1
|
Sant'Anna I, Arêdes RS, de Souza WCP, Lessa RCDS, de Moraes MC. Development of an immobilized Mycobacterium tuberculosis purine nucleoside phosphorylase platform for ligand fishing and inhibition assays. J Pharm Biomed Anal 2025; 254:116576. [PMID: 39603195 DOI: 10.1016/j.jpba.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Purine nucleoside phosphorylase (PNP) from Mycobacterium tuberculosis (MtPNP) plays a crucial role in purine metabolism, making it an attractive target for developing new tuberculosis treatments. In this study, we developed a ligand screening platform using MtPNP covalently immobilized on magnetic particles (MtPNP-MPs). The immobilization process achieved a high enzyme loading and preserved the enzyme catalytic activity, enabling its use in both activity and affinity-based screening assays. The activity of MtPNP-MPs was monitored by quantifying hypoxanthine released from inosine phosphorolysis, and kinetic studies revealed Michaelis-Menten behavior for inosine and inorganic phosphate substrates, with KM values comparable to those of free MtPNP. A proof-of-concept inhibitor study using the transition state analog DI4G demonstrated the platform capability for recognizing and characterizing inhibitors, yielding an IC50 value of 91.4 nM and a competitive inhibition mechanism with a Ki of 69.2 nM. Furthermore, the MtPNP-MPs exhibited high stability, retaining over 80 % of their activity after six months of storage and more than 90 % after five consecutive reaction cycles, highlighting their potential for reuse in high-throughput assays. We optimized key parameters for ligand fishing assay, including the amount of MtPNP-MPs, incubation time, and elution conditions. While higher organic solvent concentrations and longer elution times improved ligand isolation, these conditions also reduced enzyme activity. This trade-off between ligand isolation yield and enzyme reusability suggests that elution conditions should be tailored based on the ligand binding strength. Overall, this study establishes the MtPNP-MPs platform as a versatile tool for ligand identification and inhibitor characterization, with promising applications in the screening of complex libraries, such as natural products, for bioactive compounds.
Collapse
Affiliation(s)
- Isabella Sant'Anna
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Rafaella Silva Arêdes
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Walter Claudino P de Souza
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Renato Corrêa da Silva Lessa
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil
| | - Marcela Cristina de Moraes
- BioCrom, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense, Niterói 24020-141, Brazil.
| |
Collapse
|
2
|
Amorim MD, Amaral-do-Nascimento M, Severino VG, Silva JLD, Vieira TCRG, de Moraes MC. Identification of Chlorogenic Acids from Moringa oleifera Leaves as Modulators of Prion Aggregation Using Affinity Selection-Mass Spectrometry. ACS OMEGA 2025; 10:2919-2930. [PMID: 39895746 PMCID: PMC11780439 DOI: 10.1021/acsomega.4c09150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Prion diseases are fatal neurodegenerative disorders caused by the misfolding and aggregation of the cellular prion protein (PrPC) into its pathogenic form (PrPSc), leading to progressive neurodegeneration. Currently, no effective treatments are available, highlighting the need for novel therapeutic strategies. In this study, we explored the potential of Moringa oleifera extracts as a source of bioactive compounds that could modulate prion protein aggregation. A hydroethanolic extract from M. oleifera leaves was analyzed using PrP aggregation inhibition profiling via real-time quaking-induced conversion (RT-QuIC) assays, in combination with affinity selection-mass spectrometry (AS-MS). This approach identified chlorogenic and neochlorogenic acids as potent inhibitors of prion aggregation. These compounds exhibited significant antiprion activity, with IC50 values of 64.41 ± 12.12 and 35.34 ± 7.09 μM, respectively. In addition to inhibiting the conversion of PrPC to PrPSc, both compounds could disaggregate preformed PrPSc fibrils in vitro. AS-MS proved to be a valuable tool for isolating the modulators of PrP aggregation directly from crude natural product extracts, avoiding the need for expensive and time-consuming fractionation and purification processes. Identifying chlorogenic and neochlorogenic acids highlights the therapeutic potential of natural products in combating prion diseases and other amyloidogenic disorders. Our findings suggest that these bioactive compounds could serve as promising lead compounds for developing novel treatments for prion diseases. Further in vivo studies and pharmacokinetic optimization are warranted to explore their full therapeutic potential.
