1
|
da Silva Rangel L, Gonzaga DTG, da Silva ACR, von Ranke NL, Rodrigues CR, dos Santos JAA, Boechat N, Gomes KNF, Teixeira GP, Faria RX. Molluscicidal and Schistosomicidal Activities of 2-(1 H-Pyrazol-1- yl)-1,3,4-thiadiazole Derivatives. Pharmaceuticals (Basel) 2025; 18:429. [PMID: 40143205 PMCID: PMC11944928 DOI: 10.3390/ph18030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
Background/objectives: Schistosomiasis is caused by flatworms of the genus Schistosoma, for which mollusks of the genus Biomphalaria are intermediate hosts. Niclosamide (NCL) is a molluscicide recommended by the World Health Organization (WHO) for control of Biomphalaria. Although effective, it is expensive and environmentally toxic, which raises concerns regarding its widespread use. As a result, we explored new synthetic substances as alternative strategies for controlling Biomphalaria glabrata. We evaluated the molluscicidal activity of 2-(1H-py-razol-1-yl)-1,3,4-thiadiazole and 2-(4,5-dihydro-1H-pyrazol-1-yl)-1,3,4-thiadiazole derivatives against B. glabrata snails and embryos, as well as Schistosoma cercariae (infective larvae). Methods: Adult and young snails were added to 24-well plates containing 20 synthetic compounds from the PDAN series for initial screening over 96 h at a concentration of 100 ppm. Water and NCL (2 ppm) were used as the negative and positive controls, respectively. Active compounds in the adult B. glabrata assay were selected for the tests vs. embryos and cercariae. Results: In the initial screen, only PDAN 52 (63 ± 4%) and 79 (12 ± 3%) showed molluscicidal activity at a concentration of 100 ppm up to 48 h. Consequently, we selected only PDAN 52. The LC50 value found in the tests on embryos after 24 h of treatment was 20 ± 2 ppm and, after 48 h, it was 4 ± 0.5 ppm. Against cercariae, we measured an LC50 value of 68 ± 5 ppm after 4 h of treatment. PDAN 52 did not induce marked toxicity against a second mollusk, Physella acuta, after 48 h of exposure. Conclusions: We highlight the promising molluscicidal activity of PDAN 52 against different developmental stages of the mollusk, B. glabrata, as well the infective larvae of Schistosoma mansoni.
Collapse
Affiliation(s)
- Leonardo da Silva Rangel
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (LAPSA), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (L.d.S.R.); (K.N.F.G.); (G.P.T.)
| | - Daniel Tadeu Gomes Gonzaga
- Department of Pharmacy, West Zone Campus, State University of Rio de Janeiro (UERJ), Rio de Janeiro 20550-013, Brazil;
| | - Ana Cláudia Rodrigues da Silva
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (LAPSA), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (L.d.S.R.); (K.N.F.G.); (G.P.T.)
| | - Natalia Lindmar von Ranke
- Laboratory of Molecular Modeling and QSAR (Mod Mol QSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (N.L.v.R.)
| | - Carlos Rangel Rodrigues
- Laboratory of Molecular Modeling and QSAR (Mod Mol QSAR), Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, Brazil; (N.L.v.R.)
| | - José Augusto Albuquerque dos Santos
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (LAPSA), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (L.d.S.R.); (K.N.F.G.); (G.P.T.)
| | - Nubia Boechat
- Laboratory of Drug Synthesis-LASFAR-Farmanguinhos, Fiocruz 21041-250, Brazil
| | - Keyla Nunes Farias Gomes
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (LAPSA), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (L.d.S.R.); (K.N.F.G.); (G.P.T.)
- Postgraduate Program in Plant Biotechnology and Bioprocesses, Center of Health Sciences, Federal University of Rio de Janeiro, University City, Carlos Chagas Filho Avenue 373, Rio de Janeiro 21941-902, Brazil
| | - Guilherme Pegas Teixeira
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (LAPSA), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (L.d.S.R.); (K.N.F.G.); (G.P.T.)
