1
|
Bento de Carvalho T, Barbosa JB, Teixeira P. Assessing Antimicrobial Efficacy on Plastics and Other Non-Porous Surfaces: A Closer Look at Studies Using the ISO 22196:2011 Standard. BIOLOGY 2024; 13:59. [PMID: 38275735 PMCID: PMC10813364 DOI: 10.3390/biology13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The survival and spread of foodborne and nosocomial-associated bacteria through high-touch surfaces or contamination-prone sites, in either healthcare, domestic or food industry settings, are not always prevented by the employment of sanitary hygiene protocols. Antimicrobial surface coatings have emerged as a solution to eradicate pathogenic bacteria and prevent future infections and even outbreaks. Standardised antimicrobial testing methods play a crucial role in validating the effectiveness of these materials and enabling their application in real-life settings, providing reliable results that allow for comparison between antimicrobial surfaces while assuring end-use product safety. This review provides an insight into the studies using ISO 22196, which is considered the gold standard for antimicrobial surface coatings and examines the current state of the art in antimicrobial testing methods. It primarily focuses on identifying pitfalls and how even small variations in methods can lead to different results, affecting the assessment of the antimicrobial activity of a particular product.
Collapse
Affiliation(s)
| | - Joana Bastos Barbosa
- Universidade Católica Portuguesa, Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.d.C.); (P.T.)
| | | |
Collapse
|
2
|
Sharma S, Kumar V, Yaseen M, S Abouzied A, Arshad A, Bhat MA, Naglah AM, Patel CN, Sivakumar PK, Sourirajan A, Shahzad A, Dev K. Phytochemical Analysis, In Vitro Biological Activities, and Computer-Aided Analysis of Potentilla nepalensis Hook Compounds as Potential Melanoma Inhibitors Based on Molecular Docking, MD Simulations, and ADMET. Molecules 2023; 28:5108. [PMID: 37446769 DOI: 10.3390/molecules28135108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Potentilla nepalensis Hook is a perennial Himalayan medicinal herb of the Rosaceae family. The present study aimed to evaluate biological activities such as the antioxidant, antibacterial, and anticancer activities of roots and shoots of P. nepalensis and its synergistic antibacterial activity with antibacterial drugs. Folin-Ciocalteau and aluminium chloride methods were used for the calculation of total phenolic (TPC) and flavonoid content (TFC). A DPPH radical scavenging assay and broth dilution method were used for the determination of the antioxidant and antibacterial activity of the root and shoot extracts of P. nepalensis. Cytotoxic activity was determined using a colorimetric MTT assay. Further, phytochemical characterization of the root and shoot extracts was performed using the Gas chromatography-mass spectrophotometry (GC-MS) method. The TPC and TFC were found to be higher in the methanolic root extract of P. nepalensis. The methanolic shoot extract of P. nepalensis showed good antioxidant activity, while then-hexane root extract of P. nepalensis showed strong cytotoxic activity against tested SK-MEL-28 cells. Subsequently, in silico molecular docking studies of the identified bioactive compounds predicted potential anticancer properties. This study can lead to the production of new herbal medicines for various diseases employing P. nepalensis, leading to the creation of new medications.
Collapse
Affiliation(s)
- Subhash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, P.O. Box 9, Head Post Office, Solan 173212, India
| | - Vikas Kumar
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Swat, Charbagh, Swat 19130, Pakistan
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza 12311, Egypt
| | | | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Chirag N Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Science, Gujarat University, Ahmedabad 380009, India
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi 9639, United Arab Emirates
| | - Prasanth Kumar Sivakumar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Science, Gujarat University, Ahmedabad 380009, India
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, P.O. Box 9, Head Post Office, Solan 173212, India
| | - Adnan Shahzad
- Institute of Chemical Sciences, University of Swat, Charbagh, Swat 19130, Pakistan
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, P.O. Box 9, Head Post Office, Solan 173212, India
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH 4543, USA
| |
Collapse
|
3
|
Papageorgiou CS, Lymberopoulos S, Bakas P, Zagklis DP, Sygouni V, Paraskeva CA. Hydroxytyrosol Enrichment of Olive Leaf Extracts via Membrane Separation Processes. MEMBRANES 2022; 12:1027. [PMID: 36363582 PMCID: PMC9698498 DOI: 10.3390/membranes12111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antioxidants isolated from plant materials, such as phenolics, have attracted a lot of attention because of their potential uses. This contributes to the idea of the biorefinery, which is a way to produce useful products from biomass waste. Olea europaea byproducts have been extensively investigated for their large contents in phenolics. Oleuropein is a phenolic compound abundant in olive leaves, with its molecule containing hydroxytyrosol, elenolic acid, and glucose. In this work, olive leaf extracts were treated using different combinations of ultrafiltration and nanofiltration membranes to assess their capacity of facilitating the production of hydroxytyrosol-enriched solutions, either by separating the initially extracted oleuropein or by separating the hydroxytyrosol produced after a hydrolysis step. The best performance was observed when an ultrafiltration membrane (UP010, 10,000 Da) was followed by a nanofiltration membrane (TS40, 200-300 Da) for the treatment of the hydrolyzed extract, increasing the purity of the final product from 25% w/w of the total extracted compounds being hydroxytyrosol when membrane processes were not used to 68% w/w.
