality.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
| |
Collapse
|
18
|
Avagliano D, Bonfanti M, Garavelli M, González L. QM/MM Nonadiabatic Dynamics: the SHARC/COBRAMM Approach. J Chem Theory Comput 2021; 17:4639-4647. [PMID: 34114454 DOI: 10.1021/acs.jctc.1c00318] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the SHARC/COBRAMM approach to enable easy and efficient excited-state dynamics simulations at different levels of electronic structure theory in the presence of complex environments using a quantum mechanics/molecular mechanics (QM/MM) setup. SHARC is a trajectory surface-hoping method that can incorporate the simultaneous effects of nonadiabatic and spin-orbit couplings in the excited-state dynamics of molecular systems. COBRAMM allows ground- and excited-state QM/MM calculations using a subtractive scheme, with electrostatic embedding and a hydrogen link-atom approach. The combination of both free and open-source program packages provides a modular and extensive framework to model nonadiabatic processes after light irradiation from the atomistic scale to the nano-scale. As an example, the relaxation of acrolein from S1 to T1 in solution is provided.
Collapse
Affiliation(s)
- Davide Avagliano
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| | - Matteo Bonfanti
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale Del Risorgimento, 4, I-40136 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Viale Del Risorgimento, 4, I-40136 Bologna, Italy
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria.,Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, A-1180 Vienna, Austria
| |
Collapse
|
19
|
Borrego-Sánchez A, Zemmouche M, Carmona-García J, Francés-Monerris A, Mulet P, Navizet I, Roca-Sanjuán D. Multiconfigurational Quantum Chemistry Determinations of Absorption Cross Sections (σ) in the Gas Phase and Molar Extinction Coefficients (ε) in Aqueous Solution and Air-Water Interface. J Chem Theory Comput 2021; 17:3571-3582. [PMID: 33974417 PMCID: PMC8444339 DOI: 10.1021/acs.jctc.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/29/2022]
Abstract
Theoretical determinations of absorption cross sections (σ) in the gas phase and molar extinction coefficients (ε) in condensed phases (water solution, interfaces or surfaces, protein or nucleic acids embeddings, etc.) are of interest when rates of photochemical processes, J = ∫ ϕ(λ) σ(λ) I(λ) dλ, are needed, where ϕ(λ) and I(λ) are the quantum yield of the process and the irradiance of the light source, respectively, as functions of the wavelength λ. Efficient computational strategies based on single-reference quantum-chemistry methods have been developed enabling determinations of line shapes or, in some cases, achieving rovibrational resolution. Developments are however lacking for strongly correlated problems, with many excited states, high-order excitations, and/or near degeneracies between states of the same and different spin multiplicities. In this work, we define and compare the performance of distinct computational strategies using multiconfigurational quantum chemistry, nuclear sampling of the chromophore (by means of molecular dynamics, ab initio molecular dynamics, or Wigner sampling), and conformational and statistical sampling of the environment (by means of molecular dynamics). A new mathematical approach revisiting previous absolute orientation algorithms is also developed to improve alignments of geometries. These approaches are benchmarked through the nπ* band of acrolein not only in the gas phase and water solution but also in a gas-phase/water interface, a common situation for instance in atmospheric chemistry. Subsequently, the best strategy is used to compute the absorption band for the adduct formed upon addition of an OH radical to the C6 position of uracil and compared with the available experimental data. Overall, quantum Wigner sampling of the chromophore with molecular dynamics sampling of the environment with CASPT2 electronic-structure determinations arise as a powerful methodology to predict meaningful σ(λ) and ε(λ) band line shapes with accurate absolute intensities.
Collapse
Affiliation(s)
- Ana Borrego-Sánchez
- Instituto
Andaluz de Ciencias de la Tierra, CSIC-University
of Granada, Av. de las
Palmeras 4, 18100 Armilla, Granada, Spain
| | - Madjid Zemmouche
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Javier Carmona-García
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| | - Antonio Francés-Monerris
- Université
de Lorraine and CNRS, LPCT UMR 7019, F-54000 Nancy, France
- Departamento
de Química Física, Universitat
de València, C/Dr.
