1
|
Altaf A, Khan I, Khan A, Sadiq S, Humayun M, Khan S, Zaman S, Khan A, Abumousa RA, Bououdina M. Metal/Covalent Organic Framework Encapsulated Lead-Free Halide Perovskite Hybrid Nanocatalysts: Multifunctional Applications, Design, Recent Trends, Challenges, and Prospects. ACS OMEGA 2024; 9:34220-34242. [PMID: 39157131 PMCID: PMC11325423 DOI: 10.1021/acsomega.4c04532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Perovskites are bringing revolutionization in a various fields due to their exceptional properties and crystalline structure. Most specifically, halide perovskites (HPs), lead-free halide perovskites (LFHPs), and halide perovskite quantum dots (HPs QDs) are becoming hotspots due to their unique optoelectronic properties, low cost, and simple processing. HPs QDs, in particular, have excellent photovoltaic and optoelectronic applications because of their tunable emission, high photoluminescence quantum yield (PLQY), effective charge separation, and low cost. However, practical applications of the HPs QDs family have some limitations such as degradation, instability, and deep trap states within the bandgap, structural inflexibility, scalability, inconsistent reproducibility, and environmental concerns, which can be covered by encapsulating HPs QDs into porous materials like metal-organic frameworks (MOFs) or covalent-organic frameworks (COFs) that offer protection, prevention of aggregation, tunable optical properties, flexibility in structure, enhanced biocompatibility, improved stability under harsh conditions, consistency in production quality, and efficient charge separation. These advantages of MOFs-COFs help HPs QDs harness their full potential for various applications. This review mainly consists of three parts. The first portion discusses the perovskites, halide perovskites, lead-free perovskites, and halide perovskite quantum dots. In the second portion, we explore MOFs and COFs. In the third portion, particular emphasis is given to a thorough evaluation of the development of HPs QDs@MOFs-COFs based materials for comprehensive investigations for next-generation materials intended for diverse technological applications, such as CO2 conversion, pollutant degradation, hydrogen generation, batteries, gas sensing, and solar cells. Finally, this review will open a new gateway for the synthesis of perovskite-based quantum dots.
Collapse
Affiliation(s)
- Anam Altaf
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Iltaf Khan
- School
of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Aftab Khan
- College
of Material Science and Engineering, Beijing
University of Chemical Technology, Beijing 100029, China
| | - Samreen Sadiq
- Jiangsu
Key Laboratory of Sericultural and Animal Biotechnology, School of
Biotechnology, Jiangsu University of Science
and Technology, Zhenjiang 212100, China
| | - Muhammad Humayun
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Shoaib Khan
- College
of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Saeed Zaman
- College of
Chemistry, Liaoning University, Shenyang 110036, China
| | - Abbas Khan
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Rasha A. Abumousa
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy,
Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
2
|
Qu Y, Li X, Bu K, Zhang J, Chen D, Liang J, Chen H, Li H, Bai L. 3D/3D Bamboo Charcoal/Bi 2WO 6 Bifunctional Photocatalyst for Degradation of Organic Pollutants and Efficient H 2 Evolution Coupling with Furfuryl Alcohols Oxidation. Molecules 2024; 29:2476. [PMID: 38893356 PMCID: PMC11174113 DOI: 10.3390/molecules29112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Photocatalysis is one of the most promising pathways to relieve the environmental contamination caused by the rapid development of modern technology. In this work, we demonstrate a green manufacturing process for the 3D/3D rod-shaped bamboo charcoal/Bi2WO6 photocatalyst (210BC-BWO) by controlled carbonization temperature. A series of morphology characterization and properties investigations (XRD, SEM, UV-vis DRS, transient photocurrent response, N2 absorption-desorption isotherms) indicate a 210BC-BWO photocatalyst with higher charge separation efficiency, larger surface area, and better adsorption capacity. The excellent photocatalytic performance was evaluated by degrading rhodamine B (RhB) (98.5%), tetracycline hydrochloride (TC-HCl) (77.1%), and H2 evolution (2833 μmol·g-1·h-1) coupled with furfuryl alcohol oxidation (3097 μmol·g-1·h-1) under visible light irradiation. In addition, the possible mechanisms for degradation of organic pollutants, H2 evolution, and furfuryl alcohol oxidation were schematically investigated, which make it possible to exert photocatalysis by increasing the active radical. This study shows that the combination of bamboo charcoal and bismuth tungstate can be a powerful photocatalyst that rationally combines H2 evolution coupled with furfuryl alcohol oxidation and degradation of pollutants.