- Postgraduate Program in Plant Biotechnology and Bioprocesses, Center of Health Sciences, Federal University of Rio de Janeiro, University City, Carlos Chagas Filho Avenue 373, Rio de Janeiro 21941-902, Brazil
| | - Robson Xavier Faria
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (LAPSA), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil; (L.d.S.R.); (K.N.F.G.); (G.P.T.)
| |
Collapse
|
2
|
Faria AFM, de Souza Ferreira Pereira C, Teixeira GP, Dos Santos Galvão RM, Pacheco PAF, Bello ML, de Jesus DH, Calabrese K, Gonzaga DTG, Boechat N, Faria RX. In vitro evaluation of 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole derivatives against replicative and infective stages of Trypanosoma cruzi. J Bioenerg Biomembr 2023; 55:409-421. [PMID: 37919636 DOI: 10.1007/s10863-023-09982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 11/04/2023]
Abstract
Current treatment of Chagas disease (CD) is based on two substances, nifurtimox (NT) and benzonidazole (BZ), both considered unsatisfactory mainly due to their low activities and high toxicity profile. One of the main challenges faced in CD management concerns the identification of new drugs active in the acute and chronic phases and with good pharmacokinetic profiles. In this work, we studied the bioactivity of twenty 2-(1H-pyrazol-1-yl)-1,3,4-thiadiazole derivatives against Trypanosoma cruzi epimastigotes and trypomastigotes. We identified seven derivatives with promising activity against epimastigote forms with IC50 values ranging from 6 µM to 44 µM. Most of the compounds showed no significant toxicity against murine macrophages. Our initial investigation on the mechanism of action indicates that this series of compounds may exert their anti-parasitic effect, inducing cell membrane damage. The results in trypomastigotes showed that one derivative, PDAN 78, satisfactorily inhibited metabolic alteration at all concentrations. Moreover, we used molecular modeling to understand how tridimensional and structural aspects might influence the observed bioactivities. Finally, we also used in silico approaches to assess the potential pharmacokinetic and toxicological properties of the most active compounds. Our initial results indicate that this molecular scaffold might be a valuable prototype for novel and safe trypanocidal compounds.
Collapse
Affiliation(s)
- Ana Flávia Martins Faria
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Caroline de Souza Ferreira Pereira
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Guilherme Pegas Teixeira
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Raíssa Maria Dos Santos Galvão
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paulo Anastácio F Pacheco
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Murilo Lamim Bello
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daiane Hardoim de Jesus
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Kátia Calabrese
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Daniel Tadeu Gomes Gonzaga
- Department of Pharmacy, West Zone Campus, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Nubia Boechat
- Fiocruz Institute of Drug Technology, Farmanguinhos, Fiocruz, Brazil
| | - Robson Xavier Faria
- Laboratory for Evaluation and Promotion of Evaluation and Promotion of Environmental Health (L, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Mafra JCM, Boechat N, Teixeira GP, Faria RX. Synthetic molecules as P2X7 receptor antagonists: A medicinal chemistry update focusing the therapy of inflammatory diseases. Eur J Pharmacol 2023; 957:175999. [PMID: 37619787 DOI: 10.1016/j.ejphar.2023.175999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Stimulation of the P2X7 receptor by extracellular adenosine 5'-triphosphate induces a series of responses in the organism, exceptionally protein cascades related to the proinflammatory process. This has made P2X7 a target for research on inflammatory diseases such as rheumatoid arthritis. Thus, the incessant search for new prototypes that aim to antagonize the action of P2X7 has been remarkable in recent decades, a factor that has already led to numerous clinical studies in humans. In this review, we present the key molecules developed over the years with potential inhibition of P2X7 and inflammation. In addition, an update with newly developed chemical classes with promising activity and results in clinical studies for human pathologies focusing on P2X7 inhibition.
Collapse
Affiliation(s)
- João Carlos Martins Mafra
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil; Instituto Federal do Rio de Janeiro - IFRJ, Rio de Janeiro, Brazil.
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos (LASFAR) - Farmanguinhos - Fiocruz Brazil.
| | - Guilherme Pegas Teixeira
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| | - Robson Xavier Faria
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz (IOC), Rio de Janeiro Fiocruz Brazil.
| |
Collapse
|
4
|
Pacheco PAF, Faria JV, Silva AC, von Ranke NL, Silva RC, Rodrigues CR, da Rocha DR, Faria RX. In silico and pharmacological study of N,S-acetal juglone derivatives as inhibitors of the P2X7 receptor-promoted in vitro and in vivo inflammatory response. Biomed Pharmacother 2023; 162:114608. [PMID: 37003033 DOI: 10.1016/j.biopha.2023.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/01/2023] Open
Abstract
Purinergic receptors are transmembrane proteins responsive to extracellular nucleotides and are expressed by several cell types throughout the human body. Among all identified subtypes, the P2×7 receptor has emerged as a relevant target for the treatment of inflammatory disease. Several clinical trials have been conducted to evaluate the effectiveness of P2×7R antagonists. However, to date, no selective antagonist has reached clinical use. In this work, we report the pharmacological evaluation of eleven N, S-acetal juglone derivatives as P2×7R inhibitors. Using in vitro assays and in vivo experimental models, we identified one derivative with promising inhibitory activity and low toxicity. Our in silico studies indicate that the 1,4-naphthoquinone moiety might be a valuable molecular scaffold for the development of novel P2×7R antagonists, as suggested by our previous studies.
