1
|
Sephra PJ, Chandrapagasam T, Sachdev A, Esakkimuthu M. Bifunctional properties of Ag/α-Fe 2O 3/rGO nanocomposite for supercapacitor and electrochemical nitrate sensing using tetradodecyl ammonium nitrate as ion-selective membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52886-52904. [PMID: 39167143 DOI: 10.1007/s11356-024-34703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
Noble metal nanoparticles incorporated in hybrid nanocomposites are considered as promising candidates for electrochemical applications owing to their physicochemical properties. In this work, we demonstrated the preparation of Fe2O3/rGO nanocomposite by hydrothermal method, followed by in situ Ag binding synthesis for the fabrication of hybrid nanocomposite (Ag/α-Fe2O3/rGO). The crystallographic structure of the hybrid nanocomposite is examined by X-ray diffraction (XRD) analysis which confirms the characteristics of Ag, Fe2O3, and rGO. The microscopic studies and energy-dispersive X-ray analysis (EDS) spectra confirmed the presence and formation of hybrid nanostructures. Raman analysis results further corroborate the formation of composite with significant D and G bands in Fe2O3/rGO and Ag/α-Fe2O3/rGO samples, which follow XRD results. Cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) studies were carried out to analyze the faradaic capacitor behavior. A specific capacitance of 209.09 F/g was observed by GCD studies for Ag/α-Fe2O3/rGO composites at a current density of 1 A/g, which exhibited good capacitance retention of 94% for 5000 cycles at 7 A/g. Furthermore, the Ag/α-Fe2O3/rGO electrode was used for the electrochemical detection of nitrate ions in soil by utilizing an ion-selective membrane over the surface of the Ag/α-Fe2O3/rGO electrode. The fabricated nanocomposite electrode showed a significant change in the peak current values with the concentration of nitrate in a linear range from 10 to 450 μM with the sensitivity to be calculated 1.426 μA μM-1 cm-2 and limit of detection (LOD) calculated to be 0.18 μM. The reproducibility and interference studies showed a promising result to be utilized for detecting nitrate ions in soil and in real-time applications.
Collapse
Affiliation(s)
- Percy J Sephra
- Department of Electronics and Communication Engineering, B. S. Abdur Rahman Crescent Institute of Science & Technology, Chennai, 600048, India
| | - Tharini Chandrapagasam
- Department of Electronics and Communication Engineering, B. S. Abdur Rahman Crescent Institute of Science & Technology, Chennai, 600048, India.
| | - Abhay Sachdev
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Materials Science & Sensor Application Division, CSIR-Central Scientific Instruments Organization (CSIR-CSIO), Chandigarh, 160030, India
| | - Manikandan Esakkimuthu
- Centre for Innovation and Product Development, Vellore Institute of Technology (Chennai Campus), Chennai, 600127, India
| |
Collapse
|
2
|
Karmakar S, Taqy S, Droopad R, Trivedi RK, Chakraborty B, Haque A. Highly Stable Electrochemical Supercapacitor Performance of Self-Assembled Ferromagnetic Q-Carbon. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8305-8318. [PMID: 36735879 DOI: 10.1021/acsami.2c20202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Novel phase Q-carbon thin films exhibit some intriguing features and have been explored for various potential applications. Herein, we report the growth of different Q-carbon structures (i.e., filaments, clusters, and microdots) by varying the laser energy density from 0.5 to 1.0 J/cm2 during pulsed laser annealing of amorphous diamond-like carbon films with different sp3-sp2 carbon compositions. These unique nano- and microstructures of Q-carbon demonstrate exceptionally stable electrochemical performance by cyclic voltammetry, galvanostatic charging-discharging, and electrochemical impedance spectroscopy for energy applications. The temperature-dependent magnetic studies (magnetization vs magnetic field and temperature) reveal the ferromagnetic nature of the Q-carbon microdots. The saturation magnetization and coercive field values decrease from 132 to 14 emu/cc and 155 to 92 Oe by increasing the temperature from 2 to 300 K, respectively. The electrochemical performances of Q-carbon filament, cluster, and microdot thin-film supercapacitors were investigated by two-electrode configurations, and the highest areal specific capacitance of ∼156 mF/cm2 was observed at a current density of 0.15 mA/cm2 in the Q-carbon microdot thin film. The Q-carbon microdot electrodes demonstrate an exceptional capacitance retention performance of ∼97.2% and Coulombic efficiency of ∼96.5% after 3000 cycles due to their expectational reversibility in the charging-discharging process. The kinetic feature of the ion diffusion associated with the charge storage property is also investigated, and small changes in equivalent series resistance of ∼9.5% and contact resistance of ∼9.1% confirm outstanding stability with active charge kinetics during the stability test. A high areal power density of ∼5.84 W/cm2 was obtained at an areal energy density of ∼0.058 W h/cm2 for the Q-carbon microdot structure. The theoretical quantum capacitance was obtained at ∼400 mF/cm2 by density functional theory calculation, which gives an idea about the overall capacitance value. The obtained areal specific capacitance, power density, and impressive long-term cyclic stability of Q-carbon thin-film microdot electrodes endorse substantial promise in high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Subrata Karmakar
