1
|
Cui Y, Han D, Bai X, Shi W. Development and applications of enzymatic peptide and protein ligation. J Pept Sci 2025; 31:e3657. [PMID: 39433441 DOI: 10.1002/psc.3657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Chemical synthesis of complex peptides and proteins continues to play increasingly important roles in industry and academia, where strategies for covalent ligation of two or more peptide fragments to produce longer peptides and proteins in convergent manners have become critical. In recent decades, efficient and site-selective ligation strategies mediated by exploiting the biocatalytic capacity of nature's diverse toolkit (i.e., enzymes) have been widely recognized as a powerful extension of existing chemical strategies. In this review, we present a chronological overview of the development of proteases, transpeptidases, transglutaminases, and ubiquitin ligases. We survey the different properties between the ligation reactions of various enzymes, including the selectivity and efficiency of the reaction, the ligation "scar" left in the product, the type of amide bond formed (natural or isopeptide), the synthetic availability of the reactants, and whether the enzymes are orthogonal to another. This review also describes how the inherent specificity of these enzymes can be exploited for peptide and protein ligation.
Collapse
Affiliation(s)
- Yan Cui
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Dongyang Han
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Xuerong Bai
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Weiwei Shi
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Filippova TA, Masamrekh RA, Khudoklinova YY, Shumyantseva VV, Kuzikov AV. The multifaceted role of proteases and modern analytical methods for investigation of their catalytic activity. Biochimie 2024; 222:169-194. [PMID: 38494106 DOI: 10.1016/j.biochi.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases. Particular attention is given to exploring innovative electrochemical systems based on the detection of the electrochemical oxidation signal of amino acid residues, thereby eliminating the need for extra redox labels in the process of peptide synthesis. In the review, we highlight the main prospects for the further development of electrochemical systems for the study of biotechnologically and medically significant proteases, which will enable the miniaturization of the analytical process for determining the catalytic activity of these enzymes.
Collapse
Affiliation(s)
- Tatiana A Filippova
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Rami A Masamrekh
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Yulia Yu Khudoklinova
- Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Victoria V Shumyantseva
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia
| | - Alexey V Kuzikov
- Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., 119121, Moscow, Russia; Pirogov Russian National Research Medical University, 1, Ostrovityanova Street, Moscow, 117513, Russia.
| |
Collapse
|
3
|
Kekessie I, Wegner K, Martinez I, Kopach ME, White TD, Tom JK, Kenworthy MN, Gallou F, Lopez J, Koenig SG, Payne PR, Eissler S, Arumugam B, Li C, Mukherjee S, Isidro-Llobet A, Ludemann-Hombourger O, Richardson P, Kittelmann J, Sejer Pedersen D, van den Bos LJ. Process Mass Intensity (PMI): A Holistic Analysis of Current Peptide Manufacturing Processes Informs Sustainability in Peptide Synthesis. J Org Chem 2024; 89:4261-4282. [PMID: 38508870 PMCID: PMC11002941 DOI: 10.1021/acs.joc.3c01494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Small molecule therapeutics represent the majority of the FDA-approved drugs. Yet, many attractive targets are poorly tractable by small molecules, generating a need for new therapeutic modalities. Due to their biocompatibility profile and structural versatility, peptide-based therapeutics are a possible solution. Additionally, in the past two decades, advances in peptide design, delivery, formulation, and devices have occurred, making therapeutic peptides an attractive modality. However, peptide manufacturing is often limited to solid-phase peptide synthesis (SPPS), liquid phase peptide synthesis (LPPS), and to a lesser extent hybrid SPPS/LPPS, with SPPS emerging as a predominant platform technology for peptide synthesis. SPPS involves the use of excess solvents and reagents which negatively impact the environment, thus highlighting the need for newer technologies to reduce the environmental footprint. Herein, fourteen American Chemical Society Green Chemistry Institute Pharmaceutical Roundtable (ACS GCIPR) member companies with peptide-based therapeutics in their portfolio have compiled Process Mass Intensity (PMI) metrics to help inform the sustainability efforts in peptide synthesis. This includes PMI assessment on 40 synthetic peptide processes at various development stages in pharma, classified according to the development phase. This is the most comprehensive assessment of synthetic peptide environmental metrics to date. The synthetic peptide manufacturing process was divided into stages (synthesis, purification, isolation) to determine their respective PMI. On average, solid-phase peptide synthesis (SPPS) (PMI ≈ 13,000) does not compare favorably with other modalities such as small molecules (PMI median 168-308) and biopharmaceuticals (PMI ≈ 8300). Thus, the high PMI for peptide synthesis warrants more environmentally friendly processes in peptide manufacturing.
Collapse
Affiliation(s)
- Ivy Kekessie
- Early Discovery
Biochemistry - Peptide Therapeutics, Genentech,
Inc., A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Katarzyna Wegner
- Active Pharmaceutical
Ingredient Development, Ipsen Manufacturing
Ireland Ltd., Blanchardstown
Industrial Park, Dublin 15, Ireland
| | - Isamir Martinez
- Green Chemistry
Institute, American Chemical Society, 1155 16th St North West, Washington, District of Columbia, 20036, United
States
| | - Michael E. Kopach
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Timothy D. White
- Synthetic
Molecule Design and Development, Eli Lilly
and Company, Indianapolis, Indiana 46285, United States
| | - Janine K. Tom
- Drug Substance
Technologies, Amgen, Inc., 1 Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Martin N. Kenworthy
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, United Kingdom
| | - Fabrice Gallou
- Chemical
& Analytical Development, Novartis Pharma
AG, 4056 Basel, Switzerland
| | - John Lopez
- Chemical
& Analytical Development, Novartis Pharma
AG, 4056 Basel, Switzerland
| | - Stefan G. Koenig
- Small
Molecule
Pharmaceutical Sciences, Genentech, Inc.,
A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States
| | - Philippa R. Payne
- Outsourced
Manufacturing, Pharmaceutical Development & Manufacturing, Gilead Alberta ULC, 1021 Hayter Rd NW, Edmonton, T6S 1A1, Canada
| | - Stefan Eissler
- Bachem
AG, Hauptstrasse 144, 4416 Bubendorf, Switzerland
| | - Balasubramanian Arumugam
- Chemical
Macromolecule Division, Asymchem Life Science
(Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA Tianjin 300457, China
| | - Changfeng Li
- Chemical
Macromolecule Division, Asymchem Life Science
(Tianjin) Co., Ltd., 71 Seventh Avenue, TEDA Tianjin 300457, China
| | - Subha Mukherjee
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | | | | | - Paul Richardson
- Chemistry, Pfizer, 10578 Science Center Drive (CB6), San Diego, California 09121, United States
| | | | | | | |
Collapse
|
4
|
Zhu T, Zhang X, Li R, Wu B. Efficient production of peptidylglycine α-hydroxylating monooxygenase in yeast for protein C-terminal functionalization. Int J Biol Macromol 2024; 263:130443. [PMID: 38417749 DOI: 10.1016/j.ijbiomac.2024.130443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Peptidylglycine α-hydroxylating monooxygenase (PHM) is pivotal for C-terminal amidation of bioactive peptides in animals, offering substantial potential for customized protein synthesis. However, efficient PHM production has been hindered by the complexity of animal cell culture and the absence of glycosylation in bacterial hosts. Here, we demonstrate the recombinant expression of Caenorhabditis elegans PHM in the yeast Pichia pastoris, achieving a remarkable space-time yield of 28.8 U/L/day. This breakthrough surpasses prior PHM production rates and eliminates the need for specialized cultivation equipment or complex transfection steps. Mass spectrometry revealed N-glycosylation at residue N182 of recombinant CePHM, which impacts the enzyme's activity as indicated by biochemical experiments. To showcase the utility of CePHM, we performed C-terminal amidation on ubiquitin at a substrate loading of 30 g/L, a concentration meeting the requirements for pharmaceutical peptide production. Overall, this work establishes an efficient PHM production method, promising advancements in scalable manufacturing of C-terminally modified bioactive peptides and probe proteins.