Collapse
|
5
|
Hatami M, Basri Z, Sakhvidi BK, Mortazavi M. Thiadiazole – A promising structure in design and development of anti-Alzheimer agents. Int Immunopharmacol 2023; 118:110027. [PMID: 37011500 DOI: 10.1016/j.intimp.2023.110027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
The design and development of effective multitargeted agents in treating Alzheimer disease (AD) has always been a hot topic in the field of drug discovery. Since AD is a multifactorial disorder, various key hidden players such as deficit of acetylcholine (ACh), tau-protein aggregation, and oxidative stress have been associated with the incidence and progress of AD. In pursuit of improving efficacy and expanding the range of pharmacological activities of current AD drugs, the molecular hybridization method is also used intensively. Five-membered heterocyclic systems such as thiadiazole scaffolds have previously been shown to have therapeutic activity. Thiadiazole analogs as an anti-oxidant compound have been known to include a wide range of biological activity from anti-cancer to anti-Alzheimer properties. The suitable pharmacokinetic and physicochemical properties of the thiadiazole scaffold have introduced it as a therapeutic target in medicinal chemistry. The current review portrays the critical role of the thiadiazole scaffold in the design of various compounds with potential effects in the treatment of Alzheimer's disease. Furthermore, the rationale used behind hybrid-based design strategies and the outcomes achieved through the hybridization of Thiadiazole analogs with various core structures have been discussed. In addition, the data in the present review may help researchers in the design of new multidrug combinations that may provide new options for the treatment of AD.
Collapse
Affiliation(s)
- Maryam Hatami
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Basri
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Batool Khani Sakhvidi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
6
|
Pacheco PAF, Gonzaga DTG, von Ranke NL, Rodrigues CR, da Rocha DR, da Silva FDC, Ferreira VF, Faria RX. Synthesis, Biological Evaluation and Molecular Modeling Studies of Naphthoquinone Sulfonamides and Sulfonate Ester Derivatives as P2X7 Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020590. [PMID: 36677652 PMCID: PMC9866630 DOI: 10.3390/molecules28020590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023]
Abstract
ATP acts in the extracellular environment as an important signal, activating a family of receptors called purinergic receptors. In recent years, interest in the potential therapeutics of purinergic components, including agonists and antagonists of receptors, has increased. Currently, many observations have indicated that ATP acts as an important mediator of inflammatory responses and, when found in high concentrations in the extracellular space, is related to the activation of the P2X7 purinergic receptor. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Sulfonamide derivatives have been reported to be potent inhibitors of P2X receptors. In this study, ten naphthoquinone sulfonamide derivatives and five naphthoquinone sulfonate ester derivatives were tested for their inhibitory activity on the P2X7 receptor expressed in peritoneal macrophages. Some compounds showed promising results, displaying IC50 values lower than that of A740003. Molecular docking and dynamic studies also indicated that the active compounds bind to an allosteric site on P2X7R. The binding free energy indicates that sulfonamides have an affinity for the P2X7 receptor similar to A740003. Therefore, the compounds studied herein present potential P2X7R inhibition.