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
| | - Saif Taqy
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
| | - Ravi Droopad
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
- Materials Science, Engineering & Commercialization Program, Texas State University, San Marcos, Texas78666, United States
| | - Ravi Kumar Trivedi
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Brahmananda Chakraborty
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - Ariful Haque
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
- Materials Science, Engineering & Commercialization Program, Texas State University, San Marcos, Texas78666, United States
| |
Collapse
|
3
|
Mummoorthi G, Shajahan S, Abu Haija M, Mahalingam U, Rajendran R. Synthesis and Characterization of Ternary α-Fe 2O 3/NiO/rGO Composite for High-Performance Supercapacitors. ACS OMEGA 2022; 7:27390-27399. [PMID: 35967063 PMCID: PMC9366972 DOI: 10.1021/acsomega.2c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, pure α-Fe2O3, binary α-Fe2O3/NiO, and ternary α-Fe2O3/NiO/rGO composites were prepared by a hydrothermal method. The properties of the prepared materials were studied by powder X-ray diffraction, scanning electron microscopy, TEM, XPS, and Brunauer-Emmett-Teller techniques. The clusters of smaller α-Fe2O3 nanoparticles (∼30 nm) along with conducting NiO was freely covered by the rGO layer sheet, which offer a higher electrode-electrolyte interface for improved electrochemical performance. The ternary composite has shown a higher specific capacitance of 747 F g-1@ a current density of 1 A g-1 in a 6 M KOH solution, when compared with that of α-Fe2O3/rGO (610 F g-1@1 A g-1) and α-Fe2O3 (440 F g-1@1 A g-1) and the nanocomposite. Moreover, the ternary α-Fe2O3/NiO/rGO composite exhibited a 98% rate capability @ 10 A g-1. The exceptional electrochemical performance of ternary composites has been recognized as a result of their well-designed unique architecture, which provides a large surface area and synergistic effects among all three constituents. The asymmetric supercapacitor (ASC) device was assembled using the ternary α-Fe2O3/NiO/rGO composite as the anode electrode (positive) material and activated carbon as the cathode (negative) material. The ASC device has an energy density of 35.38 W h kg-1 at a power density of 558.6 W kg-1 and retains a 94.52% capacitance after 5000 cycles at a 1 A g-1 current density.
Collapse
Affiliation(s)
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University, P.O. Box, 127788 Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box., 127788 Abu Dhabi, United Arab
Emirates
| | - Umadevi Mahalingam
- Department
of Physics, Mother Teresa Women’s
University, 624 10 Kodaikanal, Tamil Nadu, India
| | - Ramesh Rajendran
- Department
of Physics, Periyar University, 636 011 Salem, Tamil Nadu, India
| |
Collapse
|
4
|
An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. CRYSTALS 2022. [DOI: 10.3390/cryst12040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smart textiles have recently aroused tremendous interests over the world because of their broad applications in wearable electronics, such as human healthcare, human motion detection, and intelligent robotics. Sensors are the primary components of wearable and flexible electronics, which convert various signals and external stimuli into electrical signals. While traditional electronic sensors based on rigid silicon wafers can hardly conformably attach on the human body, textile materials including fabrics, yarns, and fibers afford promising alternatives due to their characteristics including light weight, flexibility, and breathability. Of fundamental importance are the needs for fabrics simultaneously having high electrical and mechanical performance. This article focused on the hierarchical design of the textile-based flexible sensor from a structure point of view. We first reviewed the selection of newly developed functional materials for textile-based sensors, including metals, conductive polymers, carbon nanomaterials, and other two-dimensional (2D) materials. Then, the hierarchical structure design principles on different levels from microscale to macroscale were discussed in detail. Special emphasis was placed on the microstructure control of fibers, configurational engineering of yarn, and pattern design of fabrics. Finally, the remaining challenges toward industrialization and commercialization that exist to date were presented.
Collapse
|
5
|
Wang W, Xia HF, Zhang B, Wang C, Cao L, Ming L, Ou X. Flexible FeVO x porous nanorods on carbon cloth for long-life aqueous energy storage. Chem Commun (Camb) 2022; 58:3625-3628. [PMID: 35201248 DOI: 10.1039/d2cc00063f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the FeVOx porous nanorods on carbon cloth as a novel cathode material for flexible aqueous energy storage. It exhibits excellent electrochemical properties and cycling stability in supercapacitors and zinc-ion batteries. Moreover, this work makes significant progress for developing high-performance electrodes and provides a foundation for future research.