Collapse
Affiliation(s)
- Magali
Silva de Amorim
- Instituto
de Química, Departamento de Química Orgânica,
BioCrom, Universidade Federal Fluminense, 24210-141 Niterói, RJ, Brazil
| | - Manuela Amaral-do-Nascimento
- Instituto
de Bioquímica Médica, Instituto Nacional de Ciência
e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | - Jerson Lima da Silva
- Instituto
de Bioquímica Médica, Instituto Nacional de Ciência
e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Tuane Cristine Ramos Gonçalves Vieira
- Instituto
de Bioquímica Médica, Instituto Nacional de Ciência
e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Marcela Cristina de Moraes
- Instituto
de Química, Departamento de Química Orgânica,
BioCrom, Universidade Federal Fluminense, 24210-141 Niterói, RJ, Brazil
| |
Collapse
|
3
|
Chen X, Hong L, Wu Y, Gu Y, Luo J, Kong L. A dual recognition-based strategy employing Ni-modified metal-organic framework for in situ screening of SIRT1 inhibitors from Chinese herbs. Talanta 2024; 274:125975. [PMID: 38599114 DOI: 10.1016/j.talanta.2024.125975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Sirtuin1 (SIRT1), an NAD+-dependent histone deacetylase, plays a crucial role in regulating molecular signaling pathways. Recently, inhibition of SIRT1 rather than its activation shows the therapeutic potential for central nervous system disorder, however, the discovered SIRT1 inhibitors remains limited. In this work, a dual recognition-based strategy was developed to screen SIRT1 inhibitors from natural resources in situ. This approach utilized a Ni-modified metal-organic framework (Ni@Tyr@UiO-66-NH2) along with cell lysate containing an engineered His-tagged SIRT1 protein, eliminating the need for purified proteins, pure compounds, and protein immobilization. The high-performance Ni@Tyr@UiO-66-NH2 was synthesized by modifying the surface of UiO-66-NH2 with Ni2+ ions to specifically capture His-tagged SIRT1 while persevering its enzyme activity. By employing dual recognition, in which Ni@Tyr@UiO-66-NH2 recognized SIRT1 and SIRT1 recognized its ligands, the process of identifying SIRT1 inhibitors from complex matrix was vastly streamlined. The developed method allowed the efficient discovery of 16 natural SIRT1 inhibitors from Chinese herbs. Among them, 6 compounds were fully characterized, and suffruticosol A was found to have an excellent IC50 value of 0.95 ± 0.12 μM. Overall, an innovative dual recognition-based strategy was proposed to efficiently identify SIRT1 inhibitors in this study, offering scientific clues for the development of drugs targeting CNS disorders.
Collapse
Affiliation(s)
- Xinlin Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Lihong Hong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ying Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, United Kingdom
| | - Jianguang Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
4
|
De Soricellis G, Rinaldi F, Tengattini S, Temporini C, Negri S, Capelli D, Montanari R, Cena H, Salerno S, Massolini G, Guzzo F, Calleri E. Development of an analytical platform for the affinity screening of natural extracts by SEC-MS towards PPARα and PPARγ receptors. Anal Chim Acta 2024; 1309:342666. [PMID: 38772654 DOI: 10.1016/j.aca.2024.342666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) belong to the superfamily of nuclear receptors and represent the targets for the therapeutical treatment of type 2 diabetes, dyslipidemia and hyperglycemia associated with metabolic syndrome. Some medicinal plants have been traditionally used to treat this kind of metabolic diseases. Today only few drugs targeting PPARs have been approved and for this reason, the rapid identification of novel ligands and/or chemical scaffolds starting from natural extracts would benefit of a selective affinity ligand fishing assay. RESULTS In this paper we describe the development of a new ligand fishing assay based on size exclusion chromatography (SEC) coupled to LC-MS for the analysis of complex samples such as botanical extracts. The known PPARα and PPARγ ligands, WY-14643 and rosiglitazone respectively, were used for system development and evaluation. The system has found application on an Allium lusitanicum methanolic extract, containing saponins, a class of chemical compounds which have attracted interest as PPARs ligands because of their hypolipidemic and insulin-like properties. SIGNIFICANCE A new SEC-AS-MS method has been developed for the affinity screening of PPARα and PPARγ ligands. The system proved to be highly specific and will be used to improve the throughput for the identification of new selective metabolites from natural souces targeting PPARα and PPARγ.
Collapse
Affiliation(s)
- G De Soricellis
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy; National Biodiversity Future Center (NBFC), Palermo, 90133, Italy
| | - F Rinaldi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - S Tengattini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - C Temporini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - S Negri
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy; Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - D Capelli
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, Rome, 00016, Italy
| | - R Montanari
- Institute of Crystallography (IC), National Research Council (CNR), Via Salaria Km 29.300, Rome, 00016, Italy
| | - H Cena
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy; Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Bassi 21, Pavia, 27100, Italy; Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, 27100, Italy
| | - S Salerno
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - G Massolini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy
| | - F Guzzo
- National Biodiversity Future Center (NBFC), Palermo, 90133, Italy; Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - E Calleri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, 27100, Italy; National Biodiversity Future Center (NBFC), Palermo, 90133, Italy.