Moliner 50, 46100 Burjassot, Spain
| | - Pep Mulet
- Departamento
de Matemáticas Área de Matemática Aplicada Facultad
de Matemáticas C/Dr. Moliner, 50 46100 Burjassot, Spain
| | - Isabelle Navizet
- MSME,
Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil 8208, F-77454 Marne-la-Vallée, France
| | - Daniel Roca-Sanjuán
- Instituto
de Ciencia Molecular, Universitat de València, P.O. Box 22085, València, Spain
| |
Collapse
|
20
|
Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proc Natl Acad Sci U S A 2020; 117:26626-26632. [PMID: 33037153 DOI: 10.1073/pnas.2016719117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Blue light using flavin (BLUF) photoreceptor proteins are critical for many light-activated biological processes and are promising candidates for optogenetics because of their modular nature and long-range signaling capabilities. Although the photocycle of the Slr1694 BLUF domain has been characterized experimentally, the identity of the light-adapted state following photoexcitation of the bound flavin remains elusive. Herein hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations of this photocycle provide a nonequilibrium dynamical picture of a possible mechanism for the formation of the light-adapted state. Photoexcitation of the flavin induces a forward proton-coupled electron transfer (PCET) process that leads to the formation of an imidic acid tautomer of Gln50. The calculations herein show that the subsequent rotation of Gln50 allows a reverse PCET process that retains this tautomeric form. In the resulting purported light-adapted state, the glutamine tautomer forms a hydrogen bond with the flavin carbonyl group. Additional ensemble-averaged QM/MM calculations of the dark-adapted and purported light-adapted states demonstrate that the light-adapted state with the imidic acid glutamine tautomer reproduces the experimentally observed spectroscopic signatures. Specifically, the calculations reproduce the red shifts in the flavin electronic absorption and carbonyl stretch infrared spectra in the light-adapted state. Further hydrogen-bonding analyses suggest the formation of hydrogen-bonding interactions between the flavin and Arg65 in the light-adapted state, providing a plausible explanation for the experimental observation of faster photoinduced PCET in this state. These characteristics of the light-adapted state may also be essential for the long-range signaling capabilities of this photoreceptor protein.
Collapse
|
21
|
Mai S, Menger MFSJ, Marazzi M, Stolba DL, Monari A, González L. Competing ultrafast photoinduced electron transfer and intersystem crossing of [Re(CO) 3 (Dmp)(His124)(Trp122)] + in Pseudomonas aeruginosa azurin: a nonadiabatic dynamics study. Theor Chem Acc 2020; 139:65. [PMID: 32214889 PMCID: PMC7078154 DOI: 10.1007/s00214-020-2555-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/20/2020] [Indexed: 12/28/2022]
Abstract
We present a computational study of sub-picosecond nonadiabatic dynamics in a rhenium complex coupled electronically to a tryptophan (Trp) side chain of Pseudomonas aeruginosa azurin, a prototypical protein used in the study of electron transfer in proteins. To gain a comprehensive understanding of the photoinduced processes in this system, we have carried out vertical excitation calculations at the TDDFT level of theory as well as nonadiabatic dynamics simulations using the surface hopping including arbitrary couplings (SHARC) method coupled to potential energy surfaces represented with a linear vibronic coupling model. The results show that the initial photoexcitation populates both singlet metal-to-ligand charge transfer (MLCT) and singlet charge-separated (CS) states, where in the latter an electron was transferred from the Trp amino acid to the complex. Subsequently, a complex mechanism of simultaneous intersystem crossing and electron transfer leads to the sub-picosecond population of triplet MLCT and triplet CS states. These results confirm the assignment of the sub-ps time constants of previous experimental studies and constitute the first computational evidence for the ultrafast formation of the charge-separated states in Re-sensitized azurin.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Present Address: Photonics Institute, Vienna University of Technology, Gußhausstr. 27–29, 1040 Vienna, Austria
| | - Maximilian F. S. J. Menger
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
- Present Address: Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marco Marazzi
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33,600, 28871 Alcalá de Henares, Madrid Spain
- Chemical Research Institute “Andrés M. del Río” (IQAR), Universidad de Alcalá, 28871 Alcalá de Henares, Madrid Spain
| | - Dario L. Stolba
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Antonio Monari
- Université de Lorraine and CNRS, LPTC UMR, 7019 Nancy, France
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
22
|
Levi G, Biasin E, Dohn AO, Jónsson H. On the interplay of solvent and conformational effects in simulated excited-state dynamics of a copper phenanthroline photosensitizer. Phys Chem Chem Phys 2020; 22:748-757. [DOI: 10.1039/c9cp06086c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
QM/MM direct dynamics simulations in acetonitrile reveal the interplay between solvent and conformational effects in the photoinduced ultrafast flattening of a copper photosensitizer.