Collapse
Affiliation(s)
- Tong Zhu
- AIM center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuanshuo Zhang
- AIM center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruifeng Li
- AIM center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bian Wu
- AIM center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Zhang YW, Lin NP, Guo X, Szabo-Fresnais N, Ortoleva PJ, Chou DHC. Omniligase-1-Mediated Phage-Peptide Library Modification and Insulin Engineering. ACS Chem Biol 2024; 19:506-515. [PMID: 38266161 DOI: 10.1021/acschembio.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Chemical and enzymatic modifications of peptide-displayed libraries have been successfully employed to expand the phage display library. However, the requirement of specific epitopes and scaffolds has limited the scope of protein engineering using phage display. In this study, we present a novel approach utilizing omniligase-1-mediated selective and specific ligation on the phage pIII protein, offering a high conversion rate and compatibility with commercially available phage libraries. We applied this method to perform high-throughput engineering of insulin analogues with randomized B chain C-terminal regions. Insulin analogues with different B chain C-terminal segments were selected and exhibited biological activity equivalent to that of human insulin. Molecular dynamics studies of insulin analogues revealed a novel interaction between the insulin B27 residue and insulin receptor L1 domain. In summary, our findings highlight the potential of omniligase-1-mediated phage display in the development and screening of disulfide-rich peptides and proteins. This approach holds promise for the creation of novel insulin analogues with enhanced therapeutic properties and exhibits potential for the development of other therapeutic compounds.
Collapse
Affiliation(s)
- Yi Wolf Zhang
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Nai-Pin Lin
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
| | - Xu Guo
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicolas Szabo-Fresnais
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Peter J Ortoleva
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
6
|
Liu Y, Lu X, Chen M, Wei Z, Peng G, Yang J, Tang C, Yu P. Advances in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. Biofactors 2024; 50:33-57. [PMID: 37646383 DOI: 10.1002/biof.2001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Peptides and peptide aptamers have emerged as promising molecules for a wide range of biomedical applications due to their unique properties and versatile functionalities. The screening strategies for identifying peptides and peptide aptamers with desired properties are discussed, including high-throughput screening, display screening technology, and in silico design approaches. The synthesis methods for the efficient production of peptides and peptide aptamers, such as solid-phase peptide synthesis and biosynthesis technology, are described, along with their advantages and limitations. Moreover, various modification techniques are explored to enhance the stability, specificity, and pharmacokinetic properties of peptides and peptide aptamers. This includes chemical modifications, enzymatic modifications, biomodifications, genetic engineering modifications, and physical modifications. Furthermore, the review highlights the diverse biomedical applications of peptides and peptide aptamers, including targeted drug delivery, diagnostics, and therapeutic. This review provides valuable insights into the advancements in screening, synthesis, modification, and biomedical applications of peptides and peptide aptamers. A comprehensive understanding of these aspects will aid researchers in the development of novel peptide-based therapeutics and diagnostic tools for various biomedical challenges.
Collapse
Affiliation(s)
- Yijie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaoling Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Meilun Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zheng Wei
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Guangnan Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Chunhua Tang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Peng Yu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
7
|
Rossino G, Marchese E, Galli G, Verde F, Finizio M, Serra M, Linciano P, Collina S. Peptides as Therapeutic Agents: Challenges and Opportunities in the Green Transition Era. Molecules 2023; 28:7165. [PMID: 37894644 PMCID: PMC10609221 DOI: 10.3390/molecules28207165] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Peptides are at the cutting edge of contemporary research for new potent, selective, and safe therapeutical agents. Their rise has reshaped the pharmaceutical landscape, providing solutions to challenges that traditional small molecules often cannot address. A wide variety of natural and modified peptides have been obtained and studied, and many others are advancing in clinical trials, covering multiple therapeutic areas. As the demand for peptide-based therapies grows, so does the need for sustainable and environmentally friendly synthesis methods. Traditional peptide synthesis, while effective, often involves environmentally draining processes, generating significant waste and consuming vast resources. The integration of green chemistry offers sustainable alternatives, prioritizing eco-friendly processes, waste reduction, and energy conservation. This review delves into the transformative potential of applying green chemistry principles to peptide synthesis by discussing relevant examples of the application of such approaches to the production of active pharmaceutical ingredients (APIs) with a peptide structure and how these efforts are critical for an effective green transition era in the pharmaceutical field.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Emanuela Marchese
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
- Department of Health Sciences, University “Magna Graecia”, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Galli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Francesca Verde
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Matteo Finizio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (G.R.); (E.M.); (M.S.); (P.L.)
| |
Collapse
|
8
|
Grain B, Desmet R, Snella B, Melnyk O, Agouridas V. Incorporation of a Highly Reactive Oxalyl Thioester-Based Interacting Handle into Proteins. Org Lett 2023; 25:5117-5122. [PMID: 37384828 PMCID: PMC10353032 DOI: 10.1021/acs.orglett.3c01846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 07/01/2023]
Abstract
Providing biomolecules with extended physicochemical, biochemical, or biological properties is a contemporary challenge motivated by impactful benefits in life or materials sciences. In this study, we show that a latent and highly reactive oxalyl thioester precursor can be efficiently introduced as a pending functionality into a fully synthetic protein domain following a protection/late-stage deprotection strategy and can serve as an on-demand reactive handle. The approach is illustrated with the production of a 10 kDa ubiquitin Lys48 conjugate.
Collapse
Affiliation(s)
- Benjamin Grain
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rémi Desmet
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Benoît Snella
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Vangelis Agouridas
- Univ.
Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -
UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
- Centrale
Lille, F-59000 Lille, France
| |
Collapse
|
9
|
Azatian SB, Canny MD, Latham MP. Three segment ligation of a 104 kDa multi-domain protein by SrtA and OaAEP1. JOURNAL OF BIOMOLECULAR NMR 2023; 77:25-37. [PMID: 36539644 PMCID: PMC10149453 DOI: 10.1007/s10858-022-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/28/2022] [Indexed: 05/03/2023]
Abstract
NMR spectroscopy is an excellent tool for studying protein structure and dynamics which provides a deeper understanding of biological function. As the size of the biomolecule of interest increases, it can become advantageous to dilute the number of observed signals in the NMR spectrum to decrease spectral overlap and increase resolution. One way to limit the number of resonances in the NMR data is by selectively labeling a smaller domain within the larger macromolecule, a process called segmental isotopic labeling. Many examples of segmental isotopic labeling have been described where two segments of a protein are ligated together by chemical or enzymatic means, but there are far fewer descriptions of a three or more segment ligation reaction. Herein, we describe an enzymatic segmental labeling scheme that combines the widely used Sortase A and more recently described OaAEP1 for a two site ligation strategy. In preparation to study proposed long-range allostery in the 104 kDa DNA damage repair protein Rad50, we ligated side-chain methyl group labeled Zn Hook domain between two long segments of otherwise unlabeled P.furiosus Rad50. Enzymatic activity data demonstrated that the scars resulting from the ligation reactions did not affect Rad50 function within the Mre11-Rad50 DNA double strand break repair complex. Finally, methyl-based NMR spectroscopy confirmed the formation of the full-length ligated protein. Our strategy highlights the strengths of OaAEP1 for segmental labeling, namely faster reaction times and a smaller recognition sequence, and provides a straightforward template for using these two enzymes in multisite segmental labeling reactions.
