1
|
Strus P, Sadowski K, Ploch W, Jazdzewska A, Oknianska P, Raniszewska O, Mlynarczuk-Bialy I. The Effects of Podophyllotoxin Derivatives on Noncancerous Diseases: A Systematic Review. Int J Mol Sci 2025; 26:958. [PMID: 39940726 PMCID: PMC11816842 DOI: 10.3390/ijms26030958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Podophyllotoxin (PPT) is commonly used for genital warts due to its antimitotic properties and relatively good accessibility since it can be extracted from plants in low-economy countries. However, due to relatively high toxicity, it cannot be used in a systematic way (intravenously). Thus, there is a need to find or create an equally effective derivative of PPT that will be less toxic. Natural PPT is a suitable and promising scaffold for the synthesis of its derivatives. Many of them have been studied in clinical and preclinical models. In this systematic review, we comprehensively assess the medical applications of PPT derivatives, focusing on their advantages and limitations in non-cancerous diseases. Most of the existing research focuses on their applications in cancerous diseases, leaving non-cancerous uses underexplored. To do that, we systematically reviewed the literature using PubMed, Embase, and Cochrane databases from January 2013 to January 2025. In total, 5333 unique references were identified in the initial search, of which 44 were included in the quantitative synthesis. The assessment of the quality of eligible studies was undertaken using the PRISMA criteria. The risk of bias was assessed using a predefined checklist based on PRISMA guidelines. Each study was independently reviewed by two researchers to evaluate bias in study design, reporting, and outcomes. Our analysis highlights the broad therapeutic potential of PPT derivatives, particularly in antiviral applications, including HPV, Dengue, and SARS-CoV-2 infections. Apart from their well-known anti-genital warts activity, these compounds exhibit significant anti-inflammatory, antimitotic, analgesic, and radioprotective properties. For instance, derivatives such as cyclolignan SAU-22.107 show promise in antiviral therapies, while compounds like G-003M demonstrate radioprotective effects by mitigating radiation-induced damage. To build on this, our review highlights that PPT derivatives, apart from anti-genital warts potential, exhibit four key properties-anti-inflammatory, antimitotic, analgesic, and radioprotective-making them promising candidates not only for treating viral infections such as HPV, Dengue, and SARS-CoV-2 but also for expanding their therapeutic potential beyond cancerous diseases. In conclusion, while PPT derivatives hold great potential across various medical domains, their applications in non-cancerous diseases remain limited by the scarcity of dedicated research. Continued exploration of these compounds is essential to unlock their full therapeutic value.
Collapse
Affiliation(s)
- Piotr Strus
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.); (W.P.)
| | - Karol Sadowski
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.); (W.P.)
| | - Weronika Ploch
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.); (W.P.)
| | - Adrianna Jazdzewska
- Student Scientific Circle of Rare Diseases at Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Paulina Oknianska
- Student Scientific Circle of Oncology and Radiotherapy at Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Oliwia Raniszewska
- Student Scientific Circle of Child and Adolescent Psychiatry, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Izabela Mlynarczuk-Bialy
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.); (W.P.)
| |
Collapse
|
2
|
Strus P, Sadowski K, Kostro J, Szczepankiewicz AA, Nieznańska H, Niedzielska M, Zlobin A, Nawar Ra’idah P, Molęda Z, Szawkało J, Czarnocki Z, Wójcik C, Szeleszczuk Ł, Młynarczuk-Biały I. Cellular Distribution and Ultrastructural Changes in HaCaT Cells, Induced by Podophyllotoxin and Its Novel Fluorescent Derivative, Supported by the Molecular Docking Studies. Int J Mol Sci 2024; 25:5948. [PMID: 38892135 PMCID: PMC11172492 DOI: 10.3390/ijms25115948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Podophyllotoxin (PPT) is an active pharmaceutical ingredient (API) with established antitumor potential. However, due to its systemic toxicity, its use is restricted to topical treatment of anogenital warts. Less toxic PPT derivatives (e.g., etoposide and teniposide) are used intravenously as anticancer agents. PPT has been exploited as a scaffold of new potential therapeutic agents; however, fewer studies have been conducted on the parent molecule than on its derivatives. We have undertaken a study of ultrastructural changes induced by PPT on HaCaT keratinocytes. We have also tracked the intracellular localization of PPT using its fluorescent derivative (PPT-FL). Moreover, we performed molecular docking of both PPT and PPT-FL to compare their affinity to various binding sites of tubulin. Using the Presto blue viability assay, we established working concentrations of PPT in HaCaT cells. Subsequently, we have used selected concentrations to determine PPT effects at the ultrastructural level. Dynamics of PPT distribution by confocal microscopy was performed using PPT-FL. Molecular docking calculations were conducted using Glide. PPT induces a time-dependent cytotoxic effect on HaCaT cells. Within 24 h, we observed the elongation of cytoplasmic processes, formation of cytoplasmic vacuoles, progressive ER stress, and shortening of the mitochondrial long axis. After 48 h, we noticed disintegration of the cell membrane, progressive vacuolization, apoptotic/necrotic vesicles, and a change in the cell nucleus's appearance. PPT-FL was detected within HaCaT cells after ~10 min of incubation and remained within cells in the following measurements. Molecular docking confirmed the formation of a stable complex between tubulin and both PPT and PPT-FL. However, it was formed at different binding sites. PPT is highly toxic to normal human keratinocytes, even at low concentrations. It promptly enters the cells, probably via endocytosis. At lower concentrations, PPT causes disruptions in both ER and mitochondria, while at higher concentrations, it leads to massive vacuolization with subsequent cell death. The novel derivative of PPT, PPT-FL, forms a stable complex with tubulin, and therefore, it is a useful tracker of intracellular PPT binding and trafficking.
