1
|
Wang L, Shi Y, Qiu Z, Dang J, Sun L, Qu X, He J, Fan H. Bioactive 3D Electrohydrodynamic Printed Lattice Architectures Augment Tenogenesis of Tendon Stem/Progenitor Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18574-18590. [PMID: 38567837 DOI: 10.1021/acsami.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Tendon defect repair remains a tough clinical procedure that hinders functional motion in patients. Electrohydrodynamic (EHD) three-dimensional (3D) printing, as a novel strategy, can controllably fabricate biomimetic micro/nanoscale architecture, but the hydrophobic and bioinert nature of polymers might be adverse to cell-material interplay. In this work, 3D EHD printed polycaprolactone (PCL) was immobilized on basic fibroblast growth factor (bFGF) using polydopamine (PDA), and the proliferation and tenogenic differentiation of tendon stem/progenitor cells (TSPCs) in vitro was researched. A subcutaneous model was established to evaluate the effects of tenogenesis and immunomodulation. We then investigated the in situ implantation and immunomodulation effects in an Achilles tendon defect model. After immobilization of bFGF, the scaffolds profoundly facilitated proliferation and tenogenic differentiation; however, PDA had only a proliferative effect. Intriguingly, the bFGF immobilized on EHD printed PCL indicated a synergistic effect on the highest expression of tenogenic gene and protein markers at 14 days, and the tenogenesis may be induced by activating the transforming growth factor-β (TGF-β) signal pathway in vitro. The subcutaneous engraftment study confirmed a tendon-like structure, similar to that of the native tendon, as well as an M2 macrophage polarization effect. Additionally, the bioactive scaffold exhibited superior efficacy in new collagen formation and repair of Achilles tendon defects. Our study revealed that the topographic cues alone were insufficient to trigger tenogenic differentiation, requiring appropriate chemical signals, and that appropriate immunomodulation was conducive to tenogenesis. The tenogenesis of TSPCs on the bioactive scaffold may be correlated with the TGF-β signal pathway and M2 macrophage polarization.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopedic Surgery, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Yubo Shi
- Department of Orthopedic Surgery, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingyi Dang
- Department of Orthopedic Surgery, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Liguo Sun
- Shaanxi Province Hospital of Traditional Chinese Medicine, Xi'an 710018, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Rapid Manufacturing Research Center of Shaanxi Province, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongbin Fan
- Department of Orthopedic Surgery, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| |
Collapse
|
2
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
3
|
Song P, Liu Y, Du C, Lei Z, Ai J, Li G, Jing K. IL-4 modified expanded polytetrafluoroethylene (e-PTFE) surgical patch promotes angiogenesis in transplanted flap and inhibits inflammatory response. BMC Surg 2023; 23:144. [PMID: 37245036 DOI: 10.1186/s12893-023-02024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
Skin flap transplantation is one of the most common tissue transplantation methods for wound repair and organ reconstruction in plastic surgery. During the transplantation process, the inflammatory response of transplanted flap and angiogenesis are critical to the successful rate of skin flap transplantation. In recent years, to improve the biocompatibility and cell affinity of biomedical materials, the modified biomaterials have gradually become a popular subject in scientific researches. In our study, the IL-4 modified expanded polytetrafluoroethylene (e-PTFE) surgical patch IL4-e-PTFE was prepared, and the rat skin flap transplantation model was constructed. The results of cell experiment prove that IL-4 has potentiation in the angiogenesis of human umbilical vein endothelial cell (HUVEC) induced by monocyte, and IL-4 can also promote angiogenesis by inducing the M2 macrophages. According to the results of in vivo experiment, the apoptosis level of transplanted flap cells of rats in the IL4-e-PTFE group was lower than that in the e-PTFE group, and in the IL4-e-PTFE group, the expression levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α showed significantly decline compared to the e-PTFE group, while the expression levels of anti-inflammatory cytokines IL-1Ra, IL-10 and TGF-β presented significant increase compared to the e-PTFE group; the immunofluorescence staining results show that the number of M2 macrophages in transplanted flap area of rats in the IL4-e-PTFE group was significantly higher than that in the e-PTFE group, and the angiogenesis level was remarkably improved. In this study, by preparing IL4-e-PTFE and carrying out the cell and in vivo experiments, a reference method is proposed, which can reduce the inflammatory response during skin transplantation process using e-PTFE and optimize the long-term effects of flap blood vessels, hoping to provide a broader space for the applications of e-PTFE in medicine.