Collapse
Affiliation(s)
- Costas S. Papageorgiou
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Stathis Lymberopoulos
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
| | - Panagiotis Bakas
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
| | - Dimitris P. Zagklis
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Varvara Sygouni
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| | - Christakis A. Paraskeva
- Laboratory of Transport Phenomena and Physicochemical Hydrodynamics (LTPPH), Department of Chemical Engineering, University of Patras, GR26504 Patras, Greece
- Institute of Chemical Engineering Sciences, FORTH/ICE-HT, GR26504 Patras, Greece
| |
Collapse
|
4
|
González-Ceballos L, Guirado-moreno JC, Guembe-García M, Rovira J, Melero B, Arnaiz A, Diez AM, García JM, Vallejos S. Metal-free organic polymer for the preparation of a reusable antimicrobial material with real-life application as an absorbent food pad. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
6
|
Oulahal N, Degraeve P. Phenolic-Rich Plant Extracts With Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front Microbiol 2022; 12:753518. [PMID: 35058892 PMCID: PMC8764166 DOI: 10.3389/fmicb.2021.753518] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, the search for natural plant-based antimicrobial compounds as alternatives to some synthetic food preservatives or biocides has been stimulated by sanitary, environmental, regulatory, and marketing concerns. In this context, besides their established antioxidant activity, the antimicrobial activity of many plant phenolics deserved increased attention. Indeed, industries processing agricultural plants generate considerable quantities of phenolic-rich products and by-products, which could be valuable natural sources of natural antimicrobial molecules. Plant extracts containing volatile (e.g., essential oils) and non-volatile antimicrobial molecules can be distinguished. Plant essential oils are outside the scope of this review. This review will thus provide an overview of current knowledge regarding the promises and the limits of phenolic-rich plant extracts for food preservation and biofilm control on food-contacting surfaces. After a presentation of the major groups of antimicrobial plant phenolics, of their antimicrobial activity spectrum, and of the diversity of their mechanisms of action, their most promising sources will be reviewed. Since antimicrobial activity reduction often observed when comparing in vitro and in situ activities of plant phenolics has often been reported as a limit for their application, the effects of the composition and the microstructure of the matrices in which unwanted microorganisms are present (e.g., food and/or microbial biofilms) on their activity will be discussed. Then, the different strategies of delivery of antimicrobial phenolics to promote their activity in such matrices, such as their encapsulation or their association with edible coatings or food packaging materials are presented. The possibilities offered by encapsulation or association with polymers of packaging materials or coatings to increase the stability and ease of use of plant phenolics before their application, as well as to get systems for their controlled release are presented and discussed. Finally, the necessity to consider phenolic-rich antimicrobial plant extracts in combination with other factors consistently with hurdle technology principles will be discussed. For instance, several authors recently suggested that natural phenolic-rich extracts could not only extend the shelf-life of foods by controlling bacterial contamination, but could also coexist with probiotic lactic acid bacteria in food systems to provide enhanced health benefits to human.
Collapse
Affiliation(s)
- Nadia Oulahal
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires), Equipe Mixte d’Accueil n°3733, IUT Lyon 1, Technopole Alimentec, Bourg-en-Bresse, France
| | | |
Collapse
|
7
|
Patel M, Schwendemann D, Spigno G, Geng S, Berglund L, Oksman K. Functional Nanocomposite Films of Poly(Lactic Acid) with Well-Dispersed Chitin Nanocrystals Achieved Using a Dispersing Agent and Liquid-Assisted Extrusion Process. Molecules 2021; 26:molecules26154557. [PMID: 34361717 PMCID: PMC8347658 DOI: 10.3390/molecules26154557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The development of bio-based nanocomposites is of high scientific and industrial interest, since they offer excellent advantages in creating functional materials. However, dispersion and distribution of the nanomaterials inside the polymer matrix is a key challenge to achieve high-performance functional nanocomposites. In this context, for better dispersion, biobased triethyl citrate (TEC) as a dispersing agent in a liquid-assisted extrusion process was used to prepare the nanocomposites of poly (lactic acid) (PLA) and chitin nanocrystals (ChNCs). The aim was to identify the effect of the TEC content on the dispersion of ChNCs in the PLA matrix and the manufacturing of a functional nanocomposite. The nanocomposite film's optical properties; microstructure; migration of the additive and nanocomposites' thermal, mechanical and rheological properties, all influenced by the ChNC dispersion, were studied. The microscopy study confirmed that the dispersion of the ChNCs was improved with the increasing TEC content, and the best dispersion was found in the nanocomposite prepared with 15 wt% TEC. Additionally, the nanocomposite with the highest TEC content (15 wt%) resembled the mechanical properties of commonly used polymers like polyethylene and polypropylene. The addition of ChNCs in PLA-TEC15 enhanced the melt viscosity, as well as melt strength, of the polymer and demonstrated antibacterial activity.