Collapse
Affiliation(s)
- Yanan Qu
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Xiaolin Li
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Kang Bu
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Jiayi Zhang
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Da Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China; (D.C.); (J.L.); (H.C.)
| | - Junhui Liang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China; (D.C.); (J.L.); (H.C.)
| | - Huayu Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China; (D.C.); (J.L.); (H.C.)
| | - Huafeng Li
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| | - Liqun Bai
- College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.Q.); (X.L.); (K.B.); (J.Z.)
| |
Collapse
|
3
|
Sadiq S, Khan S, Khan I, Khan A, Humayun M, Wu P, Usman M, Khan A, Alanazi AF, Bououdina M. A critical review on metal-organic frameworks (MOFs) based nanomaterials for biomedical applications: Designing, recent trends, challenges, and prospects. Heliyon 2024; 10:e25521. [PMID: 38356588 PMCID: PMC10864983 DOI: 10.1016/j.heliyon.2024.e25521] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Shoaib Khan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Iltaf Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Aftab Khan
- Department of Physics, School of Science, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212100, China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Amal Faleh Alanazi
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
4
|
Sadiq S, Khan I, Shen Z, Wang M, Xu T, Khan S, Zhou X, Bahadur A, Rafiq M, Sohail S, Wu P. Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules 2023; 28:7674. [PMID: 38005395 PMCID: PMC10675011 DOI: 10.3390/molecules28227674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens cause infections and millions of deaths globally, while antipathogens are drugs or treatments designed to combat them. To date, multifunctional nanomaterials (NMs), such as organic, inorganic, and nanocomposites, have attracted significant attention by transforming antipathogen livelihoods. They are very small in size so can quickly pass through the walls of bacterial, fungal, or parasitic cells and viral particles to perform their antipathogenic activity. They are more reactive and have a high band gap, making them more effective than traditional medications. Moreover, due to some pathogen's resistance to currently available medications, the antipathogen performance of NMs is becoming crucial. Additionally, due to their prospective properties and administration methods, NMs are eventually chosen for cutting-edge applications and therapies, including drug administration and diagnostic tools for antipathogens. Herein, NMs have significant characteristics that can facilitate identifying and eliminating pathogens in real-time. This mini-review analyzes multifunctional NMs as antimicrobial tools and investigates their mode of action. We also discussed the challenges that need to be solved for the utilization of NMs as antipathogens.
Collapse
Affiliation(s)
- Samreen Sadiq
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Iltaf Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
| | - Zhenyu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Mengdong Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Tao Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa 94640, Pakistan;
| | - Xuemin Zhou
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| | - Ali Bahadur
- College of Science, Mathematics, and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
| | - Madiha Rafiq
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Sumreen Sohail
- Department of Information Technology, Careerera, Beltsville, MD 20705, USA;
| | - Ping Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (S.S.); (Z.S.); (M.W.); (T.X.)
| |
Collapse
|
5
|
Li X, Qu Y, Xu J, Liang J, Chen H, Chen D, Bai L. 2D/2D Biochar/Bi 2WO 6 Hybrid Nanosheets with Enhanced Visible-Light-Driven Photocatalytic Activities for Organic Pollutants Degradation. ACS OMEGA 2023; 8:26882-26894. [PMID: 37546663 PMCID: PMC10398710 DOI: 10.1021/acsomega.3c01591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
In this work, a novel two-dimensional/two-dimensional (2D/2D) hybrid photocatalyst consisting of Bi2WO6 (BWO) nanosheets and cotton fibers biochar (CFB) nanosheets was successfully prepared via a facile hydrothermal process. The as-prepared photocatalysts were characterized by a variety of techniques, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. It was revealed that amorphous CFB nanosheets were uniformly immobilized on the surface of crystalline BWO nanosheets, and an intimate contact between CFB and BWO was constructed. The photocatalytic activities of the prepared BWO and CFB-BWO photocatalysts were evaluated by photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TC-HCl) in aqueous solutions under visible-light irradiation. Compared to the pristine BWO, the CFB-BWO composite photocatalysts exhibited significant enhancement in photocatalytic activities. Among all CFB-BWO samples, the 9CFB-BWO sample with the CFB mass ratio of 9% exhibited optimal photocatalytic activities for RhB or TC-HCl degradation, which was ca. 1.8 times or 2.4 times that of the pristine BWO, respectively. The improvement in photocatalytic activities of the CFB-BWO photocatalysts could be ascribed to the enhanced migration and separation of photogenerated charge carriers due to the formation of a 2D/2D interfacial heterostructure between CFB and BWO. Meanwhile, the possible mechanism of CFB-BWO for enhanced photocatalytic performance was also discussed. This work may provide a new approach to designing and developing novel BWO-based photocatalysts for the highly efficient removal of organic pollutants.