Collapse
Affiliation(s)
- Peng Song
- Department of Burns Microsurgery, Henan Province Hospital of TCM, the Second Affiliated Hospital of Henan University of Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan Province, 450000, China.
| | - Yizheng Liu
- Department of Burns Microsurgery, Henan Province Hospital of TCM, the Second Affiliated Hospital of Henan University of Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan Province, 450000, China
| | - Chenfei Du
- Department of Burns Microsurgery, Henan Province Hospital of TCM, the Second Affiliated Hospital of Henan University of Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan Province, 450000, China
| | - Zhen Lei
- The Central Laboratory, Henan Province Hospital of TCM, the Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinwei Ai
- Department of Burns Microsurgery, Henan Province Hospital of TCM, the Second Affiliated Hospital of Henan University of Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan Province, 450000, China
| | - Guanghui Li
- Department of Burns Microsurgery, Henan Province Hospital of TCM, the Second Affiliated Hospital of Henan University of Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan Province, 450000, China
| | - Kai Jing
- Department of Burns Microsurgery, Henan Province Hospital of TCM, the Second Affiliated Hospital of Henan University of Chinese Medicine, No. 6 Dongfeng Road, Jinshui District, Zhengzhou, Henan Province, 450000, China
| |
Collapse
|
4
|
Ma M, Zou F, Abudureheman B, Han F, Xu G, Xie Y, Qiao K, Peng J, Guan Y, Meng H, Zheng Y. Magnetic Microcarriers with Accurate Localization and Proliferation of Mesenchymal Stem Cell for Cartilage Defects Repairing. ACS NANO 2023; 17:6373-6386. [PMID: 36961738 DOI: 10.1021/acsnano.2c10995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Magnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through in situ polymerization of dopamine with Fe3O4 (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility. The bone marrow mesenchyml stem cells (BMSCs) were cultured on magnetic composite microcarriers, and a static magnetic field (SMF) was applied. The results showed that BMSCs adhered to the microcarriers proliferated under the action of horizontal and vertical forces. Magnetic composite microcarriers loaded with BMSCs were implanted into the SD rat model of cartilage defect, and a magnet was added to the operative side. After 12 weeks, cartilage regeneration was observed. The results of gross observation and histological immunostaining 1 month, 2 months, and 3 mounths after operation showed that the magnetic composite microcarriers of loaded cells promoted the early maturation of cartilage and collagen secretion, and the effect of cartilage repair was significantly better than that of the control group. Gait analysis showed that implanting magnetic composite microcarriers loaded with stem cells can reduce postoperative pain and promote limb recovery in SD rats. In conclusion, this study suggests that magnetic composite microcarriers are promising tissue-engineered scaffolds for cartilage regeneration and repair.
Collapse
Affiliation(s)
- Mengjiao Ma
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Faxing Zou
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bahatibieke Abudureheman
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feng Han
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Guoli Xu
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - YaJie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Qiao
- Beijing Gerecov Technology Company Ltd., Beijing 100142, China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yueping Guan
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma &War Injuries, PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
6
|
Surgical mesh coatings for infection control and temperature sensing: An in-vitro investigation. OPENNANO 2021. [DOI: 10.1016/j.onano.2021.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Tang Y, Tan Y, Lin K, Zhu M. Research Progress on Polydopamine Nanoparticles for Tissue Engineering. Front Chem 2021; 9:727123. [PMID: 34552912 PMCID: PMC8451720 DOI: 10.3389/fchem.2021.727123] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/18/2021] [Indexed: 01/20/2023] Open
Abstract
Tissue engineering is an interdisciplinary field that aims to develop biological substitutes for the replacement, repair, or enhancement of tissue function. The physical and chemical characteristics of biomaterials exert a profound influence on the biological responses and the following biofunction. Nanostructured coatings have been widely applied as an effective surface modification strategy to improve the bioactivity of biomaterials. Especially, polydopamine and polydopamine-derived nanoparticles are found with excessive adhesiveness, redox activity, photothermal conversion capacity, paramagnetism and conductivity other than excellent biocompatibility, and hydrophilicity. In this article, advances about polydopamine nanoparticles in tissue engineering applications are reviewed, including the repair of bone, cartilage, skin, heart, and nerve, to provide strategies for future biomaterial design.