| |
Collapse
|
5
|
Anchau Wegermann C, Santana Bezerra E, Gomes de Macedo Sant'Anna I, Ortega De Oliveira PC, da Costa Silva R, Rocco Machado T, Wanderley Tinoco L, Vieira de Souza MCB, Pascutti P, Santos Boechat FDC, de Moraes MC. Insights into nucleoside hydrolase from Leishmania donovani inhibition: A new bioaffinity chromatography-based screening assay and docking studies. Bioorg Chem 2024; 146:107302. [PMID: 38521010 DOI: 10.1016/j.bioorg.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Leishmaniasis, a group of neglected infectious diseases, encompasses a serious health concern, particularly with visceral leishmaniasis exhibiting potentially fatal outcomes. Nucleoside hydrolase (NH) has a fundamental role in the purine salvage pathway, crucial for Leishmania donovani survival, and presents a promising target for developing new drugs for visceral leishmaniasis treatment. In this study, LdNH was immobilized into fused silica capillaries, resulting in immobilized enzyme reactors (IMERs). The LdNH-IMER activity was monitored on-flow in a multidimensional liquid chromatography system, with the IMER in the first dimension. A C18 analytical column in the second dimension furnished the rapid separation of the substrate (inosine) and product (hypoxanthine), enabling direct enzyme activity monitoring through product quantification. LdNH-IMER exhibited high stability and was characterized by determining the Michaelis-Menten constant. A known inhibitor (1-(β-d-Ribofuranosyl)-4-quinolone derivative) was used as a model to validate the established method in inhibitor recognition. Screening of three additional derivatives of 1-(β-d-Ribofuranosyl)-4-quinolone led to the discovery of novel inhibitors, with compound 2a exhibiting superior inhibitory activity (Ki = 23.37 ± 3.64 µmol/L) compared to the employed model inhibitor. Docking and Molecular Dynamics studies provided crucial insights into inhibitor interactions at the enzyme active site, offering valuable information for developing new LdNH inhibitors. Therefore, this study presents a novel screening assay and contributes to the development of potent LdNH inhibitors.
Collapse
Affiliation(s)
- Camila Anchau Wegermann
- BioCrom, Laboratório de Cromatografia de Bioafinidade e Química Ambiental, Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Brazil; Laboratório GQCBio, Grupo de Química de Coordenação Biológica, Departamento de Química Geral e Inorgânica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Evelyn Santana Bezerra
- BioCrom, Laboratório de Cromatografia de Bioafinidade e Química Ambiental, Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Isabella Gomes de Macedo Sant'Anna
- BioCrom, Laboratório de Cromatografia de Bioafinidade e Química Ambiental, Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Pamella Christina Ortega De Oliveira
- BioCrom, Laboratório de Cromatografia de Bioafinidade e Química Ambiental, Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Rodrigo da Costa Silva
- Laboratório LNHC, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
| | - Thamires Rocco Machado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luzineide Wanderley Tinoco
- Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | | | - Pedro Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda da Costa Santos Boechat
- Laboratório LNHC, Instituto de Química, Departamento de Química Orgânica, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil
| | - Marcela Cristina de Moraes
- BioCrom, Laboratório de Cromatografia de Bioafinidade e Química Ambiental, Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, Brazil.
| |
Collapse
|
6
|
Qian R, Sun C, Bai T, Yan J, Cheng J, Zhang J. Recent advances and challenges in the interaction between myofibrillar proteins and flavor substances. Front Nutr 2024; 11:1378884. [PMID: 38725578 PMCID: PMC11079221 DOI: 10.3389/fnut.2024.1378884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Myofibrillar proteins are an important component of proteins. Flavor characteristics are the key attributes of food quality. The ability of proteins to bind flavor is one of their most fundamental functional properties. The dynamic balance of release and retention of volatile flavor compounds in protein-containing systems largely affects the sensory quality and consumer acceptability of foods. At present, research on flavor mainly focuses on the formation mechanism of flavor components, while there are few reports on the release and perception of flavor components. This review introduces the composition and structure of myofibrillar proteins, the classification of flavor substances, the physical binding and chemical adsorption of myofibrillar proteins and volatile flavor substances, as well as clarifies the regulation law of flavor substances from the viewpoint of endogenous flavor characteristics and exogenous environment factors, to provide a theoretical reference for the flavor regulation of meat products.
Collapse
Affiliation(s)
- Rong Qian
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Chang Sun
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| | - Jing Yan
- Sichuan Laochuan East Food Co., Ltd., Chengdu, China
| | - Jie Cheng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
7
|
Huggias S, Serradell MDLÁ, Azcárate JC, Casella ML, Peruzzo PJ, Bolla PA. Catalytic Performance in Nitroarene Reduction of Nanocatalyst Based on Noble Metal Nanoparticles Supported on Polymer/s-Layer Protein Hybrids. J Phys Chem B 2024. [PMID: 38646680 DOI: 10.1021/acs.jpcb.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
We present a novel bionanocatalyst fabricated by the adsorption-reduction of metal ions on a polyurethane/S-layer protein biotemplate. The bioinspired support was obtained by the adsorption of S-layer proteins (isolated from Lentilactobacillus kefiri) on polyurethane particles. Silver and platinum nanoparticles were well-loaded on the surface of the support after the combination with metallic salts and reduction with H2 at room temperature. Transmission electron microscopy analysis revealed the strawberry-like morphology of the bionanocatalysts with a particle size, dn, of 2.39 nm for platinum and 9.60 nm for silver. Both systems catalyzed the hydrogenation of p-nitrophenol to p-aminophenol with high efficiency in water at mild conditions in the presence of NaBH4. Three different amounts of bionanocatalyst were tested, and in all cases, conversions between 97 and 99% were observed. The catalysts displayed excellent recyclability over ten cycles, and no extensive damage in their nanostructure was noted after them. The bionanocatalysts were stable during their production, storage, and use, thanks to the fact that the biosupport provides an effective driving force in the formation and stabilization of the metallic nanoparticles. The successful bioinspired production strategy and the good catalytic ability of the systems are encouraging in the search for nontoxic, simple, clean, and eco-friendly procedures for the synthesis and exploitation of nanostructures.