Collapse
Affiliation(s)
- Wei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
| | - Hai-Feng Xia
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
| | - Bao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
| | - Chunhui Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
| | - Liang Cao
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
| | - Lei Ming
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
| | - Xing Ou
- School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
6
|
Wang Y, Lu J, Zhao Y, Lv H, Zhou Z, Wei H, Chen Z. Well-designed sophisticated structure of sandwich-like CC@NiAl-LDH@GO@NiCo-LDH material with unique advantages for high performance and practicality hybrid quasi-solid-state supercapacitors. J Colloid Interface Sci 2021; 609:114-129. [PMID: 34894546 DOI: 10.1016/j.jcis.2021.11.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 01/19/2023]
Abstract
A sandwich-like flexible architecture electrode material composed of NiAl-LDH nanoplates grown on carbon cloths (CC), coupled with GO interlayer and NiCo-LDH nanowire on the interlayer was successfully assembled via hydrothermal and chemical bath deposition (denoted as CC@NiAl-LDH@GO@NiCo-LDH). The promising combination of NiAl-LDH, graphene and NiCo-LDH forming a multilayer structure through electrostatic absorption and in-situ growth process which endow a high mass loading superiority and synergistic effect for supercapacitors. In addition, the interspace inside the sandwich-like architecture constructed by the graphene and the NiAl-LDH/ NiCo-LDH nano-flakes contribute to alleviate of the volume expansion during the cycling process and promote the diffusion rate of ions. The CC@NiAl-LDH@GO@NiCo-LDH material demonstrates excellent electrochemical performance which exhibit remarkable specific capacitance of 2359.8F·g-1 (14.2F·cm-2) at 1 A·g-1 (6 mA·cm-2) and outstanding capacitance retentions of 93.1% after 1500 cycles. Subsequently, the CC@NiAl-LDH@GO@NiCo-LDH material was used as cathode material to fabricate a hybrid quasi-solid-state supercapacitor that exhibits a high energy density of 52.0 Wh·kg-1 at 796.7 W·kg-1 and 38.4 Wh·kg-1 at 12015 W·kg-1, revealing its potential and viability for commercial applications. Furthermore, the hybrid quasi-solid-state supercapacitor can be applied under different extreme operating conditions such as bending, twisting, sour/alkali soaking, ice bathing, warm bathing, hammering and cutting conditions. It is predictable that the unique sandwich-like structure will be an extremely promising electrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Yan Wang
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, Chengdu 610054, China; Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, Chengdu 610054, China.
| | - Jiatong Lu
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, Chengdu 610054, China; Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, Chengdu 610054, China
| | - Yang Zhao
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, Chengdu 610054, China; Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, Chengdu 610054, China
| | - Huifang Lv
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, Chengdu 610054, China; Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, Chengdu 610054, China
| | - Zhiyu Zhou
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, Chengdu 610054, China; Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, Chengdu 610054, China
| | - Hualiang Wei
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, Chengdu 610054, China; Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, Chengdu 610054, China
| | - Zexiang Chen
- School of Optoelectronic Science and Engineering of UESTC, University of Electronic Science and Technology of China, Jianshe North Road 4, Chengdu 610054, China; Sichuan Province Key Laboratory of Display Science and Technology, Jianshe North Road 4, Chengdu 610054, China.
| |
Collapse
|
7
|
Yu P, Duan W, Jiang Y. Porous Fe 2O 3 Nanorods on Hierarchical Porous Biomass Carbon as Advanced Anode for High-Energy-Density Asymmetric Supercapacitors. Front Chem 2020; 8:611852. [PMID: 33324617 PMCID: PMC7726331 DOI: 10.3389/fchem.2020.611852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/20/2020] [Indexed: 12/04/2022] Open
Abstract
In this study, a novel negative electrode material was prepared by aligning α-Fe2O3 nanorods on a hierarchical porous carbon (HPC) skeleton. The skeleton was derived from wheat flour by a facile hydrothermal route to enhance conductivity, improve surface properties, and achieve substantially good electrochemical performances. The α-Fe2O3/HPC electrode exhibits enhanced specific capacitance of 706 F g−1, which is twice higher than that of α-Fe2O3. The advanced α-Fe2O3/HPC//PANI/HPC asymmetrical supercapacitor was built with an expanded voltage of 2.0 V in 1 M Li2SO4, possessing a specific capacitance of 212 F g−1 at 1 A g−1 and a maximum energy density of 117 Wh kg−1 at 1.0 kW kg−1, along with an excellent stability of 5.8% decay in capacitance after 5,000 cycles. This study affords a simple process to develop asymmetric supercapacitors, which exhibit high electrochemical performances and are applicable in next-generation energy storage devices, based on α-Fe2O3 hybrid materials.
Collapse
Affiliation(s)
- Pingping Yu
- Department of Electronic Engineering, College of Internet-of-Things (IoT), Jiangnan University, Wuxi, China
| | - Wei Duan
- Department of Electronic Engineering, College of Internet-of-Things (IoT), Jiangnan University, Wuxi, China
| | - Yanfeng Jiang
- Department of Electronic Engineering, College of Internet-of-Things (IoT), Jiangnan University, Wuxi, China
| |
Collapse
|