Collapse
Affiliation(s)
- Yanmei Tang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu Tan
- Second Dental Clinic, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Kaili Lin
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Min Zhu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Vidallon MLP, Giles LW, Pottage MJ, Butler CSG, Crawford SA, Bishop AI, Tabor RF, de Campo L, Teo BM. Tracking the heat-triggered phase change of polydopamine-shelled, perfluorocarbon emulsion droplets into microbubbles using neutron scattering. J Colloid Interface Sci 2021; 607:836-847. [PMID: 34536938 DOI: 10.1016/j.jcis.2021.08.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023]
Abstract
Perfluorocarbon emulsion droplets are hybrid colloidal materials with vast applications, ranging from imaging to drug delivery, due to their controllable phase transition into microbubbles via heat application or acoustic droplet vapourisation. The current work highlights the application of small- and ultra-small-angle neutron scattering (SANS and USANS), in combination with contrast variation techniques, in observing the in situ phase transition of polydopamine-shelled, perfluorocarbon (PDA/PFC) emulsion droplets with controlled polydispersity into microbubbles upon heating. We correlate these measurements with optical and transmission electron microscopy imaging, dynamic light scattering, and thermogravimetric analysis to characterise these emulsions, and observe their phase transition into microbubbles. Results show that the phase transition of PDA/PFC droplets with perfluorohexane (PFH), perfluoropentane (PFP), and PFH-PFP mixtures occur at temperatures that are around 30-40 °C higher than the boiling points of pure liquid PFCs, and this is influenced by the specific PFC compositions (perfluorohexane, perfluoropentane, and mixtures of these PFCs). Analysis and model fitting of neutron scattering data allowed us to monitor droplet size distributions at different temperatures, giving valuable insights into the transformation of these polydisperse, emulsion droplet systems.
Collapse
Affiliation(s)
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Pottage
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Calum S G Butler
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Simon A Crawford
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia
| | - Alexis I Bishop
- School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Liliana de Campo
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia.
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
9
|
Talon I, Schneider A, Ball V, Hemmerlé J. Functionalization of PTFE Materials Using a Combination of Polydopamine and Platelet-Rich Fibrin. J Surg Res 2020; 251:254-261. [PMID: 32179278 DOI: 10.1016/j.jss.2019.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/01/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND The diaphragm, which forms a physical barrier between the thoracic and the abdominal cavities, is also the major part of the respiratory system. Congenital diaphragmatic hernia (CDH) is a malformation of that partition muscle. Expanded polytetrafluoroethylene (e-PTFE), a synthetic nondegradable biomaterial, is currently used for the repair of diaphragm defects. Indeed, this hydrophobic biomaterial does not promote rapid and dense cell colonization. Surface modifications are needed to favor or even guide cellular responses. MATERIALS AND METHODS In this context, we present here a practical and effective way of functionalization of the e-PTFE material. We investigated, by using electron microscopy, the coating with PRF (Platelet-Rich Fibrin) of PDA (Polydopamine) treated e-PTFE implant material. RESULTS We demonstrate that this straightforward chemical functionalization with PDA increases the hydrophilicity of e-PTFE and thus improves tissue integration. Then, we demonstrated that whatever the contact time between PRF and e-PTFE and the centrifugation speed, the PDA coating on the e-PTFE biomaterial promotes further biological events like cell adhesion and spreading. CONCLUSIONS Our findings clearly show that this composite coating (chemically by using PDA + biologically by using PRF) method of e-PTFE is a simple, interesting and promising way to favor tissular integration of such biomaterials.
Collapse
Affiliation(s)
- Isabelle Talon
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Service de Chirurgie Pédiatrique, Strasbourg, France.
| | - Anne Schneider
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Service de Chirurgie Pédiatrique, Strasbourg, France
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
| | - Joseph Hemmerlé
- Institut National de la Santé et de la Recherche Médicale, UMR_S 1121, Strasbourg, France
| |
Collapse
|