Collapse
Affiliation(s)
- Stephan B Azatian
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marella D Canny
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael P Latham
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Abstract
The ability to manipulate the chemical composition of proteins and peptides has been central to the development of improved polypeptide-based therapeutics and has enabled researchers to address fundamental biological questions that would otherwise be out of reach. Protein ligation, in which two or more polypeptides are covalently linked, is a powerful strategy for generating semisynthetic products and for controlling polypeptide topology. However, specialized tools are required to efficiently forge a peptide bond in a chemoselective manner with fast kinetics and high yield. Fortunately, nature has addressed this challenge by evolving enzymatic mechanisms that can join polypeptides using a diverse set of chemical reactions. Here, we summarize how such nature-inspired protein ligation strategies have been repurposed as chemical biology tools that afford enhanced control over polypeptide composition.
Collapse
Affiliation(s)
- Rasmus Pihl
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Antonenko A, Singh AK, Mosna K, Krężel A. OaAEP1 Ligase-Assisted Chemoenzymatic Synthesis of Full Cysteine-Rich Metal-Binding Cyanobacterial Metallothionein SmtA. Bioconjug Chem 2023. [PMID: 36921066 PMCID: PMC10119931 DOI: 10.1021/acs.bioconjchem.3c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Among all approaches used for the semisynthesis of natural or chemically modified products, enzyme-assisted ligation is among the most promising and dynamically developing approaches. Applying an efficient C247A mutant of Oldenlandia affinis plant ligase OaAEP1 and solid-phase peptide synthesis chemistry, we present the chemoenzymatic synthesis of a complete sequence of the cysteine-rich and metal-binding cyanobacterial metallothionein Synechococcus metallothionein A (SmtA). Zn(II) and Cd(II) binding to the newly synthesized SmtA showed identical properties to the protein expressed in Escherichia coli. The presented approach is the first example of the use of OaAEP1 mutant for total protein synthesis of metallothionein, which occurs in mild conditions preventing cysteine thiol oxidation. The recognition motif of the applied enzyme could naturally occur in the protein structure or be synthetically or genetically incorporated in some loops or secondary structure elements. Therefore, we envision that this strategy can be used for efficiently obtaining SmtA and for a wide range of proteins and their derivatives.
Collapse
Affiliation(s)
- Anastasiia Antonenko
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Avinash Kumar Singh
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Karolina Mosna
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| |
Collapse
|
12
|
Okuda A, Shimizu M, Inoue R, Urade R, Sugiyama M. Efficient Multiple Domain Ligation for Proteins Using Asparaginyl Endopeptidase by Selection of Appropriate Ligation Sites Based on Steric Hindrance. Angew Chem Int Ed Engl 2023; 62:e202214412. [PMID: 36347766 DOI: 10.1002/anie.202214412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/10/2022]
Abstract
Three domain fragments of a multi-domain protein, ER-60, were ligated in two short linker regions using asparaginyl endopeptidase not involving denaturation. To identify appropriate ligation sites, by selecting several potential ligation sites with fewer mutations around two short linker regions, their ligation efficiencies and the functions of the ligated ER-60s were examined experimentally. To evaluate the dependence of ligation efficiencies on the ligation sites computationally, steric hinderances around the sites for the ligation were calculated through molecular dynamics simulations. Utilizing the steric hindrance, a site-dependent ligation potential index was introduced as reproducing the experimental ligation efficiency. Referring to this index, the reconstruction of ER-60 was succeeded by the ligation of the three domains for the first time. In addition, the new ligation potential index well-worked for application to other domain ligations. Therefore, the index may serve as a more time-effective tool for multi-site ligations.
Collapse
Affiliation(s)
- Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Reiko Urade
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494, Japan
| |
Collapse
|
13
|
Pei J, Gao X, Pan D, Hua Y, He J, Liu Z, Dang Y. Advances in the stability challenges of bioactive peptides and improvement strategies. Curr Res Food Sci 2022; 5:2162-2170. [PMID: 36387592 PMCID: PMC9664347 DOI: 10.1016/j.crfs.2022.10.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bioactive peptides are widely used in functional foods due to their remarkable efficacy, selectivity, and low toxicity. However, commercially produced bioactive peptides lack quality stability between batches. Furthermore, the efficacies of bioactive peptides cannot be guaranteed in vivo due to gastrointestinal digestion and rapid plasma, liver, and kidney metabolism. The problem of poor stability has restricted the development of peptides. Bioactive peptide stability assessments use different stability assays, so the results of different studies are not always comparable. This review summarizes the quality stability challenges in the enzymatic hydrolysis production of bioactive peptides and the metabolism stability challenges after oral administration. Future directions on the strategies for improving their stability are provided. It was proposed that we use fingerprinting as a quality control measure using qualitative and quantitative characteristic functional peptide sequences. The chemical modification and encapsulation of bioactive peptides in microcapsules and liposomes are widely used to improve the digestive and metabolic stability of bioactive peptides. Additionally, the establishment of a universal stability test and a unified index would greatly improve uniformity and comparability in research into bioactive peptides. In summary, the reliable evaluation of stability is an essential component of peptide characterization, and these ideas may facilitate further development and utilization of bioactive peptides. Stability challenges encountered by bioactive peptides were summarized. Strategies to improve the stability of bioactive peptides were provided. A universal stability test and unified index would improve uniformity and comparability in research into bioactive peptides. It was proposed that we use a method of traditional Chinese medicine fingerprinting as a quality control measure.
Collapse
Affiliation(s)
- Jingyan Pei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinchang Gao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Corresponding author.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Ying Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zhu Liu
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310052, Zhejiang, China
- Corresponding author.
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroProducts, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, Zhejiang, China
- Corresponding author. School of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
14
|
Aguilar-Montes de Oca S, Montes-de-Oca-Jiménez R, Carlos Vázquez-Chagoyán J, Barbabosa-Pliego A, Eliana Rivadeneira-Barreiro P, C. Zambrano-Rodríguez P. The Use of Peptides in Veterinary Serodiagnosis of Infectious Diseases: A Review. Vet Sci 2022; 9:vetsci9100561. [PMID: 36288174 PMCID: PMC9610506 DOI: 10.3390/vetsci9100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 12/04/2022] Open
Abstract
Peptides constitute an alternative and interesting option to develop treatments, vaccines, and diagnostic tools as they demonstrate their scope in several health aspects; as proof of this, commercial peptides for humans and animals are available on the market and used daily. This review aimed to know the role of peptides in the field of veterinary diagnosis, and include peptide-based enzyme-linked immunosorbent assay (pELISA), lateral flow devices, and peptide latex agglutination tests that have been developed to detect several pathogens including viruses and bacteria of health and production relevance in domestic animals. Studies in cattle, small ruminants, dogs, cats, poultry, horses, and even aquatic organisms were reviewed. Different studies showed good levels of sensitivity and specificity against their target, moreover, comparisons with commercial kits and official tests were performed which allowed appraising their performance. Chemical synthesis, recombinant DNA technology, and enzymatic synthesis were reviewed as well as their advantages and drawbacks. In addition, we discussed the intrinsic limitations such as the small size or affinity to polystyrene membrane and mention several strategies to overcome these problems. The use of peptides will increase in the coming years and their utility for diagnostic purposes in animals must be evaluated.