Collapse
Affiliation(s)
- Gianluca Levi
- Science Institute and Faculty of Physical Sciences
- University of Iceland
- Iceland
| | - Elisa Biasin
- PULSE Institute
- SLAC National Accelerator Laboratory
- Menlo Park
- California 94025
- USA
| | - Asmus O. Dohn
- Science Institute and Faculty of Physical Sciences
- University of Iceland
- Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences
- University of Iceland
- Iceland
| |
Collapse
|
23
|
Mai S, González L. Identification of important normal modes in nonadiabatic dynamics simulations by coherence, correlation, and frequency analyses. J Chem Phys 2019; 151:244115. [DOI: 10.1063/1.5129335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| |
Collapse
|
24
|
Mai S, González L. Unconventional two-step spin relaxation dynamics of [Re(CO) 3(im)(phen)] + in aqueous solution. Chem Sci 2019; 10:10405-10411. [PMID: 32110331 PMCID: PMC6988600 DOI: 10.1039/c9sc03671g] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
Changes of molecular spin are ubiquitous in chemistry and biology. Among spin flip processes, one of the fastest is intersystem crossing (ISC) in transition metal complexes. Here, we investigate the spin relaxation dynamics and emission spectrum of [Re(CO)3(im)(phen)]+ (im = imidazole, phen = phenanthroline) using extensive full-dimensional excited-state dynamics simulations in explicit aqueous solution. Contrary to what has been observed in other transition metal complexes, the transition from the singlet to triplet states occurs via a two-step process, with clearly separable electronic and nuclear-driven components with two different time scales. The initially excited electronic wave function is a "molecular spin-orbit wave packet" that evolves almost instantaneously, with an 8 fs time constant, into an approximate 25 : 75 singlet-to-triplet equilibrium. Surprisingly, this ISC process is an order of magnitude faster than it was previously documented for this and other rhenium(i) carbonyl diimine complexes from emission spectra. Simulations including explicit laser field interactions evidence that few-cycle UV laser pulses are required to follow the creation and evolution of such molecular spin-orbit wave packets. The analysis of the dynamics also reveals a retarded ISC component, with a time constant of 420 fs, which can be explained invoking intramolecular vibrational energy redistribution. The emission spectrum is shown to be characterized by ISC convoluted with internal conversion and vibrational relaxation. These results provide fundamental understanding of ultrafast intersystem crossing in transition metal complexes.
Collapse
Affiliation(s)
- Sebastian Mai
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria .
| | - Leticia González
- Institute of Theoretical Chemistry , Faculty of Chemistry , University of Vienna , Währinger Straße 17 , 1090 Vienna , Austria .
| |
Collapse
|
25
|
Goings JJ, Hammes-Schiffer S. Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics. J Am Chem Soc 2019; 141:20470-20479. [DOI: 10.1021/jacs.9b11196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua J. Goings
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
26
|
Sapunar M, Domcke W, Došlić N. UV absorption spectra of DNA bases in the 350-190 nm range: assignment and state specific analysis of solvation effects. Phys Chem Chem Phys 2019; 21:22782-22793. [PMID: 31595896 DOI: 10.1039/c9cp04662c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The theoretical assignment of electronic spectra of polyatomic molecules is a challenging problem that requires the specification of the character of a large number of electronic states. We propose a procedure for automatically determining the character of electronic transitions and apply it to the study of UV spectra of DNA bases in the gas phase and in the aqueous environment. The procedure is based on the computation of electronic wave function overlaps and accounts for an extensive sampling of nuclear geometries. Novelties of this work are the theoretical assignment of the electronic spectra of DNA bases up to 190 nm and a state specific analysis of solvation effects. By accounting for different effects contributing to the total solvent shift we obtained a good agreement between the computed and experimental spectra. Effects of vibrational averaging, temperature and solvent-induced structural changes shift excitation energies to lower values. Solvent-solute electrostatic interactions are state specific and strongly destabilize nRyd states, and to lesser extent nπ* and πRyd states. Altogether, this results in the stabilization of ππ* states and destabilization of nπ*, πRyd and nRyd states in solution.
Collapse
Affiliation(s)
- Marin Sapunar
- Department of Physical Chemistry, Ruder Bošković Institute, 10000 Zagreb, Croatia.
| | | | | |
Collapse
|
27
|
Burganov TI, Monari A, Katsyuba SA, Mamedov VA, Zhukova NA, Assfeld X. 2,3-(Dibenzimidazol-2-yl)quinoxalines: Unexpected Dynamical Effect on Steady-State Electronic Absorption Spectra. J Phys Chem B 2019; 123:5514-5523. [PMID: 31192599 DOI: 10.1021/acs.jpcb.9b00974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on the electronic absorption spectra, conformational behavior, and intra- and intermolecular hydrogen bonds of 2,3-(dibenzimidazol-2-yl)-quinoxaline (DBIQ). The experimentally found strong solvent dependence of the absorption spectra of DBIQ solutions cannot be assigned to electronic excitations of the equilibrium ground-state DBIQ structure. Extended consideration including the nonequilibrium structures within the framework of ab initio molecular dynamics (MD) revealed the importance of torsion molecular motions not covered by the static case. The strong impact of solute-solvent hydrogen bonding on stabilization of these nonequilibrium structures and on conformational composition of DBIQ was demonstrated. A presence of twisted nonplanar geometries along the whole MD trajectory was shown to drastically influence not only energies but also characters of electronic excitations, resulting in a change of local π-π* character in a solution of 1,2-dichloroethane to charge-transfer character in polar dimethylsulfoxide.