Collapse
Affiliation(s)
| | - Daniel Tadeu Gomes Gonzaga
- Departament of Pharmacy, West Zone Campus, State University of Rio de Janeiro, Rio de Janeiro 23070-200, Brazil
| | - Natalia Lidmar von Ranke
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - Carlos Rangel Rodrigues
- Department of Pharmaceuticals and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - David Rodrigues da Rocha
- Department of Organic Chemistry, Institute of Chemistry, Federal Fluminense University, Niterói 24020-141, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Robson Xavier Faria
- Evaluation and Promotion of the Ambiental Health Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Postgraduate Program in Sciences and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói 24210-130, Brazil
- Correspondence:
| |
Collapse
|
7
|
Synthesis, biological evaluation and molecular modeling studies of novel 1,2,3-triazole-linked menadione-furan derivatives as P2X7 inhibitors. J Bioenerg Biomembr 2022; 54:227-239. [PMID: 36070071 DOI: 10.1007/s10863-022-09947-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
The P2X7 receptor (P2X7R) is an ion channel that promotes the passage of ions through the membrane through brief stimulation once activated by ATP, its endogenous opener. However, prolonged stimulation with ATP, which occurs in pathological processes, opens a nonselective pore in the plasma membrane, allowing the passage of large molecules and leading to cytokine release or even cell death. In this sense, the search for new inhibitors for this receptor has attracted a great deal of attention in recent years. Considering the booming of biomass upgrading reactions in recent years and the continued efforts to synthesize biologically active molecules containing the 1,2,3-triazole ring, in the present work, we aimed to investigate whether triazole-linked menadione-furan derivatives could present P2X7R inhibitory activity. The novel compounds were tested for their inhibitory activity on ATP-induced dye uptake in peritoneal macrophages. Some have shown promising results, having displayed IC50 values lower than that of the P2X7R inhibitor BBG. Molecular docking studies also indicated that the active compounds bind to an allosteric site on P2X7R, presenting potential P2X7R inhibition.
Collapse
|
8
|
Ruscogenin Ameliorated Sjögren's Syndrome by Inhibiting NLRP3 Inflammasome Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6425121. [PMID: 35800007 PMCID: PMC9256408 DOI: 10.1155/2022/6425121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/04/2022] [Indexed: 12/22/2022]
Abstract
This article investigated the role and the specific mechanism of Ruscogenin in Sjögren's syndrome (SS). NOD/ShiLtJ mice were treated with Ruscogenin, and acinar cells isolated from submandibular glands were treated with TNF-α, Ruscogenin and transfected with NLRP3 overexpression plasmid. Salivary flow rate (SFR) was measured at weeks 11, 13, 15, 17, and 20. Histological analysis of the submandibular glands was conducted by hematoxylin-eosin staining assay. IL-6, IL-17, TNF-α, and IL-1β mRNA expression was detected through qRT-PCR. AQP 5, AQP 4, P2X7R, NLRP3, caspase 1, IL-1β, Bax, and Bcl-2 protein levels were tested by western blot. Cell apoptosis was assessed through acridine orange and propidium iodide (AO/PI) staining assay and flow cytometry assay. Ruscogenin ameliorated the SFR and submandibular gland inflammation of NOD/ShiLtJ mice. Ruscogenin promoted the preservation of acinar cells and suppressed inflammation-related factors (P2X7R, NLRP3, caspase 1, and IL-1β) in submandibular gland tissues of NOD/ShiLtJ mice. Ruscogenin inhibited acinar cell apoptosis in NOD/ShiLtJ mice and reversed TNF-α-induced apoptosis and inflammation of acinar cells. NLRP3 overexpression reversed the repressive effect of Ruscogenin on TNF-α-induced inflammation and apoptosis of acinar cells. Ruscogenin ameliorated SS by inhibiting NLRP3 inflammasome activation.
Collapse
|
9
|
Development of Novel Montmorillonite-Based Sustained Release System for Oral Bromopride Delivery. Eur J Pharm Sci 2022; 175:106222. [DOI: 10.1016/j.ejps.2022.106222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022]
|
10
|
Matyśniak D, Chumak V, Nowak N, Kukla A, Lehka L, Oslislok M, Pomorski P. P2X7 receptor: the regulator of glioma tumor development and survival. Purinergic Signal 2021; 18:135-154. [PMID: 34964926 PMCID: PMC8850512 DOI: 10.1007/s11302-021-09834-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
P2X7 is an ionotropic nucleotide receptor, forming the cation channel upon ATP stimulation. It can also function as a large membrane pore as well as transmit ATP-dependent signal without forming a channel at all. P2X7 activity in somatic cells is well-known, but remains poorly studied in glioma tumors. The current paper presents the comprehensive study of P2X7 activity in C6 and glioma cell line showing the wide range of effects the receptor has on glioma biology. We observed that P2X7 stimulation boosts glioma cell proliferation and increases cell viability. P2X7 activation promoted cell adhesion, mitochondria depolarization, and reactive oxygen species overproduction in C6 cells. P2X7 receptor also influenced glioma tumor growth in vivo via activation of pro-survival signaling pathways and ATP release. Treatment with Brilliant Blue G, a selective P2X7 antagonist, effectively inhibited glioma tumor development; decreased the expression of negative prognostic cancer markers pro-survival and epithelial-mesenchymal transition (EMT)-related proteins; and modulated the immune response toward glioma tumor in vivo. Finally, pathway-specific enrichment analysis of the microarray data from human patients also showed an upregulation of P2X7 receptor in gliomas from grades I to III. The presented results shed more light on the role of P2X7 receptor in the biology of this disease.