Collapse
Affiliation(s)
- Sofia Huggias
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| | - María de Los Ángeles Serradell
- Cátedra de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 s/n, La Plata 1900, Argentina
| | - Julio C Azcárate
- Centro Atómico Bariloche (CAB), Comisión Nacional de Energía Atómica - CONICET, Avda. E. Bustillo km 9500, San Carlos de Bariloche R8402AGP, Argentina
| | - Mónica L Casella
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| | - Pablo J Peruzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - INIFTA (UNLP - CONICET CCT La Plata), Diag. 113 y 64, La Plata B1904DPIB1904DPI, Argentina
| | - Patricia A Bolla
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" - CINDECA (UNLP-CONICET CCT La Plata), Calle 47 No 257, La Plata B1900AJK, Argentina
| |
Collapse
|
8
|
Lin L, Yan J, Sun J, Zhang J, Liao B. Screening and evaluation of metabolites binding PRAS40 from Erxian decoction used to treat spinal cord injury. Front Pharmacol 2024; 15:1339956. [PMID: 38318139 PMCID: PMC10839085 DOI: 10.3389/fphar.2024.1339956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Objective: The PRAS40 is an essential inhibitory subunit of the mTORC1 complex, which regulates autophagy. It has been suggested that Erxian Decoction (EXD) could treat spinal cord injury (SCI) via the autophagy pathway. However, the mechanism of whether EXD acts through PRAS40 remains unclear. Methods: With the help of immobilized PRAS40, isothermal titration calorimetry (ITC) and molecular docking, the bioactive metabolites in the EXD were screened. To establish in vitro SCI models, PC12 cells were exposed to hydrogen peroxide (H2O2) and then treated with the identified EXD substances. Furthermore, Western blot assay was carried out to identify potential molecular mechanisms involved. For assessing the effect of metabolites in vivo, the SCI model rats were first pretreated with or without the metabolite and then subjected to the immunohistochemistry (IHC) staining, Basso, Beattie & Bresnahan (BBB) locomotor rating scale, and H&E staining. Results: The immobilized PRAS40 isolated indole, 4-nitrophenol, terephthalic acid, palmatine, sinapinaldehyde, and 3-chloroaniline as the potential ligands binding to PRAS40. Furthermore, the association constants of palmatine and indole as 2.84 × 106 M-1 and 3.82 × 105 M-1 were elucidated via ITC due to the drug-like properties of these two metabolites. Molecular docking results also further demonstrated the mechanism of palmatine binding to PRAS40. Western blot analysis of PC12 cells demonstrated that palmatine inhibited the expression of p-mTOR by binding to PRAS40, activating the autophagic flux by markedly increasing LC3. The injection of palmatine (10μM and 20 μM) indicated notably increased BBB scores in the SCI rat model. Additionally, a dose-dependent increase in LC3 was observed by IHC staining. Conclusion: This research proved that EXD comprises PRAS40 antagonists, and the identified metabolite, palmatine, could potentially treat SCI by activating the autophagic flux.
Collapse
Affiliation(s)
- Li Lin
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jingchuan Yan
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jin Sun
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| | - Jianfeng Zhang
- Department of Pharmacy, Eighth Hospital of Xi’an City, Xi’an, Shaanxi, China
| | - Bo Liao
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Xu J, Fan Z, Yang G, Yang Y, Wu X, Li T, Wang Q, Gao J. Identification of yeast α-glucosidase inhibitors from Pueraria lobata by ligand fishing based on magnetic mesoporous silicon combined with knock-out/knock-in technology. Food Funct 2023; 14:1952-1961. [PMID: 36723126 DOI: 10.1039/d2fo03475a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this study, a ligand fishing technique based on magnetic mesoporous silicon was established and used to screen α-glucosidase inhibitors from Pueraria lobata. To clarify quantity-activity relationships in a holistic view, the knock-out/knock-in technology was used to analyse the interactions of several active constituents in P. lobata. Magnetic mesoporous silicon with a large specific surface area and better biocompatibility was synthesised. Subsequently, α-glucosidase was immobilised on -NH2-modified magnetic mesoporous silicon, and the compounds in the crude extract of P. lobata were screened across enzyme binding. The structures of the ligands were elucidated using UPLC-Q-TOF-MS/MS, and their activities were verified by knock-out/knock-in experiments and molecular docking. Daidzein and puerarin showed α-glucosidase inhibitory activities with an IC50 of 0.088 ± 0.003 mg mL-1 and 0.414 ± 0.005 mg mL-1, respectively. Among them, puerarin, which accounted for more than 40% of the total content, showed synergistic effects with other components and was the main contributor to the α-glucosidase inhibitory activity of P. lobata.