Collapse
Affiliation(s)
- Saúl Aguilar-Montes de Oca
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca 50200, CP, Mexico
| | - Roberto Montes-de-Oca-Jiménez
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca 50200, CP, Mexico
- Correspondence:
| | - Juan Carlos Vázquez-Chagoyán
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca 50200, CP, Mexico
| | - Alberto Barbabosa-Pliego
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, Km 15.5, Toluca 50200, CP, Mexico
| | | | - Pablo C. Zambrano-Rodríguez
- Departamento de Veterinaria, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| |
Collapse
|
15
|
Allen GL, Grahn AK, Kourentzi K, Willson RC, Waldrop S, Guo J, Kay BK. Expanding the chemical diversity of M13 bacteriophage. Front Microbiol 2022; 13:961093. [PMID: 36003937 PMCID: PMC9393631 DOI: 10.3389/fmicb.2022.961093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
Bacteriophage M13 virions are very stable nanoparticles that can be modified by chemical and genetic methods. The capsid proteins can be functionalized in a variety of chemical reactions without loss of particle integrity. In addition, Genetic Code Expansion (GCE) permits the introduction of non-canonical amino acids (ncAAs) into displayed peptides and proteins. The incorporation of ncAAs into phage libraries has led to the discovery of high-affinity binders with low nanomolar dissociation constant (K D) values that can potentially serve as inhibitors. This article reviews how bioconjugation and the incorporation of ncAAs during translation have expanded the chemistry of peptides and proteins displayed by M13 virions for a variety of purposes.
Collapse
Affiliation(s)
| | | | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Sean Waldrop
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska at Lincoln, Lincoln, NE, United States
| | - Brian K. Kay
- Tango Biosciences, Inc., Chicago, IL, United States
| |
Collapse
|
16
|
Ma Q, Lei H, Cao Y. Intramolecular covalent bonds in Gram-positive bacterial surface proteins. Chembiochem 2022; 23:e202200316. [PMID: 35801833 DOI: 10.1002/cbic.202200316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Gram-positive bacteria experience considerable mechanical perturbation when adhering to host surfaces during colonization and infection. They have evolved various adhesion proteins that are mechanically robust to ensure strong surface adhesion. Recently, it was discovered that these adhesion proteins contain rare, extra intramolecular covalent bonds that stabilize protein structures and participate in surface bonding. These intramolecular covalent bonds include isopeptides, thioesters, and ester bonds, which often form spontaneously without the need for additional enzymes. With the development of single-molecule force spectroscopy techniques, the detailed mechanical roles of these intramolecular covalent bonds have been revealed. In this review, we summarize the recent advances in this area of research, focusing on the link between the mechanical stability and function of these covalent bonds in Gram-positive bacterial surface proteins. We also highlight the potential impact of these discoveries on the development of novel antibiotics and chemical biology tools.
Collapse
Affiliation(s)
- Quan Ma
- Nanjing University, Department of Physics, CHINA
| | - Hai Lei
- Nanjing University, Department of Physics, CHINA
| | - Yi Cao
- Nanjing University, Department of Physics, 22 Hankou Road, 210093, Nanjing, CHINA
| |
Collapse
|
17
|
Fryszkowska A, An C, Alvizo O, Banerjee G, Canada KA, Cao Y, DeMong D, Devine PN, Duan D, Elgart DM, Farasat I, Gauthier DR, Guidry EN, Jia X, Kong J, Kruse N, Lexa KW, Makarov AA, Mann BF, Milczek EM, Mitchell V, Nazor J, Neri C, Orr RK, Orth P, Phillips EM, Riggins JN, Schafer WA, Silverman SM, Strulson CA, Subramanian N, Voladri R, Yang H, Yang J, Yi X, Zhang X, Zhong W. A chemoenzymatic strategy for site-selective functionalization of native peptides and proteins. Science 2022; 376:1321-1327. [PMID: 35709255 DOI: 10.1126/science.abn2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.
Collapse
Affiliation(s)
- Anna Fryszkowska
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Chihui An
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Oscar Alvizo
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Keith A Canada
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yang Cao
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Duane DeMong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Paul N Devine
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Da Duan
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - David M Elgart
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Iman Farasat
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Donald R Gauthier
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erin N Guidry
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Xiujuan Jia
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jongrock Kong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Nikki Kruse
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Katrina W Lexa
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Alexey A Makarov
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Benjamin F Mann
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erika M Milczek
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Vesna Mitchell
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Jovana Nazor
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Claudia Neri
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Robert K Orr
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter Orth
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Eric M Phillips
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - James N Riggins
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Wes A Schafer
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Steven M Silverman
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | | | - Rama Voladri
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Hao Yang
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jie Yang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Xiang Yi
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Xiyun Zhang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Wendy Zhong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
18
|
Bierbaumer S, Schmermund L, List A, Winkler CK, Glueck SM, Kroutil W. Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117103. [PMID: 38505243 PMCID: PMC10946591 DOI: 10.1002/ange.202117103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 03/21/2024]
Abstract
The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Luca Schmermund
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Alexander List
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Christoph K. Winkler
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Silvia M. Glueck
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| |
Collapse
|
19
|
Bierbaumer S, Schmermund L, List A, Winkler CK, Glueck SM, Kroutil W. Synthesis of Enantiopure Sulfoxides by Concurrent Photocatalytic Oxidation and Biocatalytic Reduction. Angew Chem Int Ed Engl 2022; 61:e202117103. [PMID: 35188997 PMCID: PMC9310851 DOI: 10.1002/anie.202117103] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/18/2022]
Abstract
The concurrent operation of chemical and biocatalytic reactions in one pot is still a challenging task, and, in particular for chemical photocatalysts, examples besides simple cofactor recycling systems are rare. However, especially due to the complementary chemistry that the two fields of catalysis promote, their combination in one pot has the potential to unlock intriguing, unprecedented overall reactivities. Herein we demonstrate a concurrent biocatalytic reduction and photocatalytic oxidation process. Specifically, the enantioselective biocatalytic sulfoxide reduction using (S)-selective methionine sulfoxide reductases was coupled to an unselective light-dependent sulfoxidation. Protochlorophyllide was established as a new green photocatalyst for the sulfoxidation. Overall, a cyclic deracemization process to produce nonracemic sulfoxides was achieved and the target compounds were obtained with excellent conversions (up to 91 %) and superb optical purity (>99 % ee).