Collapse
Affiliation(s)
- Piotr Strus
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland;
| | - Karol Sadowski
- Students Scientific Group HESA, Department of Histology and Embryology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Julia Kostro
- Students Scientific Group HESA, Department of Histology and Embryology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | | | - Hanna Nieznańska
- Laboratory of Electron Microscopy, Nencki Institute of Warsaw, Pasteura 3, 02-093 Warsaw, Poland (H.N.)
| | - Magdalena Niedzielska
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.N.); (A.Z.)
| | - Andrei Zlobin
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.N.); (A.Z.)
| | - Pramukti Nawar Ra’idah
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.N.); (A.Z.)
| | - Zuzanna Molęda
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.N.); (A.Z.)
| | - Joanna Szawkało
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.N.); (A.Z.)
| | - Zbigniew Czarnocki
- Laboratory of Natural Products Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.N.); (A.Z.)
| | - Cezary Wójcik
- Amgen Inc., Thousand Oaks, CA 91320, USA;
- Department of Undergraduate Medical Education, OHSU School of Medicine, Portland, OR 97239, USA
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland
| | - Izabela Młynarczuk-Biały
- Department of Histology and Embryology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland;
| |
Collapse
|
3
|
Hao M, Xu H. Chemistry and Biology of Podophyllotoxins: An Update. Chemistry 2024; 30:e202302595. [PMID: 37814110 DOI: 10.1002/chem.202302595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Podophyllotoxin is an aryltetralin lignan lactone derived from different plants of Podophyllum. It consists of five rings with four chiral centers, one trans-lactone and one aryl tetrahydronaphthalene skeleton with multiple modification sites. Moreover, podophyllotoxin and its derivatives showed lots of bioactivities, including anticancer, anti-inflammatory, antiviral, and insecticidal properties. The demand for podophyllotoxin and its derivatives is rising as a result of their high efficacy. As a continuation of our previous review (Chem. Eur. J., 2017, 23, 4467-4526), herein, total synthesis, biotransformation, structural modifications, bioactivities, and structure-activity relationships of podophyllotoxin and its derivatives from 2017 to 2022 are summarized. Meanwhile, a piece of update information on the origin of new podophyllotoxin analogues from plants from 2014 to 2022 was compiled. We hope that this review will provide a reference for future high value-added applications of podophyllotoxin and its analogues in the pharmaceutical and agricultural fields.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Xian Yang Shi, Yangling, 712100, P.R. China
| |
Collapse
|
4
|
Miranda-Vera C, Hernández ÁP, García-García P, Díez D, García PA, Castro MÁ. Podophyllotoxin: Recent Advances in the Development of Hybridization Strategies to Enhance Its Antitumoral Profile. Pharmaceutics 2023; 15:2728. [PMID: 38140069 PMCID: PMC10747284 DOI: 10.3390/pharmaceutics15122728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Podophyllotoxin is a naturally occurring cyclolignan isolated from rhizomes of Podophyllum sp. In the clinic, it is used mainly as an antiviral; however, its antitumor activity is even more interesting. While podophyllotoxin possesses severe side effects that limit its development as an anticancer agent, nevertheless, it has become a good lead compound for the synthesis of derivatives with fewer side effects and better selectivity. Several examples, such as etoposide, highlight the potential of this natural product for chemomodulation in the search for new antitumor agents. This review focuses on the recent chemical modifications (2017-mid-2023) of the podophyllotoxin skeleton performed mainly at the C-ring (but also at the lactone D-ring and at the trimethoxyphenyl E-ring) together with their biological properties. Special emphasis is placed on hybrids or conjugates with other natural products (either primary or secondary metabolites) and other molecules (heterocycles, benzoheterocycles, synthetic drugs, and other moieties) that contribute to improved podophyllotoxin bioactivity. In fact, hybridization has been a good strategy to design podophyllotoxin derivatives with enhanced bioactivity. The way in which the two components are joined (directly or through spacers) was also considered for the organization of this review. This comprehensive perspective is presented with the aim of guiding the medicinal chemistry community in the design of new podophyllotoxin-based drugs with improved anticancer properties.