Collapse
Affiliation(s)
- Jinfang Xu
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian Road, Taiyuan 030001, People's Republic of China.
| | - Zhiyu Fan
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian Road, Taiyuan 030001, People's Republic of China.
| | - Gangqiang Yang
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian Road, Taiyuan 030001, People's Republic of China.
| | - Yanan Yang
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian Road, Taiyuan 030001, People's Republic of China.
| | - Xinjie Wu
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian Road, Taiyuan 030001, People's Republic of China.
| | - Tongtong Li
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian Road, Taiyuan 030001, People's Republic of China.
| | - Qili Wang
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian Road, Taiyuan 030001, People's Republic of China.
| | - Jianping Gao
- School of Pharmaceutical Science, Shanxi Medical University, 56 Xinjian Road, Taiyuan 030001, People's Republic of China.
| |
Collapse
|
10
|
Miranda de Souza Duarte-Filho LA, Ortega de Oliveira PC, Yanaguibashi Leal CE, de Moraes MC, Picot L. Ligand fishing as a tool to screen natural products with anticancer potential. J Sep Sci 2023:e2200964. [PMID: 36808885 DOI: 10.1002/jssc.202200964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
Cancer is the second leading cause of death in the world and its incidence is expected to increase with the aging of the world's population and globalization of risk factors. Natural products and their derivatives have provided a significant number of approved anticancer drugs and the development of robust and selective screening assays for the identification of lead anticancer natural products are essential in the challenge of developing personalized targeted therapies tailored to the genetic and molecular characteristics of tumors. To this end, a ligand fishing assay is a remarkable tool to rapidly and rigorously screen complex matrices, such as plant extracts, for the isolation and identification of specific ligands that bind to relevant pharmacological targets. In this paper, we review the application of ligand fishing with cancer-related targets to screen natural product extracts for the isolation and identification of selective ligands. We provide critical analysis of the system configurations, targets, and key phytochemical classes related to the field of anticancer research. Based on the data collected, ligand fishing emerges as a robust and powerful screening system for the rapid discovery of new anticancer drugs from natural resources. It is currently an underexplored strategy according to its considerable potential.
Collapse
Affiliation(s)
| | | | - Cíntia Emi Yanaguibashi Leal
- Departamento de Ciências Farmacêuticas, Pós-Graduação em Biociências (PGB) Universidade Federal do Vale do São Francisco, Petrolina, Brazil
| | - Marcela Cristina de Moraes
- Departamento de Química Orgânica, Laboratório BIOCROM, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
| | - Laurent Picot
- UMR CNRS 7266 LIENSs, Département de Biotechnologie, La Rochelle Université, La Rochelle, France
| |
Collapse
|
11
|
Furlani IL, Oliveira RV, Cass QB. Immobilization of cytochrome P450 enzymes onto magnetic beads: an approach to drug metabolism and biocatalysis. TALANTA OPEN 2023. [DOI: 10.1016/j.talo.2023.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
12
|
Temporini C, Calleri E, Bartolini M, de Moraes MC. Editorial: Analytical devices based on immobilized macromolecules for structural and activity/affinity studies in drug discovery. Front Mol Biosci 2022; 9:971076. [PMID: 36339705 PMCID: PMC9632340 DOI: 10.3389/fmolb.2022.971076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Caterina Temporini
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- *Correspondence: Caterina Temporini,
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Marcela Cristina de Moraes
- BioCrom, Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
13
|
Ten Years Milestones in Xanthine Oxidase Inhibitors Discovery: Febuxostat-Based Inhibitors Trends, Bifunctional Derivatives, and Automatized Screening Assays. ORGANICS 2022. [DOI: 10.3390/org3040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Xanthine oxidase (XO) is an enzyme involved in the oxidative process of hypoxanthine and xanthine to uric acid (UA). This process also produces reactive oxygen species (ROS) as byproducts. Both UA and ROS are dangerous for human health, and some health conditions trigger upregulation of XO activity, which results in many diseases (cancer, atherosclerosis, hepatitis, gout, and others) given the worsened scenario of ROS and UA overproduction. So, XO became an attractive target to produce and discover novel selective drugs based on febuxostat, the most recent XO inhibitor out of only two approved by FDA. Under this context, high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) have been successfully applied to rapidly and easily screen for bioactive compounds, isolated or in complex natural matrixes, that act as enzyme inhibitors through the use of an immobilized enzyme reactor (IMER). This article’s goal is to present advances comprising febuxostat-based XO inhibitors as a new trend, bifunctional moieties capable of inhibiting XO and modulating ROS activity, and in-flow techniques employing an IMER in HPLC and CE to screen for synthetic and natural compounds that act as XO inhibitors.