Collapse
Affiliation(s)
- Timur I Burganov
- FRC Kazan Scientific Center of RAS , Arbuzov Institute of Organic and Physical Chemistry , Arbuzov st. 8 , 420088 Kazan , Russia
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019 , F-54000 Nancy , France
| | - Sergey A Katsyuba
- FRC Kazan Scientific Center of RAS , Arbuzov Institute of Organic and Physical Chemistry , Arbuzov st. 8 , 420088 Kazan , Russia
| | - Vakhid A Mamedov
- FRC Kazan Scientific Center of RAS , Arbuzov Institute of Organic and Physical Chemistry , Arbuzov st. 8 , 420088 Kazan , Russia
| | - Nataliya A Zhukova
- FRC Kazan Scientific Center of RAS , Arbuzov Institute of Organic and Physical Chemistry , Arbuzov st. 8 , 420088 Kazan , Russia
| | - Xavier Assfeld
- Université de Lorraine and CNRS, LPCT UMR 7019 , F-54000 Nancy , France
| |
Collapse
|
28
|
Light-induced spin transitions in Ni(II)-based macrocyclic-ligand complexes: A DFT study. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Nazari M, Bösch CD, Rondi A, Francés-Monerris A, Marazzi M, Lognon E, Gazzetto M, Langenegger SM, Häner R, Feurer T, Monari A, Cannizzo A. Ultrafast dynamics in polycyclic aromatic hydrocarbons: the key case of conical intersections at higher excited states and their role in the photophysics of phenanthrene monomer. Phys Chem Chem Phys 2019; 21:16981-16988. [DOI: 10.1039/c9cp03147b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proper interpretation of phenanthrene's and similar PAHs’ photocycle relies on two higher excited state relaxations due to the simultaneous presence of non-adiabatic and adiabatic transitions.
Collapse
Affiliation(s)
- M. Nazari
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - C. D. Bösch
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - A. Rondi
- Institute of Applied Physics
- University of Bern
- Switzerland
| | | | - M. Marazzi
- Université de Lorraine & CNRS
- Nancy
- France
- Department of Analytical Chemistry
- Physical Chemistry and Chemical Engineering
| | - E. Lognon
- Université de Lorraine & CNRS
- Nancy
- France
| | - M. Gazzetto
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - S. M. Langenegger
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - R. Häner
- Department of Chemistry and Biochemistry
- University of Bern
- Switzerland
| | - T. Feurer
- Institute of Applied Physics
- University of Bern
- Switzerland
| | - A. Monari
- Université de Lorraine & CNRS
- Nancy
- France
| | - A. Cannizzo
- Institute of Applied Physics
- University of Bern
- Switzerland
| |
Collapse
|
30
|
Puglisi A, Giovannini T, Antonov L, Cappelli C. Interplay between conformational and solvent effects in UV-visible absorption spectra: curcumin tautomers as a case study. Phys Chem Chem Phys 2019; 21:15504-15514. [PMID: 31259324 DOI: 10.1039/c9cp00907h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present a combined theoretical and experimental study on the UV-vis spectra of enol-keto (EK) and keto-keto (KK) tautomeric forms of curcumin dissolved in aqueous solution. Solvent effects have been investigated by resorting to the implicit polarizable continuum model (QM/PCM) and non-polarizable and fully polarizable QM/MM approaches, the latter based on the fluctuating charges (FQ) force-field. In particular, all methods are challenged to rationalize the contribution of conformational, electrostatic and polarization effects in the calculation of the vertical excitation spectra of curcumin tautomers. The obtained results highlight that for both tautomers specific solute-solvent hydrogen-bond interactions play a minor role with respect to conformational and electrostatic effects.
Collapse
Affiliation(s)
| | | | - Liudmil Antonov
- Bulgarian Academy of Sciences, Institute of Organic Chemistry with Centre of Phytochemistry, Acad. G. Bonchev str., Bldg. 9, Sofia 1113, Bulgaria
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|