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Luca Schmermund
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Alexander List
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Christoph K. Winkler
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Silvia M. Glueck
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| | - Wolfgang Kroutil
- Institute of Chemistry, Department of Organic and Bioorganic ChemistryUniversity of GrazNAWI GrazBioTechMed GrazField of Excellence BioHealthHeinrichstraße 288010GrazAustria
| |
Collapse
|
20
|
Zhang CH, Shao XX, Wang XB, Shou LL, Liu YL, Xu ZG, Guo ZY. Development of a general bioluminescent activity assay for peptide ligases. FEBS J 2022; 289:5241-5258. [PMID: 35239242 DOI: 10.1111/febs.16416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/28/2022]
Abstract
In recent years, some peptide ligases have been identified, such as bacterial sortases and certain plant asparaginyl or prolyl endopeptidases. Peptide ligases have wide applications in protein labelling and cyclic peptide synthesis. To characterize various known peptide ligases or identify new ones, we propose a general bioluminescent activity assay via the genetic fusion of a recognition motif of peptide ligase(s) to the C-terminus of an inactive large NanoLuc fragment (LgBiT) and the chemical introduction of a nucleophilic motif preferred by the peptide ligase(s) to the N-terminus of the low-affinity SmBiT complementation tag. After the inactive ligation version LgBiT protein was ligated with the low-affinity ligation version SmBiT tag by the expected peptide ligase(s), its luciferase activity would be restored and could be quantified sensitively according to the measured bioluminescence. In the present study, we first validated the bioluminescent activity assay using bacterial sortase A and plant-derived butelase-1. Subsequently, we screened novel peptide ligases from crude extracts of selected plants using two LgBiT-SmBiT ligation pairs. Among 80 common higher plants, we identified that five of them likely express asparaginyl endopeptidase-type peptide ligase and four of them likely express prolyl endopeptidase-type peptide ligase, suggesting that peptide ligases are not so rare in higher plants and more of them await discovery. The present bioluminescent activity assay is ultrasensitive, convenient for use, and resistant to protease interference, and thus would have wide applications for characterizing known peptide ligases or screening new ones from various sources in future studies.
Collapse
Affiliation(s)
- Cong-Hui Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Bo Wang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li-Li Shou
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Guan I, Williams K, Liu JST, Liu X. Synthetic Thiol and Selenol Derived Amino Acids for Expanding the Scope of Chemical Protein Synthesis. Front Chem 2022; 9:826764. [PMID: 35237567 PMCID: PMC8883728 DOI: 10.3389/fchem.2021.826764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023] Open
Abstract
Cells employ post-translational modifications (PTMs) as key mechanisms to expand proteome diversity beyond the inherent limitations of a concise genome. The ability to incorporate post-translationally modified amino acids into protein targets via chemical ligation of peptide fragments has enabled the access to homogeneous proteins bearing discrete PTM patterns and empowered functional elucidation of individual modification sites. Native chemical ligation (NCL) represents a powerful and robust means for convergent assembly of two homogeneous, unprotected peptides bearing an N-terminal cysteine residue and a C-terminal thioester, respectively. The subsequent discovery that protein cysteine residues can be chemoselectively desulfurized to alanine has ignited tremendous interest in preparing unnatural thiol-derived variants of proteogenic amino acids for chemical protein synthesis following the ligation-desulfurization logic. Recently, the 21st amino acid selenocysteine, together with other selenyl derivatives of amino acids, have been shown to facilitate ultrafast ligation with peptidyl selenoesters, while the advancement in deselenization chemistry has provided reliable bio-orthogonality to PTMs and other amino acids. The combination of these ligation techniques and desulfurization/deselenization chemistries has led to streamlined synthesis of multiple structurally-complex, post-translationally modified proteins. In this review, we aim to summarize the latest chemical synthesis of thiolated and selenylated amino-acid building blocks and exemplify their important roles in conquering challenging protein targets with distinct PTM patterns.
Collapse
Affiliation(s)
- Ivy Guan
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Kayla Williams
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Joanna Shu Ting Liu
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- The Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Xuyu Liu,
| |
Collapse
|
22
|
Narayanan KB, Han SS. Peptide ligases: A Novel and potential enzyme toolbox for catalytic cross-linking of protein/peptide-based biomaterial scaffolds for tissue engineering. Enzyme Microb Technol 2022; 155:109990. [PMID: 35030384 DOI: 10.1016/j.enzmictec.2022.109990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/17/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022]
Abstract
The fabrication of novel biomaterial scaffolds with improved biological interactions and mechanical properties is an important aspect of tissue engineering. The three-dimensional (3D) protein/peptide-based polymeric scaffolds are promising in vitro biomaterials to replicate the in vivo microenvironment mimicking the extracellular matrix (ECM) for cell differentiation and subsequent tissue formation. Among different strategies in the fabrication of scaffolds, bioorthogonal enzymatic reactions for rapid in situ zero-length cross-linking are advantageous. Peptide ligases as a novel toolbox have the potentiality to enzymatically cross-link natural/synthetic protein/peptide-based polymeric chains for a wide range of biomedical applications. Although natural peptide ligases, such as sortases and butelase 1 are known cysteine proteases with ligase activity, some serine proteases, such as trypsin and subtilisin, are protein engineered to form trypsiligase and subtiligase, respectively, which exhibited efficient ligase activity by linking proteins/peptides with a great variety of molecules. Peptide ligase activity by these engineered proteases is more efficient than the hydrolysis of peptide bonds (peptidase activity). Peptide esters form acyl-enzyme intermediate with serine/cysteine residues of these proteases, with subsequent aminolysis forming covalent peptide bond with N-terminal residue of another polymeric chain. In addition, peptide ligases have the potential to conjugate with cell-adhesive ECM proteins or motifs and growth factors to (bio)polymeric networks to enhance cell attachment, growth, and differentiation. Here, we review the potential and limitations of natural and engineered peptide ligases as an enzyme toolbox with a focus on sortases (classes A-D), butelase 1, trypsiligase, and subtilisin variants, and the mechanisms for their zero-length cross-linking of (bio)polymeric scaffolds for various tissue engineering and regenerative applications.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
23
|
Sheard DE, Li W, O’Brien-Simpson NM, Separovic F, Wade JD. Peptide Multimerization as Leads for Therapeutic Development. BIOLOGICS 2021; 2:15-44. [DOI: 10.3390/biologics2010002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Multimerization of peptide structures has been a logical evolution in their development as potential therapeutic molecules. The multivalent properties of these assemblies have attracted much attention from researchers in the past and the development of more complex branching dendrimeric structures, with a wide array of biocompatible building blocks is revealing previously unseen properties and activities. These branching multimer and dendrimer structures can induce greater effect on cellular targets than monomeric forms and act as potent antimicrobials, potential vaccine alternatives and promising candidates in biomedical imaging and drug delivery applications. This review aims to outline the chemical synthetic innovations for the development of these highly complex structures and highlight the extensive capabilities of these molecules to rival those of natural biomolecules.
Collapse
Affiliation(s)
- Dean E. Sheard
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Wenyi Li
- ACTV Research Group, Centre for Oral Health Research, The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Neil M. O’Brien-Simpson
- ACTV Research Group, Centre for Oral Health Research, The Bio21 Institute of Molecular Science and Biotechnology, Melbourne Dental School, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| | - John D. Wade
- School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
24
|
Boyko KV, Rosenkranz EA, Smith DM, Miears HL, Oueld es cheikh M, Lund MZ, Young JC, Reardon PN, Okon M, Smirnov SL, Antos JM. Sortase-mediated segmental labeling: A method for segmental assignment of intrinsically disordered regions in proteins. PLoS One 2021; 16:e0258531. [PMID: 34710113 PMCID: PMC8553144 DOI: 10.1371/journal.pone.0258531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
A significant number of proteins possess sizable intrinsically disordered regions (IDRs). Due to the dynamic nature of IDRs, NMR spectroscopy is often the tool of choice for characterizing these segments. However, the application of NMR to IDRs is often hindered by their instability, spectral overlap and resonance assignment difficulties. Notably, these challenges increase considerably with the size of the IDR. In response to these issues, here we report the use of sortase-mediated ligation (SML) for segmental isotopic labeling of IDR-containing samples. Specifically, we have developed a ligation strategy involving a key segment of the large IDR and adjacent folded headpiece domain comprising the C-terminus of A. thaliana villin 4 (AtVLN4). This procedure significantly reduces the complexity of NMR spectra and enables group identification of signals arising from the labeled IDR fragment, a process we refer to as segmental assignment. The validity of our segmental assignment approach is corroborated by backbone residue-specific assignment of the IDR using a minimal set of standard heteronuclear NMR methods. Using segmental assignment, we further demonstrate that the IDR region adjacent to the headpiece exhibits nonuniform spectral alterations in response to temperature. Subsequent residue-specific characterization revealed two segments within the IDR that responded to temperature in markedly different ways. Overall, this study represents an important step toward the selective labeling and probing of target segments within much larger IDR contexts. Additionally, the approach described offers significant savings in NMR recording time, a valuable advantage for the study of unstable IDRs, their binding interfaces, and functional mechanisms.