Collapse
Affiliation(s)
- Damian Matyśniak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Vira Chumak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
- Regenerative Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Artur Kukla
- Silesian University of Technology, Gliwice, Poland
| | - Lilya Lehka
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Magdalena Oslislok
- Department of Embryology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
11
|
Physalin pool from Physalis angulata L. leaves and physalin D inhibit P2X7 receptor function in vitro and acute lung injury in vivo. Biomed Pharmacother 2021; 142:112006. [PMID: 34392085 DOI: 10.1016/j.biopha.2021.112006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
P2X7 receptor promotes inflammatory response and neuropathic pain. New drugs capable of impairing inflammation and pain-reducing adverse effects extracted from plant extracts have been studied. Physalis angulate L. possesses traditional uses and exhibits antiparasitic, anti-inflammatory, antimicrobial, antinociceptive, antimalarial, antileishmanial, immunosuppressive, antiasthmatic. diuretic, and antitumor activities. The most representative phytochemical constituents identified with medicinal importance are the physalins and withanolides. However, the mechanism of anti-inflammatory action is scarce. Although some physalins and withanolides subtypes have anti-inflammatory activity, only four physalins subtypes (B, D, F, and G) have further studies. Therefore, we evaluated the crude ethanolic extract enriched with physalins B, D, F, and G from P. angulata leaves, a pool containing the physalins B, D, F, G, and the physalins individually, as P2X7 receptor antagonists. For this purpose, we evaluated ATP-induced dye uptake, macroscopic currents, and interleukin 1-β (IL-1β) in vitro. The crude extract and pool dose-dependently inhibited P2X7 receptor function. Thus, physalin B, D, F, and G individually evaluated for 5'-triphosphate (ATP)-induced dye uptake assay, whole-cell patch-clamp, and cytokine release showed distinct antagonist levels. Physalin D displayed higher potency and efficacy than physalin B, F, and G for all these parameters. In vivo mice model as ATP-induced paw edema was potently inhibited for physalin D, in contrast to physalin B, F, and G. ATP and lipopolysaccharide (LPS)-induced pleurisy in mice were reversed for physalin D treatment. Molecular modeling and computational simulation predicted the intermolecular interactions between the P2X7 receptor and physalin derivatives. In silico results indicated physalin D and F as a potent allosteric P2X7 receptor antagonist. These data confirm physalin D as a promisor source for developing a new P2X7 receptor antagonist with anti-inflammatory action.
Collapse
|
12
|
Calzaferri F, Narros-Fernández P, de Pascual R, de Diego AMG, Nicke A, Egea J, García AG, de Los Ríos C. Synthesis and Pharmacological Evaluation of Novel Non-nucleotide Purine Derivatives as P2X7 Antagonists for the Treatment of Neuroinflammation. J Med Chem 2021; 64:2272-2290. [PMID: 33560845 DOI: 10.1021/acs.jmedchem.0c02145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ATP-gated P2X7 purinergic receptor (P2X7) is involved in the pathogenesis of many neurodegenerative diseases (NDDs). Several P2X7 antagonists have been developed, though none of them reached clinical trials for this indication. In this work, we designed and synthesized novel blood-brain barrier (BBB)-permeable derivatives as potential P2X7 antagonists. They comprise purine or xanthine cores linked to an aryl group through different short spacers. Compounds were tested in YO-PRO-1 uptake assays and intracellular calcium dynamics in a human P2X7-expressing HEK293 cell line, two-electrode voltage-clamp recordings in Xenopus laevis oocytes, and in interleukin 1β release assays in mouse peritoneal macrophages. BBB permeability was assessed by parallel artificial membrane permeability assays and P-glycoprotein ATPase activity. Dichloroarylpurinylethanones featured a certain P2X7 blockade, being compound 6 (2-(6-chloro-9H-purin-9-yl)-1-(2,4-dichlorophenyl)ethan-1-one), named ITH15004, the most potent, selective, and BBB-permeable antagonist. Compound 6 can be considered as a first non-nucleotide purine hit for future drug optimizations.