Collapse
|
14
|
Mei J, Guo R, Zhang F, Zhang H, Yang X, Yu B, Liu J, Liu X. Identification of bioactive natural products using yeast:Application to monoacylglycerol lipase inhibitor extraction from Corydalis Rhizoma. Biomed Pharmacother 2022; 149:112798. [PMID: 35286964 DOI: 10.1016/j.biopha.2022.112798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Identification of bioactive principles from natural products is considered a challenging task in drug discovery. Recently, ligand fishing has been growing in interest as a sustainable strategy. In this study, a yeast-based drug discovery strategy was investigated to screen and fish active ingredients from natural products. Human monoacylglycerol lipase (MAGL) was first displayed on the cell wall of Pichia pastoris. The expression of MAGL on the cell surface was confirmed by immunofluorescence analysis. The activity toward 7-HCA which was consistent with free enzymes in solution. Recombinant yeast strains were used to screen the potential inhibitors from traditional Chinese medicines. Preliminary screening showed that the extracts of 12 herbs showed inhibition on MAGL activity, among which Corydalis Rhizoma had the highest inhibition rate of 60.66 ± 2.44%. Recombinant yeast fishing combined with HPLC-Q-TOF-MS/MS analysis was further used to identify the potential MAGL inhibitors. Finally, dehydrocorydaline (DHC) in Corydalis Rhizoma was determined as a ligand to MAGL with the IC50 value at 154.7 μΜ. Corydalis Rhizoma has been used as a pain reliever in TCM. Intraperitoneal injection of 7 mg kg- 1 DHC in chronic constriction injury model rats significantly attenuated the mechanical allodynia and thermal hyperalgesia. Meanwhile, 2-arachidonoylglycerol, the major MAGL substrate in the brain, was significantly increased both in the hippocampus and striatum. In conclusion, yeast-based ligand fishing combined with HPLC-Q-TOF-MS/MS is a powerful strategy for drug discovery in complex mixtures and DHC from Corydalis Rhizoma was confirmed with high inhibitory activity to MAGL either in vitro or in vivo .
Collapse
Affiliation(s)
- Jie Mei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Ruilin Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Haiyan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xinping Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jihua Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China; Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
15
|
A Direct OnFlow Assay to Monitor the Activity of Purine Nucleoside Phosphorylase from Mycobacterium tuberculosis. Chromatographia 2022. [DOI: 10.1007/s10337-022-04158-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Atomic zinc sites with hierarchical porous carbon for high-throughput chemical screening with high loading capacity and stability. Pharmacol Res 2022; 178:106154. [DOI: 10.1016/j.phrs.2022.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
|
17
|
High-resolution inhibition profiling and ligand fishing for screening of nucleoside hydrolase ligands in Moringa oleifera Lamarck. J Pharm Biomed Anal 2022; 211:114614. [DOI: 10.1016/j.jpba.2022.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 11/21/2022]
|
18
|
BAI Y, FAN Y, GE G, WANG F. [Advances in chromatography in the study of drug-plasma protein interactions]. Se Pu 2021; 39:1077-1085. [PMID: 34505429 PMCID: PMC9404221 DOI: 10.3724/sp.j.1123.2021.06028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
After entering human blood circulation, small-molecule drugs interact extensively with various plasma proteins, such as human serum albumin and α1-acid glycoprotein. These interactions profoundly affect the distribution of drugs in vivo and the binding of drugs to targets, thus affecting the efficacy of drugs. In-depth investigation of drug-plasma protein interactions is of great significance for the optimization of drug properties, the development of new drugs, risk assessment, and combination therapy of drugs. Therefore, it is essential to develop highly efficient, sensitive, and accurate methods for elucidating drug-plasma protein interactions. Chromatography is a powerful tool with high throughput, high separation performance, and high sensitivity in the characterization of drug-protein interactions. High-performance affinity chromatography (HPAC) and capillary electrophoresis (CE) have been widely utilized in this field. These methods include the determination of the effects of the posttranslational modification of proteins on binding and the competitive binding of multiple drugs. In addition, various chromatographic methods are used to obtain interaction information such as the binding constant, binding-site number, and dissociation rate constant. In this review, the common strategies and recent advances in HPAC and CE in the study of drug-plasma protein interactions are briefly reviewed. The immobilization methods of proteins, the principles and applications of frontal analysis, zonal elution, ultrafast affinity extraction, peak profiling, and peak decay analysis are discussed for HPAC and affinity capillary electrophoresis (ACE) and capillary electrophoresis frontal analysis (CE-FA) for CE. HPAC relies on the fixation of proteins on the surfaces of chromatographic stationary phases by covalent linking or physical adsorption, followed by obtaining the drug-protein interaction information through a variety of chromatographic methods. In the frontal chromatography analysis, mobile phases with different concentrations of drugs are passed through the HPAC column to obtain different breakthrough times. The process can determine the number of drug binding sites and the binding constant of each site in the affinity protein with high accuracy. The zonal elution method can detect the drug binding sites on proteins using site-specific probes to determine whether there is competition between drugs and probes. The sample consumption and analysis time of the zonal elution method are much less than those in frontal chromatography analysis. The ultrafast affinity extraction method can inject complex samples, such as serum, into affinity columns to determine the free drug components. It can measure the combination and dissociation constants of drug-protein interactions by changing the chromatography flow rate. Peak profiling and peak decay analyses are both effective methods for investigating the dissociation of drugs and proteins. In CE analysis, the drug and protein samples are dissolved in an electrophoresis buffer, and their interactions are measured during electrophoresis with high accuracy and low sample consumption. However, the adsorption of proteins on the capillary wall can compromise CE performance. Common CE methods in drug-protein interaction analysis are ACE and CE-FA. ACE is usually performed by changing the effective mobility of drugs via the addition of different concentrations of proteins. This method has been widely used, and several variant techniques have been developed recently. CE-FA involves the sampling of a drug premixed at a known concentration with a target protein. Compared with other CE methods, CE-FA exhibits the unique advantages of high throughput, automatic online analysis, and the ability to determine high-order drug-protein interactions. Finally, the shortcomings of current chromatography methods are summarized, and the application prospects and development direction of chromatography technology in the field of drug-plasma protein interaction research are discussed.