Collapse
Affiliation(s)
- Kristina V. Boyko
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Erin A. Rosenkranz
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Derrick M. Smith
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Heather L. Miears
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Melissa Oueld es cheikh
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Micah Z. Lund
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - Jeffery C. Young
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Patrick N. Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon, United States of America
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, Department of Chemistry, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Serge L. Smirnov
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| | - John M. Antos
- Department of Chemistry, Western Washington University, Bellingham, Washington, United States of America
| |
Collapse
|
25
|
Vogl DP, Conibear AC, Becker CFW. Segmental and site-specific isotope labelling strategies for structural analysis of posttranslationally modified proteins. RSC Chem Biol 2021; 2:1441-1461. [PMID: 34704048 PMCID: PMC8496066 DOI: 10.1039/d1cb00045d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Posttranslational modifications can alter protein structures, functions and locations, and are important cellular regulatory and signalling mechanisms. Spectroscopic techniques such as nuclear magnetic resonance, infrared and Raman spectroscopy, as well as small-angle scattering, can provide insights into the structural and dynamic effects of protein posttranslational modifications and their impact on interactions with binding partners. However, heterogeneity of modified proteins from natural sources and spectral complexity often hinder analyses, especially for large proteins and macromolecular assemblies. Selective labelling of proteins with stable isotopes can greatly simplify spectra, as one can focus on labelled residues or segments of interest. Employing chemical biology tools for modifying and isotopically labelling proteins with atomic precision provides access to unique protein samples for structural biology and spectroscopy. Here, we review site-specific and segmental isotope labelling methods that are employed in combination with chemical and enzymatic tools to access posttranslationally modified proteins. We discuss illustrative examples in which these methods have been used to facilitate spectroscopic studies of posttranslationally modified proteins, providing new insights into biology.
Collapse
Affiliation(s)
- Dominik P Vogl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| | - Anne C Conibear
- The University of Queensland, School of Biomedical Sciences St Lucia Brisbane 4072 QLD Australia
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry Währinger Straße 38 1090 Vienna Austria +43-1-4277-870510 +43-1-4277-70510
| |
Collapse
|
26
|
Kumari P, Bowmik S, Paul SK, Biswas B, Banerjee SK, Murty US, Ravichandiran V, Mohan U. Sortase A: A chemoenzymatic approach for the labeling of cell surfaces. Biotechnol Bioeng 2021; 118:4577-4589. [PMID: 34491580 DOI: 10.1002/bit.27935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 01/31/2023]
Abstract
Sortase A, a transpeptidase enzyme is present in many Gram-positive bacteria and helps in the recruitment of the cell surface proteins. Over the last two decades, Sortase A has become an attractive tool for performing in vivo and in vitro ligations. Sortase A-mediated ligation has continuously been used for its specificity, robustness, and highly efficient nature. These properties make it a popular choice among protein engineers as well as researchers from different fields. In this review, we give an overview of Sortase A-mediated ligation of various molecules on the cell surfaces, which can have diverse applications in interdisciplinary fields.
Collapse
Affiliation(s)
- Poonam Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sujoy Bowmik
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sudipto Kumar Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Bidisha Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Guwahati, Assam, India
| | | | - Velayutham Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Kolkata, West Bengal, India
| |
Collapse
|
27
|
Haim A, Neubacher S, Grossmann TN. Protein Macrocyclization for Tertiary Structure Stabilization. Chembiochem 2021; 22:2672-2679. [PMID: 34060202 PMCID: PMC8453710 DOI: 10.1002/cbic.202100111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Proteins possess unique molecular recognition capabilities and enzymatic activities, features that are usually tied to a particular tertiary structure. To make use of proteins for biotechnological and biomedical purposes, it is often required to enforce their tertiary structure in order to ensure sufficient stability under the conditions inherent to the application of interest. The introduction of intramolecular crosslinks has proven efficient in stabilizing native protein folds. Herein, we give an overview of methods that allow the macrocyclization of expressed proteins, discussing involved reaction mechanisms and structural implications.
Collapse
Affiliation(s)
- Anissa Haim
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Incircular B.V.De Boelelaan 11081081 HZAmsterdamThe Netherlands
| | - Tom N. Grossmann
- Department of Chemistry and Pharmaceutical SciencesVU University AmsterdamAmsterdamThe Netherlands
- Amsterdam Institute of Molecular and Life SciencesVU University AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
28
|
Cabri W, Cantelmi P, Corbisiero D, Fantoni T, Ferrazzano L, Martelli G, Mattellone A, Tolomelli A. Therapeutic Peptides Targeting PPI in Clinical Development: Overview, Mechanism of Action and Perspectives. Front Mol Biosci 2021; 8:697586. [PMID: 34195230 PMCID: PMC8236712 DOI: 10.3389/fmolb.2021.697586] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Targeting protein-protein interactions (PPIs) has been recently recognized as an emerging therapeutic approach for several diseases. Up today, more than half a million PPI dysregulations have been found to be involved in pathological events. The dynamic nature of these processes and the involvement of large protein surfaces discouraged anyway the scientific community in considering them promising therapeutic targets. More recently peptide drugs received renewed attention since drug discovery has offered a broad range of structural diverse sequences, moving from traditionally endogenous peptides to sequences possessing improved pharmaceutical profiles. About 70 peptides are currently on the marked but several others are in clinical development. In this review we want to report the update on these novel APIs, focusing our attention on the molecules in clinical development, representing the direct consequence of the drug discovery process of the last 10 years. The comprehensive collection will be classified in function of the structural characteristics (native, analogous, heterologous) and on the basis of the therapeutic targets. The mechanism of interference on PPI will also be reported to offer useful information for novel peptide design.
Collapse
Affiliation(s)
- Walter Cabri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | - Alessandra Tolomelli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Liu D, Rubin GM, Dhakal D, Chen M, Ding Y. Biocatalytic synthesis of peptidic natural products and related analogues. iScience 2021; 24:102512. [PMID: 34041453 PMCID: PMC8141463 DOI: 10.1016/j.isci.2021.102512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peptidic natural products (PNPs) represent a rich source of lead compounds for the discovery and development of therapeutic agents for the treatment of a variety of diseases. However, the chemical synthesis of PNPs with diverse modifications for drug research is often faced with significant challenges, including the unavailability of constituent nonproteinogenic amino acids, inefficient cyclization protocols, and poor compatibility with other functional groups. Advances in the understanding of PNP biosynthesis and biocatalysis provide a promising, sustainable alternative for the synthesis of these compounds and their analogues. Here we discuss current progress in using native and engineered biosynthetic enzymes for the production of both ribosomally and nonribosomally synthesized peptides. In addition, we highlight new in vitro and in vivo approaches for the generation and screening of PNP libraries.