Collapse
Affiliation(s)
- Mitul Patel
- Division of Materials Science, Luleå University of Technology, SE-97 187 Luleå, Sweden; (M.P.); (S.G.); (L.B.)
| | - Daniel Schwendemann
- Institute for Material Engineering and Plastics Processing, University of Applied Sciences Eastern Switzerland, CH-8640 Rapperswil, Switzerland;
| | - Giorgia Spigno
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Shiyu Geng
- Division of Materials Science, Luleå University of Technology, SE-97 187 Luleå, Sweden; (M.P.); (S.G.); (L.B.)
| | - Linn Berglund
- Division of Materials Science, Luleå University of Technology, SE-97 187 Luleå, Sweden; (M.P.); (S.G.); (L.B.)
| | - Kristiina Oksman
- Division of Materials Science, Luleå University of Technology, SE-97 187 Luleå, Sweden; (M.P.); (S.G.); (L.B.)
- Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3BS, Canada
- Correspondence: ; Tel.: +46-920-493371
| |
Collapse
|
8
|
Vera P, Canellas E, Nerín C, Dreolin N, Goshawk J. The migration of NIAS from ethylene-vinyl acetate corks and their identification using gas chromatography mass spectrometry and liquid chromatography ion mobility quadrupole time-of-flight mass spectrometry. Food Chem 2021; 366:130592. [PMID: 34293549 DOI: 10.1016/j.foodchem.2021.130592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/18/2021] [Accepted: 07/11/2021] [Indexed: 11/04/2022]
Abstract
An exhaustive migration study of eight corks, made of ethylene-vinyl acetate, was carried out to identify any non-volatile and volatile compounds using an untargeted approach. The challenge associated with the structural elucidation of unknowns was undertaken using both ultra-high-performance liquid chromatography coupled to an ion-mobility separation quadrupole-time of flight mass spectrometer and gas chromatography mass spectrometry. A total of fifty compounds were observed to migrate from the corks, and among these additives such as antioxidants (Butyl 4-hydroxybenzoate, Irganox 1010, Irganox 1075, Irgafos 168 and BHT) or lubricants (EBO and octadecanamide, N,N'-1,2-ethanediylbis-) were identified. A high proportion (84%) of the detected compounds was non-intentionally added substances (NIAS), and included several cyclic oligomers with different chain sequences. NIAS, such as 2,6-bis(1,1-dimethylethyl)-4-ethyl and 7,9-ditert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione, break-down products, including hexa-, hepta- and nonadecanamide, N,N'-1,2-ethanediylbis-, and oxidation products were also identified. One cork was found to be unsuitable for use as a food contact material.
Collapse
Affiliation(s)
- Paula Vera
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain
| | - Elena Canellas
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain
| | - Cristina Nerín
- Analytical Chemistry Department, GUIA Group, I3A, EINA, University of Zaragoza, Mª de Luna 3, 50018 Zaragoza, Spain.
| | - Nicola Dreolin
- Waters Corporation, Altrincham Road, SK9 4AX, Wilmslow, United Kingdom
| | - Jeff Goshawk
- Waters Corporation, Altrincham Road, SK9 4AX, Wilmslow, United Kingdom
| |
Collapse
|
9
|
Shi Y, Shen J, Yang D, Du J, Lu S, Ma M, He H, Chen S, Wang X. Green cinnamaldehyde and thymol modified zinc oxide with double synergistic antibacterial effects in polypropylene. J Appl Polym Sci 2021. [DOI: 10.1002/app.50911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yanqin Shi
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| | - Jiaqi Shen
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| | - Dieshuang Yang
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| | - Junnan Du
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| | - Songyan Lu
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| | - Meng Ma
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| | - Huiwen He
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| | - Si Chen
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| | - Xu Wang
- College of Materials Science and Engineering Zhejiang University of Technology Zhejiang China
| |
Collapse
|