Collapse
|
19
|
Bhukta S, Gopinath P, Dandela R. Target identification of anticancer natural products using a chemical proteomics approach. RSC Adv 2021; 11:27950-27964. [PMID: 35480761 PMCID: PMC9038044 DOI: 10.1039/d1ra04283a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, there has been a strong demand worldwide for the identification and development of potential anticancer drugs based on natural products. Natural products have been explored for their diverse biological and therapeutic applications from ancient time. In order to enhance the efficacy and selectivity and to minimize the undesired side effects of anti cancer natural products (ANPs), it is essential to understand their target proteins and their mechanistic pathway. Chemical proteomics is one of the most powerful tools to connect ANP target identification and quantification where labeling and non-labeling based approaches have been used. Herein, we have discussed the various strategies to systemically develop selective ANP based chemical probes to characterise their specific and non-specific target proteins using a chemical proteomic approach in various cancer cell lysates.
Collapse
Affiliation(s)
- Swadhapriya Bhukta
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Indianoil Odisha Campus, Samantpuri Bhubaneswar 751013 India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology Kattankulathur 603203 Chennai Tamilnadu India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Indianoil Odisha Campus, Samantpuri Bhubaneswar 751013 India
| |
Collapse
|
20
|
Magnetic particles for enzyme immobilization: A versatile support for ligand screening. J Pharm Biomed Anal 2021; 204:114286. [PMID: 34358814 DOI: 10.1016/j.jpba.2021.114286] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
Enzyme inhibitors represent a substantial fraction of all small molecules currently in clinical use. Therefore, the early stage of drug-discovery process and development efforts are focused on the identification of new enzyme inhibitors through screening assays. The use of immobilized enzymes on solid supports to probe ligand-enzyme interactions have been employed with success not only to identify and characterize but also to isolate new ligands from complex mixtures. Between the available solid supports, magnetic particles have emerged as a promising support for enzyme immobilization due to the high superficial area, easy separation from the reaction medium and versatility. Particularly, the ligand fishing assay has been employed as a very useful tool to rapidly isolate bioactive compounds from complex mixtures, and hence the use of magnetic particles for enzyme immobilization has been widespread. Thus, this review provides a critical overview of the screening assays using immobilized enzymes on magnetic particles between 2006 and 2021.
Collapse
|
21
|
Vilela AFL, Narciso Dos Reis VE, Cardoso CL. Co-Immobilized Capillary Enzyme Reactor Based on Beta-Secretase1 and Acetylcholinesterase: A Model for Dual-Ligand Screening. Front Chem 2021; 9:708374. [PMID: 34307303 PMCID: PMC8295500 DOI: 10.3389/fchem.2021.708374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed a dual enzymatic system assay involving liquid chromatography-mass spectrometry (LC–MS) to screen AChE and BACE1 ligands. A fused silica capillary (30 cm × 0.1 mm i.d. × 0.362 mm e.d.) was used as solid support. The co-immobilization procedure encompassed two steps and random immobilization. The resulting huAChE+BACE1-ICER/MS was characterized by using acetylcholine (ACh) and JMV2236 as substrates. The best conditions for the dual enzymatic system assay were evaluated and compared to the conditions of the individual enzymatic system assays. Analysis was performed in series for each enzyme. The kinetic parameters (KMapp) and inhibition assays were evaluated. To validate the system, galantamine and a β-secretase inhibitor were employed as standard inhibitors, which confirmed that the developed screening assay was able to identify reference ligands and to provide quantitative parameters. The combination of these two enzymes in a single on-line system allowed possible multi-target inhibitors to be screened and identified. The innovative huAChE+BACE1-ICER/MS dual enzymatic system reported herein proved to be a reliable tool to identify and to characterize hit ligands for AChE and BACE1 in an enzymatic competitive environment. This innovative system assay involved lower costs; measured the product from enzymatic hydrolysis directly by MS; enabled immediate recovery of the enzymatic activity; showed specificity, selectivity, and sensitivity; and mimicked the cellular process.