Collapse
Affiliation(s)
- Carolina Miranda-Vera
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - Ángela Patricia Hernández
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - Pilar García-García
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - David Díez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Pablo Anselmo García
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - María Ángeles Castro
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| |
Collapse
|
5
|
Sun W, Sun F, Meng J, Cao X, Zhao S, Wang C, Li L, Jiang P. Design, semi-synthesis and bioactivity evaluation of novel podophyllotoxin derivatives as potent anti-tumor agents. Bioorg Chem 2022; 126:105906. [DOI: 10.1016/j.bioorg.2022.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
|
6
|
Ravikumar C, Selvan ST, Saminathan M, Safin DA. Crystal structure, quantum computational, molecular docking and in vitro anti-proliferative investigations of 1H‐imidazole‐2‐thione analogues derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
N B, K R C. Antiviral, Anticancer and Hypotensive Potential of Diphyllin Glycosides and their Mechanisms of Action. Mini Rev Med Chem 2022; 22:1752-1771. [PMID: 35040401 DOI: 10.2174/1389557522666220117122718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/16/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Diphyllin glycosides (DG) are the type of arylnaphthalene lignans isolated from different plants and their synthetic derivatives have shown effective antiviral, cytotoxic, hypotensive and diuretic effects at very low concentrations similar to standard drugs that are under clinical use. The biological activities of the DG interfere with signaling pathways of viral infection and cancer induction. The sugar moieties of DG enhance bioavailability and pharmacological activities. The promising results of DG at nanomolar concentrations under in vitro and in vivo conditions should be explored further with clinical trials to determine its toxic effects, pharmacokinetics and pharmacodynamics. This may identify suitable antiviral and anticancer drugs in the near future. Considering all these activities, the present review is focused on the chemical aspects of DG with a detailed account on the mechanisms of action of DG. An attempt is also made to comment on the status of clinical trials of DG along with the possible limitations in studies based on available literature through September 2020.
Collapse
Affiliation(s)
- Bhagya N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore-575018, Karnataka, India
| | - Chandrashekar K R
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore-575018, Karnataka, India
| |
Collapse
|
8
|
Amewu RK, Sakyi PO, Osei-Safo D, Addae-Mensah I. Synthetic and Naturally Occurring Heterocyclic Anticancer Compounds with Multiple Biological Targets. Molecules 2021; 26:7134. [PMID: 34885716 PMCID: PMC8658833 DOI: 10.3390/molecules26237134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Cancer is a complex group of diseases initiated by abnormal cell division with the potential of spreading to other parts of the body. The advancement in the discoveries of omics and bio- and cheminformatics has led to the identification of drugs inhibiting putative targets including vascular endothelial growth factor (VEGF) family receptors, fibroblast growth factors (FGF), platelet derived growth factors (PDGF), epidermal growth factor (EGF), thymidine phosphorylase (TP), and neuropeptide Y4 (NY4), amongst others. Drug resistance, systemic toxicity, and drug ineffectiveness for various cancer chemo-treatments are widespread. Due to this, efficient therapeutic agents targeting two or more of the putative targets in different cancer cells are proposed as cutting edge treatments. Heterocyclic compounds, both synthetic and natural products, have, however, contributed immensely to chemotherapeutics for treatments of various diseases, but little is known about such compounds and their multimodal anticancer properties. A compendium of heterocyclic synthetic and natural product multitarget anticancer compounds, their IC50, and biological targets of inhibition are therefore presented in this review.
Collapse
Affiliation(s)
- Richard Kwamla Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Patrick Opare Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| | - Ivan Addae-Mensah
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana; (R.K.A.); (P.O.S.); (D.O.-S.)
| |
Collapse
|
9
|
Strus P, Borensztejn K, Szczepankiewicz AA, Lisiecki K, Czarnocki Z, Nieznanska H, Wojcik C, Bialy LP, Mlynarczuk-Bialy I. Novel podophyllotoxin and benzothiazole derivative induces transitional morphological and functional changes in HaCaT cells. Toxicol In Vitro 2021; 73:105144. [PMID: 33722735 DOI: 10.1016/j.tiv.2021.105144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
Podophyllotoxin (PPT) is an antimitotic drug used topically in the treatment of anogenital warts. Due to its toxicity it cannot be administered systemically as an anticancer agent. However, modified PPT derivatives such as etoposide and teniposide are used clinically as systemic agents. Thus, we invented novel PPT derivative KL3 that was synthesized by photocyclization. Earlier we have shown that KL3 has an anticancer effect in various cell lines. Here we compared the toxicity of KL3 vs PPT on non-cancerous normal human keratinocytes (HaCaT) and peripheral blood mononuclear cells (PBMC) showing that KL3 is less toxic than PPT to non-cancerous cells. At concentrations that neither induced cell death, nor affected cell cycle, KL3 in HaCaT cells evoked transient ultrastructural features of ER stress, swelling of mitochondria and elongation of cytoplasmic processes. Those changes partially reversed with prolonged incubation while features of autophagy were induced. PPT in equivalent concentrations induced HaCaT cell death by cell cycle arrest, intrinsic apoptosis and finally disintegration of cell membranes followed by secondary necrosis. In conclusion, we show that the KL3 derivative of PPT in contrast to PPT allows repair of normal keratinocytes and triggers mechanisms that restore non-tumor cell homeostasis.