Collapse
Affiliation(s)
- Francesco Calzaferri
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Paloma Narros-Fernández
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Ricardo de Pascual
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Antonio M G de Diego
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Javier Egea
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Antonio G García
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| | - Cristóbal de Los Ríos
- Instituto-Fundación Teófilo Hernando and Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, C/ Diego de León, 62-1a Planta, 28006 Madrid, Spain
| |
Collapse
|
13
|
Nurkhametova D, Siniavin A, Streltsova M, Kudryavtsev D, Kudryavtsev I, Giniatullina R, Tsetlin V, Malm T, Giniatullin R. Does Cholinergic Stimulation Affect the P2X7 Receptor-Mediated Dye Uptake in Mast Cells and Macrophages? Front Cell Neurosci 2020; 14:548376. [PMID: 33328886 PMCID: PMC7673375 DOI: 10.3389/fncel.2020.548376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Extracellular ATP is a powerful trigger of neuroinflammation by activating immune cells via P2X7 receptors. Acetylcholine and nicotinic agonists inhibit ATP-triggered proinflammatory cytokines via the so-called “cholinergic anti-inflammatory pathway” (CAP). However, it remains unclear as to what stage of ATP-induced signaling cholinergic agents provide this anti-inflammatory effect. Using the specific property of P2X7 receptor to open a pathway permeable to large molecules, associated with activation of inflammasome, we studied the action of cholinergic agents on this key event in CAP activation. Methods: Freshly isolated mouse peritoneal mast cells and primary human macrophages were used. To assess P2X7 channel opening, the permeability to the fluorescent dye YO-PRO1 or ethidium bromide (EtBr) was measured by flow cytometry. Expression of nicotinic receptors was probed in macrophages with the fluorescently labeled α-bungarotoxin or with patch-clamp recordings. Results: ATP opened P2X7 ion channels in mast cells and macrophages permeable to YO-PRO1 or EtBr, respectively. This stimulatory effect in mast cells was inhibited by the specific P2X7 antagonist A839977 confirming that YO-PRO1 uptake was mediated via ATP-gated P2X7 ion channels. Cholinergic agents also slightly induced dye uptake to mast cells but not in macrophages, which expressed functional α7 nicotinic receptors. However, both in mast cells and in macrophages, acetylcholine and nicotine failed to inhibit the stimulatory effect of ATP on dye uptake. Conclusion: These data suggest that in immune cells, cholinergic agents do not act on P2X7 receptor-coupled large pore formation but can mediate the anti-inflammatory effect underlying CAP downstream of ATP-driven signaling.
Collapse
Affiliation(s)
- Dilyara Nurkhametova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Andrei Siniavin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Denis Kudryavtsev
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institute of Experimental Medicine, St. Petersburg, Russia.,Department of Fundamental Medicine, Far Eastern Federal University, Vladivostok, Russia
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Victor Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
14
|
Dos Santos EG, Faria RX, Rodrigues CR, Bello ML. Molecular dynamic simulations of full-length human purinergic receptor subtype P2X7 bonded to potent inhibitors. Eur J Pharm Sci 2020; 152:105454. [PMID: 32629018 DOI: 10.1016/j.ejps.2020.105454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Among the members of purinergic receptors, the family P2X of ionotropic proteins has the ion channel subtype P2X7 that show in studies to be an important molecular target for new drugs. The activity of human P2X7 receptor (hP2X7r) in the body, due to its pro-inflammatory function, can trigger physiological disorders related to chronic inflammatory processes, leading to neural degeneration, neuropathic pain and chronic pain. Recently, two series of promising new inhibitors of the hP2X7r ion channel have been reported. One series consisted of naphthoquinone derivatives and the other composed of triazole derivatives. The main objective of this study was to understand the binding mode differences between the hit compounds of each series and compare them to the native ligand ATP. The hP2X7r ion channel and membrane lipid models were prepared in order to allow study the appropriate protein molecular dynamics. Molecular modeling and molecular dynamics simulation approaches were applied in order to obtain atomistic and molecular details that are involved in intermolecular interactions. Both compounds AN-04 and 9d seem to have affinity to binding in the hP2X7r pore area according to molecular dynamics simulations results. The naphthoquinone derivative AN-04 demonstrated a binding free energy 7.68 fold larger than triazole derivative 9d and 3.8 fold lower than native ligand ATP. These results indicate that compound AN-04 might be a promising lead compound for the development of a novel selective hP2X7r inhibitor.
Collapse
Affiliation(s)
- Eldio G Dos Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson X Faria
- Laboratório de Toxoplasmose e outras Protozooses, Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos R Rodrigues
- ModMolQSAR, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Murilo L Bello
- Laboratório de Planejamento Farmacêutico e Simulação Computacional, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|