Collapse
Affiliation(s)
- Dake Liu
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Garret M. Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Dipesh Dhakal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
30
|
Elsässer B, Goettig P. Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies. Int J Mol Sci 2021; 22:3232. [PMID: 33810118 PMCID: PMC8004986 DOI: 10.3390/ijms22063232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Experimental evidence for enzymatic mechanisms is often scarce, and in many cases inadvertently biased by the employed methods. Thus, apparently contradictory model mechanisms can result in decade long discussions about the correct interpretation of data and the true theory behind it. However, often such opposing views turn out to be special cases of a more comprehensive and superior concept. Molecular dynamics (MD) and the more advanced molecular mechanical and quantum mechanical approach (QM/MM) provide a relatively consistent framework to treat enzymatic mechanisms, in particular, the activity of proteolytic enzymes. In line with this, computational chemistry based on experimental structures came up with studies on all major protease classes in recent years; examples of aspartic, metallo-, cysteine, serine, and threonine protease mechanisms are well founded on corresponding standards. In addition, experimental evidence from enzyme kinetics, structural research, and various other methods supports the described calculated mechanisms. One step beyond is the application of this information to the design of new and powerful inhibitors of disease-related enzymes, such as the HIV protease. In this overview, a few examples demonstrate the high potential of the QM/MM approach for sophisticated pharmaceutical compound design and supporting functions in the analysis of biomolecular structures.
Collapse
Affiliation(s)
| | - Peter Goettig
- Structural Biology Group, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria;
| |
Collapse
|
31
|
Zhang J, Yuan J, Li Z, Fu C, Xu M, Yang J, Jiang X, Zhou B, Ye X, Xu C. Exploring and exploiting plant cyclic peptides for drug discovery and development. Med Res Rev 2021; 41:3096-3117. [PMID: 33599316 DOI: 10.1002/med.21792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 01/07/2023]
Abstract
Ever since the discovery of insulin, natural peptides have become an important resource for therapeutic development. Decades of research has led to the discovery of a long list of peptide drugs with broad applications in clinics, from antibiotics to hypertension treatment to pain management. Many of these US FDA-approved peptide drugs are derived from microorganisms and animals. By contrast, the great potential of plant cyclic peptides as therapeutics remains largely unexplored. These macrocyclic peptides typically have rigid structures, good bioavailability and membrane permeability, making them appealing candidates for drug development and engineering. In this review, we introduce the three major classes of plant cyclic peptides and summarize their potential medical applications. We discuss how we can leverage the genome information of many different plants to quickly search for new cyclic peptides and how we can take advantage of the insights gained from their biosynthetic pathways to transform the process of production and drug development. These recent developments have provided a new angle for exploring and exploiting plant cyclic peptides, and we believe that many more peptide drugs derived from plants are about to come.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong, China
| | - Jimin Yuan
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Zhijie Li
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chunjin Fu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Menglong Xu
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Jing Yang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xin Jiang
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Boping Zhou
- Department of Infectious Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Xiufeng Ye
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Chengchao Xu
- Department of Geriatric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Lambeth TR, Dai Z, Zhang Y, Julian RR. A two-trick pony: lysosomal protease cathepsin B possesses surprising ligase activity. RSC Chem Biol 2021; 2:606-611. [PMID: 34291207 PMCID: PMC8291735 DOI: 10.1039/d0cb00224k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cathepsin B is an important protease within the lysosome, where it helps recycle proteins to maintain proteostasis. It is also known to degrade proteins elsewhere but has no other known functionality. However, by carefully monitoring peptide digestion with liquid chromatography and mass spectrometry, we observed the synthesis of novel peptides during cathepsin B incubations. This ligation activity was explored further with a variety of peptide substrates to establish mechanistic details and was found to operate through a two-step mechanism with proteolysis and ligation occurring separately. Further explorations using varied sequences indicated increased affinity for some substrates, though all were found to ligate to some extent. Finally, experiments with a proteolytically inactive form of the enzyme yielded no ligation, indicating that the ligation reaction occurs in the same active site but in the reverse direction of proteolysis. These results clearly establish that in its native form cathepsin B can act as both a protease and ligase, although protease action eventually dominates over longer periods of time. Cathepsin B is an important protease within the lysosome, where it helps recycle proteins to maintain proteostasis.![]()
Collapse
Affiliation(s)
- Tyler R Lambeth
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Department of Chemistry, Dornsife College of Letters, Arts and Sciences, Norris Comprehensive Cancer Center, and Research Center for Liver Diseases, University of Southern California, Los Angeles, California, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, Department of Chemistry, Dornsife College of Letters, Arts and Sciences, Norris Comprehensive Cancer Center, and Research Center for Liver Diseases, University of Southern California, Los Angeles, California, 90089, USA
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, California, 92521, USA
| |
Collapse
|
33
|
Toplak A, Teixeira de Oliveira EF, Schmidt M, Rozeboom HJ, Wijma HJ, Meekels LKM, de Visser R, Janssen DB, Nuijens T. From thiol-subtilisin to omniligase: Design and structure of a broadly applicable peptide ligase. Comput Struct Biotechnol J 2021; 19:1277-1287. [PMID: 33717424 PMCID: PMC7921005 DOI: 10.1016/j.csbj.2021.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/05/2022] Open
Abstract
Omniligase-1 is a broadly applicable enzyme for peptide bond formation between an activated acyl donor peptide and a non-protected acyl acceptor peptide. The enzyme is derived from an earlier subtilisin variant called peptiligase by several rounds of protein engineering aimed at increasing synthetic yields and substrate range. To examine the contribution of individual mutations on S/H ratio and substrate scope in peptide synthesis, we selected peptiligase variant M222P/L217H as a starting enzyme and introduced successive mutations. Mutation A225N in the S1′ pocket and F189W of the S2′ pocket increased the synthesis to hydrolysis (S/H) ratio and overall coupling efficiency, whereas the I107V mutation was added to S4 pocket to increase the reaction rate. The final omniligase variants appeared to have a very broad substrate range, coupling more than 250 peptides in a 400-member library of acyl acceptors, as indicated by a high-throughput FRET assay. Crystal structures and computational modelling could rationalize the exceptional properties of omniligase-1 in peptide synthesis
Collapse
Affiliation(s)
- Ana Toplak
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Eduardo F Teixeira de Oliveira
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcel Schmidt
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Henriëtte J Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Linda K M Meekels
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Rowin de Visser
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Timo Nuijens
- EnzyPep B.V., Brightlands Campus Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
34
|
Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Site-selective modification of peptide backbones. Org Chem Front 2021. [DOI: 10.1039/d1qo00892g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exciting developments in the site-selective modification of peptide backbones are allowing an outstanding fine-tuning of peptide conformation, folding ability, and physico-chemical and biological properties.
Collapse
Affiliation(s)
- Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Iván Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
- Catedrático CONACYT-CIQ-UAEM, Mexico
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain
| |
Collapse
|
35
|
Abstract
Historically, ligase activity by proteases was theoretically derived due to their catalyst nature, and it was experimentally observed as early as around 1900. Initially, the digestive proteases, such as pepsin, chymotrypsin, and trypsin were employed to perform in vitro syntheses of small peptides. Protease-catalyzed ligation is more efficient than peptide bond hydrolysis in organic solvents, representing control of the thermodynamic equilibrium. Peptide esters readily form acyl intermediates with serine and cysteine proteases, followed by peptide bond synthesis at the N-terminus of another residue. This type of reaction is under kinetic control, favoring aminolysis over hydrolysis. Although only a few natural peptide ligases are known, such as ubiquitin ligases, sortases, and legumains, the principle of proteases as general catalysts could be adapted to engineer some proteases accordingly. In particular, the serine proteases subtilisin and trypsin were converted to efficient ligases, which are known as subtiligase and trypsiligase. Together with sortases and legumains, they turned out to be very useful in linking peptides and proteins with a great variety of molecules, including biomarkers, sugars or building blocks with non-natural amino acids. Thus, these engineered enzymes are a promising branch for academic research and for pharmaceutical progress.