Collapse
Affiliation(s)
- Piotr Strus
- Histology and Embryology Students Association at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004, Poland
| | - Karol Borensztejn
- Histology and Embryology Students Association at the Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Kamil Lisiecki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Zbigniew Czarnocki
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Cezary Wojcik
- US Cardiovascular, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA
| | - Lukasz P Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004, Poland
| | - Izabela Mlynarczuk-Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004, Poland.
| |
Collapse
|
10
|
Changxing L, Galani S, Hassan FU, Rashid Z, Naveed M, Fang D, Ashraf A, Qi W, Arif A, Saeed M, Chishti AA, Jianhua L. Biotechnological approaches to the production of plant-derived promising anticancer agents: An update and overview. Biomed Pharmacother 2020; 132:110918. [PMID: 33254434 DOI: 10.1016/j.biopha.2020.110918] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/28/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
The plant kingdom is a rich source of bioactive compounds, many of which have been used since pre-history for their therapeutic properties to treat a range of illnesses. These metabolites have recently attracted attention to their antineoplastic activities to treat various cancers relying on different mechanisms. Some of these molecules are glycosides, which have proven useful as anti-cancer agents, namely podophyllotoxin (PPT) anaryltetralin lignan or alkaloids. There are three primary forms of alkaloids, such as indole alkaloids (vincristine and vinblastine from Catharanthus roseus), quinoline alkaloid (camptothecin from Camptotheca acuminata), and diterpenoid alkaloid (taxol and it's analogous from Taxus and Corylus species). This review considers various plant biotechnology approaches used to enhance the production of these anticancer molecules in different species. In this regard, many in vitro culture techniques such as stimulation of suspension culture and hairy roots are being used to investigate the effects of plant growth regulators and elicitors on various explants.
Collapse
Affiliation(s)
- Li Changxing
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000,P.R China; College of Animal Science and Technology, Northwest A & F University, Yangling, Shanxi Province,712100, P.R China
| | - Saddia Galani
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Zubia Rashid
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Muhammad Naveed
- School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing, 211166, P.R China
| | - Daidong Fang
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000,P.R China
| | - Asma Ashraf
- Department of Zoology, G. C. University, Faisalabad, Pakistan
| | - Wang Qi
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000,P.R China
| | - Afsheen Arif
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Arif Ali Chishti
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan
| | - Li Jianhua
- Department of Human Anatomy, Medical College of Qinghai University, Xining, 810000,P.R China.
| |
Collapse
|
11
|
Zhao W, Cong Y, Li HM, Li S, Shen Y, Qi Q, Zhang Y, Li YZ, Tang YJ. Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Nat Prod Rep 2020; 38:470-488. [PMID: 32895676 DOI: 10.1039/d0np00041h] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2020As a main bioactive component of the Chinese, Indian, and American Podophyllum species, the herbal medicine, podophyllotoxin (PTOX) exhibits broad spectrum pharmacological activity, such as superior antitumor activity and against multiple viruses. PTOX derivatives (PTOXs) could arrest the cell cycle, block the transitorily generated DNA/RNA breaks, and blunt the growth-stimulation by targeting topoisomerase II, tubulin, or insulin-like growth factor 1 receptor. Since 1983, etoposide (VP-16) is being used in frontline cancer therapy against various cancer types, such as small cell lung cancer and testicular cancer. Surprisingly, VP-16 (ClinicalTrials NTC04356690) was also redeveloped to treat the cytokine storm in coronavirus disease 2019 (COVID-19) in phase II in April 2020. The treatment aims at dampening the cytokine storm and is based on etoposide in the case of central nervous system. However, the initial version of PTOX was far from perfect. Almost all podophyllotoxin derivatives, including the FDA-approved drugs VP-16 and teniposide, were seriously limited in clinical therapy due to systemic toxicity, drug resistance, and low bioavailability. To meet this challenge, scientists have devoted continuous efforts to discover new candidate drugs and have developed drug strategies. This review focuses on the current clinical treatment of PTOXs and the prospective analysis for improving druggability in the rational design of new generation PTOX-derived drugs.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|