1
|
Shan PH, Pan DW, Li CR, Meng TH, Redshaw C, Tao Z, Xiao X. Selective detection of paraquat by a cucurbit[7]uril-based fluorescent probe. JOURNAL OF PESTICIDE SCIENCE 2024; 49:114-121. [PMID: 38882708 PMCID: PMC11176046 DOI: 10.1584/jpestics.d23-062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/21/2024] [Indexed: 06/18/2024]
Abstract
A simple fluorescent "on-off" system that can be utilized for the selective identification and determination of paraquat (PQ) is presented herein. 1H NMR spectroscopic data indicated that in aqueous solution the alkaloid palmatine can be partially encapsulated within the cucurbit[7]uril (Q[7]) cavity, whereby a stable 1 : 1 host-guest inclusion complex is formed. Other characterization techniques including mass spectrometry, UV-Vis and fluorescence spectroscopy also provided further evidence, and the host-guest inclusion complex was found to exhibit reasonable fluorescence intensity. It is noteworthy that the addition of PQ resulted in quenching the fluorescence of the host-guest inclusion complex, whereas the presence of 12 other pesticides did not significantly affect the fluorescence intensity. Given the linear relationship between the intensity of the fluorescence and the PQ concentration, the PQ concentration in aqueous solution was easily detected. Thus, a new method for identifying and determining the fluorescence quenching of PQ has been developed in this work.
Collapse
Affiliation(s)
- Pei-Hui Shan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University
| | - Ding-Wu Pan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University
| | - Chun-Rong Li
- Public Course Teaching Department, Qiannan Medical College for Nationalities
| | - Tie-Hong Meng
- Public Course Teaching Department, Qiannan Medical College for Nationalities
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University
| |
Collapse
|
2
|
Li Q, Yu Z, Redshaw C, Xiao X, Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem Soc Rev 2024; 53:3536-3560. [PMID: 38414424 DOI: 10.1039/d3cs00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Double-cavity Q[n]s are relatively new members of the Q[n] family and have garnered significant interest due to their distinctive structures and novel properties. While they incorporate n glycoluril units, akin to their single-cavity counterparts, their geometry can best be described as resembling a figure-of-eight or a handcuff, distinguishing them from single-cavity Q[n]s. Despite retaining the core molecular recognition traits of single-cavity Q[n]s, these double-cavity variants introduce fascinating new attributes rooted in their distinct configurations. This overview delves into the synthesis, structural attributes, properties, and intriguing applications of double-cavity Q[n]s. Some of the applications explored include their role in supramolecular polymers, molecular machinery, supra-amphiphiles, sensors, artificial light-harvesting systems, and adsorptive separation materials. Upon concluding this review, we discuss potential challenges and avenues for future development and offer valuable insights for other scholars working in this area with the aim of stimulating further exploration and interest.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
3
|
Emissive‐Dye/Cucurbit[n]uril‐Based Fluorescence Probes for Sensing Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Zhao H, Chen WJ, Chen H, Sun JF, Gao ZZ. Stimuli-responsive supramolecular dye inclusion complex constructed by self-assembly of inverted cucurbit[7]uril and thioflavin T. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2109471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Hui Zhao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Wen-Jie Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Hao Chen
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Ji-Fu Sun
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Zhong-Zheng Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
5
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Yang J, Chen SW, Zhang B, Tu Q, Wang J, Yuan MS. Non-biological fluorescent chemosensors for pesticides detection. Talanta 2022; 240:123200. [PMID: 35030438 DOI: 10.1016/j.talanta.2021.123200] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/05/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
The ongoing poisoning of agricultural products has pushed the security problem to become an important issue. Among them, exceeding the standard rate of pesticide residues is the main factor influencing the quality and security of agricultural products. Moreover, the abuse of pesticides has introduced a large amount of residues in soil and drinking water, which will enter the food chain to the human body, leading to neurological disorders and cancer. Therefore, great efforts have been devoted to developing fluorescent sensors for detecting pesticide in a facile, quickly, sensitive, selective, accurate manner, which exhibit greater advantages than some traditional methods. In this review, we mainly focus on summarizing the non-biological fluorescent probes for organic pesticides detection with the detection limit of micromole to nanomole, including organic functional small molecules, calixarenes and pillararenes, metal organic framework systems, and nanomaterials. Meanwhile, we described the different sensing mechanisms for pesticides detection of these mentioned fluorescent sensors, the detection limit of each pesticide, the application in detecting actual samples, as well as their respective advantages and development prospects associated with present non-biological fluorescent sensors.