Collapse
|
36
|
Hymel D, Liu F. Proximity‐driven, Regioselective Chemical Modification of Peptides and Proteins. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- David Hymel
- Discovery Chemistry Novo Nordisk Research Center Seattle, Inc. 500 Fairview Ave Seattle WA 98109 USA
| | - Fa Liu
- Focus-X Therapeutics, Inc 3541 223rd Ave SE Sammamish WA 98075 USA
| |
Collapse
|
37
|
Affiliation(s)
- Mihajlo Todorovic
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - David M. Perrin
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
38
|
Wills R, Adebomi V, Raj M. Site-Selective Peptide Macrocyclization. Chembiochem 2020; 22:52-62. [PMID: 32794268 DOI: 10.1002/cbic.202000398] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Cyclized peptides have seen a rise in popularity in the pharmaceutical industry as drug molecules. As such, new macrocyclization methodologies have become abundant in the last several decades. However, efficient methods of cyclization without the formation of side products remain a great challenge. Herein, we review cyclization approaches that focus on site-selective chemistry. Site selectivity in macrocyclization decreases the generation of side products, leading to a greater yield of the desired peptide macrocycles. We will also take an in-depth look at the new exclusively intramolecular N-terminal site-selective CyClick strategy for the synthesis of cyclic peptides. The CyClick method uses imine formation between an aldehyde and the N terminus. The imine is then trapped by a nucleophilic attack from the second amidic nitrogen in an irreversible site-selective fashion.
Collapse
Affiliation(s)
- Rachel Wills
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - Victor Adebomi
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | - Monika Raj
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| |
Collapse
|
39
|
Mailig M, Hymel D, Liu F. Further Exploration of Hydrazine-Mediated Bioconjugation Chemistries. Org Lett 2020; 22:6677-6681. [PMID: 32786214 DOI: 10.1021/acs.orglett.0c02545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The hydrazine group serves as a great anchor for bioconjugation; however, the application of hydrazone ligation has been limited by poor product stability. We aim to resolve such issues by optimizing the recently established pyrazolone ligation and investigating a new pyrazole ligation. We have identified a new, electron-deficient pyrazolone ligation and a regiospecific pyrazole ligation, both offering aqueous buffer stable and chemically inert products possessing triazole-like structures while not involving any heavy metal catalyst.
Collapse
Affiliation(s)
- Melrose Mailig
- Novo Nordisk Research Center, 530 Fairview Avenue North, Seattle, Washington 98109, United States
| | - David Hymel
- Novo Nordisk Research Center, 530 Fairview Avenue North, Seattle, Washington 98109, United States
| | - Fa Liu
- Novo Nordisk Research Center, 530 Fairview Avenue North, Seattle, Washington 98109, United States
| |
Collapse
|
40
|
Shinbara K, Liu W, van Neer RHP, Katoh T, Suga H. Methodologies for Backbone Macrocyclic Peptide Synthesis Compatible With Screening Technologies. Front Chem 2020; 8:447. [PMID: 32626683 PMCID: PMC7314982 DOI: 10.3389/fchem.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Backbone macrocyclic structures are often found in diverse bioactive peptides and contribute to greater conformational rigidity, peptidase resistance, and potential membrane permeability compared to their linear counterparts. Therefore, such peptide scaffolds are an attractive platform for drug-discovery endeavors. Recent advances in synthetic methods for backbone macrocyclic peptides have enabled the discovery of novel peptide drug candidates against diverse targets. Here, we overview recent technical advancements in the synthetic methods including 1) enzymatic synthesis, 2) chemical synthesis, 3) split-intein circular ligation of peptides and proteins (SICLOPPS), and 4) in vitro translation system combined with genetic code reprogramming. We also discuss screening methodologies compatible with those synthetic methodologies, such as one-beads one-compound (OBOC) screening compatible with the synthetic method 2, cell-based assay compatible with 3, limiting-dilution PCR and mRNA display compatible with 4.
Collapse
Affiliation(s)
| | | | | | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Smithies BJ, Huang YH, Jackson MA, Yap K, Gilding EK, Harris KS, Anderson MA, Craik DJ. Circular Permutation of the Native Enzyme-Mediated Cyclization Position in Cyclotides. ACS Chem Biol 2020; 15:962-969. [PMID: 32203656 DOI: 10.1021/acschembio.9b00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cyclotides are a class of cyclic disulfide-rich peptides found in plants that have been adopted as a molecular scaffold for pharmaceutical applications due to their inherent stability and ability to penetrate cell membranes. For research purposes, they are usually produced and cyclized synthetically, but there are concerns around the cost and environmental impact of large-scale chemical synthesis. One strategy to improve this is to combine a recombinant production system with native enzyme-mediated cyclization. Asparaginyl endopeptidases (AEPs) are enzymes that can act as peptide ligases in certain plants to facilitate cyclotide maturation. One of these ligases, OaAEP1b, originates from the cyclotide-producing plant, Oldenlandia affinis, and can be produced recombinantly for use in vitro as an alternative to chemical cyclization of recombinant substrates. However, not all engineered cyclotides are compatible with AEP-mediated cyclization because new pharmaceutical epitopes often replace the most flexible region of the peptide, where the native cyclization site is located. Here we redesign a popular cyclotide grafting scaffold, MCoTI-II, to incorporate an AEP cyclization site located away from the usual grafting region. We demonstrate the incorporation of a bioactive peptide sequence in the most flexible region of MCoTI-II while maintaining AEP compatibility, where the two were previously mutually exclusive. We anticipate that our AEP-compatible scaffold, based on the most popular cyclotide for pharmaceutical applications, will be useful in designing bioactive cyclotides that are compatible with AEP-mediated cyclization and will therefore open up the possibility of larger scale enzyme-mediated production of recombinant or synthetic cyclotides alike.
Collapse
Affiliation(s)
- Bronwyn J. Smithies
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark A. Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kuok Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Edward K. Gilding
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Karen S. Harris
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Marilyn A. Anderson
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
42
|
Mueller LK, Baumruck AC, Zhdanova H, Tietze AA. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front Bioeng Biotechnol 2020; 8:162. [PMID: 32195241 PMCID: PMC7064641 DOI: 10.3389/fbioe.2020.00162] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase peptide synthesis (SPPS) provides the possibility to chemically synthesize peptides and proteins. Applying the method on hydrophilic structures is usually without major drawbacks but faces extreme complications when it comes to "difficult sequences." These includes the vitally important, ubiquitously present and structurally demanding membrane proteins and their functional parts, such as ion channels, G-protein receptors, and other pore-forming structures. Standard synthetic and ligation protocols are not enough for a successful synthesis of these challenging sequences. In this review we highlight, summarize and evaluate the possibilities for synthetic production of "difficult sequences" by SPPS, native chemical ligation (NCL) and follow-up protocols.
Collapse
Affiliation(s)
- Lena K. Mueller
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas C. Baumruck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Hanna Zhdanova
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alesia A. Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|