Collapse
Affiliation(s)
- Adriana Ferreira Lopes Vilela
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vitor Eduardo Narciso Dos Reis
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Romano de Carvalho D, Farias Ximenes V, Groppo M, Cardoso CL. Ligand screening assay for the enzyme kallikrein immobilized on NHS-activated Sepharose. J Pharm Biomed Anal 2021; 199:114026. [PMID: 33774457 DOI: 10.1016/j.jpba.2021.114026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Human tissue kallikreins (KLKs) are serine proteases involved in various physiological and pathological conditions, including cancer and neurological disorders. These enzymes constitute attractive drug targets, which has stimulated the search for new KLK inhibitors. In this study, we have covalently immobilized porcine pancreas KLK on an NHS-activated Sepharose matrix, to obtain KLK-Sepharose-NHS. The immobilized enzyme showed high recovered activity and maintained the ability of free KLK to recognize the synthetic substrate Z-Phe-Arg-AMC (KMapp = 10.3 ± 0.9 μM). As proof of concept, we used leupeptin as a reference inhibitor to perform inhibition studies for KLK-Sepharose-NHS and to determine the half-maximal inhibitory concentration (IC50 = 0.13 ± 0.01 μM), the inhibition constant (Ki = 0.06 μM), and the leupeptin inhibition mechanism. We evaluated several complex matrixes (plant crude extract) by the same bioassay, to demonstrate their applicability. The species Solanum lycocarpum, Stryphnodendron adstringens, and Psychotria carthagenensis gave the best results. KLK-Sepharose-NHS was fully active after six consecutive reaction cycles and retained about 60 % of its initial activity after being used for at least five months, so the bioassay developed herein is a promising strategy to screen and to identify KLK ligands.
Collapse
Affiliation(s)
- Daniella Romano de Carvalho
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Valdecir Farias Ximenes
- Departamento de Química, Faculdade de Ciências, Universidade Estadual Paulista, 17033-360 Bauru, SP, Brazil.
| | - Milton Groppo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Carmen Lúcia Cardoso
- Departamento de Química, Grupo de Cromatografia de Bioafinidade e Produtos Naturais, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
Lima JM, Leme GM, Costa EV, Cass QB. LC-HRMS and acetylcholinesterase affinity assay as a workflow for profiling alkaloids in Annona salzmannii extract. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1164:122493. [DOI: 10.1016/j.jchromb.2020.122493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
|
24
|
do Amaral BS, da Silva LRG, Valverde AL, de Sousa LRF, Severino RP, de Souza DHF, Cass QB. Phosphoenolpyruvate carboxykinase from T. cruzi magnetic beads affinity-based screening assays on crude plant extracts from Brazilian Cerrado. J Pharm Biomed Anal 2020; 193:113710. [PMID: 33166842 DOI: 10.1016/j.jpba.2020.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/05/2023]
Abstract
In T. cruzi, a causative agent of Chagas disease, phosphoenolpyruvate carboxykinase (TcPEPCK) is associated with carbohydrate catabolism. Due to its importance in the metabolism of the parasite, it has become a promising target for the development of new drugs against Chagas disease. Aiming to investigate different approaches for ligands screening, TcPEPCK was immobilized on amine-terminated magnetic beads (TcPEPCK-MB) and kinetically characterized by liquid chromatography tandem mass spectrometry activity assay with a KMapp value of 10 ± 1 μM to oxaloacetate as substrate. Natural products library affords highly diverse molecular frameworks through their secondary metabolites, herein a ligand fishing TcPEPCK-MB assay is described for prospecting ligands in four ethanolic extracts of Brazilian Cerrado plants: Qualea grandiflora (Vochysiaceae), Diospyros burchellii (Ebenaceae), Anadenanthera falcata (Fabaceae) and Byrsonima coccolobifolia (Malpighiaceae). The chemical characterization of eleven identified ligands was carried out by liquid chromatography tandem high-resolution mass spectrometry experiments. Senecic acid, syneilesinolide A, phytosphingosine and vanillic acid 4-glucopyranoside are herein reported for the first time for Q. grandiflora, D. burchellii, A. falcata, respectively. In addition, the specificity of the assay was observed since only catechin was fished out from the ethanolic extract of B. coccolobifolia leaves, despite the presence of epicatechin epimer.
Collapse
Affiliation(s)
- Bruno S do Amaral
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Pirituba, 05110-000, São Paulo, SP, Brazil; Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Larissa R G da Silva
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil; Instituto de Química, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Alessandra L Valverde
- Instituto de Química, Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lorena R F de Sousa
- Unidade Acadêmica Especial de Química, Universidade Federal de Goiás, Regional Catalão, 75704-020, Catalão, GO, Brazil
| | - Richele P Severino
- Unidade Acadêmica Especial de Química, Universidade Federal de Goiás, Regional Catalão, 75704-020, Catalão, GO, Brazil
| | - Dulce H F de Souza
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil
| | - Quezia B Cass
- Departamento de Química, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
25
|
Poole CF, Atapattu SN. Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography. J Chromatogr A 2020; 1626:461427. [DOI: 10.1016/j.chroma.2020.461427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
|
26
|
Lecas L, Dugas V, Demesmay C. Affinity Chromatography: A Powerful Tool in Drug Discovery for Investigating Ligand/membrane Protein Interactions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1749852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucile Lecas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Vincent Dugas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Claire Demesmay
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|