Collapse
Affiliation(s)
- Jiao Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Shu-Wei Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Bingwen Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Mao-Sen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
7
|
Sayed M, Pal H. An overview from simple host-guest systems to progressively complex supramolecular assemblies. Phys Chem Chem Phys 2021; 23:26085-26107. [PMID: 34787121 DOI: 10.1039/d1cp03556h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Supramolecular chemistry involving macrocyclic hosts is a highly interdisciplinary and fast-growing research field in chemistry, biochemistry, and materials science. Host-guest based supramolecular assemblies, as constructed through non-covalent interactions, are highly dynamic in nature, and can be tuned easily using their responses to various external stimuli, providing a convenient approach to achieve excellent functional materials. Macrocyclic hosts, particularly cyclodextrins, cucurbit[n]urils, and calix[n]arenes, which have unique features like possessing hydrophobic cavities of different sizes, along with hydrophilic external surfaces, which are also amenable towards easy derivatizations, are versatile cavitands or host molecules to encapsulate diverse guest molecules to form stable host-guest complexes with many unique structures and properties. Interestingly, host-guest complexes possessing amphiphilic properties can easily lead to the formation of various advanced supramolecular assemblies, like pseudorotaxanes, rotaxanes, polyrotaxanes, supramolecular polymers, micelles, vesicles, supramolecular nanostructures, and so on. Moreover, these supramolecular assemblies, with varied morphologies and responsiveness towards external stimuli, have immense potential for applications in nanotechnology, materials science, biosensors, drug delivery, analytical chemistry and biomedical sciences. In this perspective, we present a stimulating overview, discussing simple host-guest systems to complex supramolecular assemblies in a systematic manner, aiming to encourage future researchers in this fascinating area of supramolecular chemistry to develop advanced supramolecular materials with superior functionalities, for their deployment in diverse applied areas.
Collapse
Affiliation(s)
- Mhejabeen Sayed
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Haridas Pal
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.,Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| |
Collapse
|
8
|
Synthesis and characterization of a sensitive and selective Fe3+ fluorescent sensor based on novel sulfonated calix[4]arene‐based host‐guest complex. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Lian C, Xu W, Luo Y, Zhu X, Fan Y, Redshaw C, Tao Z, Xiao X. Detection of the pesticide dodine using a cucurbit[10]uril-based fluorescent probe. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021; 9:616815. [PMID: 33937184 PMCID: PMC8085505 DOI: 10.3389/fchem.2021.616815] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of pesticides in real-world environments is a high priority for a broad range of applications, including in areas of public health, environmental remediation, and agricultural sustainability. While many methods for pesticide detection currently exist, the use of supramolecular fluorescence-based methods has significant practical advantages. Herein, we will review the use of fluorescence-based pesticide detection methods, with a particular focus on supramolecular chemistry-based methods. Illustrative examples that show how such methods have achieved success in real-world environments are also included, as are areas highlighted for future research and development.
Collapse
Affiliation(s)
- Mindy Levine
- Ariel University, Department of Chemical Sciences, Ariel, Israel
| |
Collapse
|
11
|
Luo Y, Zhang W, Liu M, Zhao J, Fan Y, Bian B, Tao Z, Xiao X. A supramolecular fluorescent probe based on cucurbit[10]uril for sensing the pesticide dodine. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Jiang C, Song Z, Yu L, Ye S, He H. Fluorescent probes based on macrocyclic hosts: Construction, mechanism and analytical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Dhiman R, Pen S, Chandrakumar PK, Frankcombe TJ, Day AI. Glycoluril derived cucurbituril analogues and the emergence of the most recent example: tiarauril. Chem Commun (Camb) 2020; 56:2529-2537. [DOI: 10.1039/c9cc07233k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cucurbituril analogues can bear some of the chemical and physical characteristics of their parental origin and are derived wholly or in part from glycolurils (including homologues).
Collapse
Affiliation(s)
- Rajni Dhiman
- Chemistry
- School of Science
- University of New South Wales Canberra
- Australian Defence Force Academy
- Canberra
| | - Satyavisal Pen
- Chemistry
- School of Science
- University of New South Wales Canberra
- Australian Defence Force Academy
- Canberra
| | - Pradeep Kumar Chandrakumar
- Chemistry
- School of Science
- University of New South Wales Canberra
- Australian Defence Force Academy
- Canberra
| | - Terry J. Frankcombe
- Chemistry
- School of Science
- University of New South Wales Canberra
- Australian Defence Force Academy
- Canberra
| | - Anthony I. Day
- Chemistry
- School of Science
- University of New South Wales Canberra
- Australian Defence Force Academy
- Canberra
| |
Collapse
|