Collapse
Affiliation(s)
- Xiaolin Li
- College
of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang Province 311300, China
| | - Yanan Qu
- College
of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang Province 311300, China
| | - Junjie Xu
- College
of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang Province 311300, China
| | - Junhui Liang
- College
of Materials and Chemistry, China Jiliang
University, Hangzhou, Zhejiang 310018, China
| | - Huayu Chen
- College
of Materials and Chemistry, China Jiliang
University, Hangzhou, Zhejiang 310018, China
| | - Da Chen
- College
of Materials and Chemistry, China Jiliang
University, Hangzhou, Zhejiang 310018, China
| | - Liqun Bai
- College
of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang Province 311300, China
| |
Collapse
|
6
|
Yang F, Yang B, Gu X, Li M, Qi K, Yan Y. Detection of enrofloxacin residues in dairy products based on their fluorescence quenching effect on AgInS 2 QDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122985. [PMID: 37311364 DOI: 10.1016/j.saa.2023.122985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/15/2023]
Abstract
Water-soluble AgInS2 (AIS) quantum dots (QDs) were successfully prepared through the one-pot water phase method with thioglycolic acid (TGA) as the stabilizing agent. Because enrofloxacin (ENR) effectively quenches the fluorescence of AIS QDs, a highly-sensitive fluorescence detection method is proposed to detect ENR residues in milk. Under optimal detection conditions, there was a good linear relationship between the relative fluorescence quenching amount (ΔF/F0) of AgInS2 with ENR and ENR concentration (C). The detection range was 0.3125-20.00 μg/mL, r = 0.9964, and the detection limit (LOD) was 0.024 μg/mL (n = 11). The average recovery of ENR in milk ranged from 95.43 to 114.28%. The method established in this study has advantages including a high sensitivity, a low detection limit, simple operation and a low cost. The fluorescence quenching mechanism of AIS QDs with ENR was discussed and the dynamic quenching mechanism of light-induced electron transfer was proposed.
Collapse
Affiliation(s)
- Fengjiao Yang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Bingyu Yang
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Xinyue Gu
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Minghua Li
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China.
| | - Ya Yan
- College of Pharmacy, Dali University, Dali 671000, Yunnan, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|
7
|
Fu W, Wei C, Xu S, Wang E, Zhang J, Xu Y, Zou J, Wei J, Zuo J. Facile synthesis of nanostrip-structured pseudo-boehmite "nest" for nano-TiO 2/ γ-Al 2O 3construction to remove tetracycline hydrochloride in water. NANOTECHNOLOGY 2023; 34:245401. [PMID: 36898149 DOI: 10.1088/1361-6528/acc33d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
A particular bird's nest-like pseudo-boehmite (PB) composed of cohesive nanostrips was prepared by a novel and facile approach based on the reaction of Al-Ga-In-Sn alloy and water, together with ammonium carbonate. The PB possesses a large specific surface area (465.2 m2g-1), pore volume (1.0 cm3g-1), and pore diameter (8.7 nm). Subsequently, it was utilized as a precursor to form the TiO2/γ-Al2O3nanocomposite for tetracycline hydrochloride removal. The removal efficiency can reach above 90% at TiO2:PB = 1:1.5 under the Sunlight irradiation simulated by a LED lamp. Our results indicate that the nest-like PB is a promising carrier precursor for efficient nanocomposite catalysts.
Collapse
Affiliation(s)
- Wenjing Fu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Cundi Wei
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Shaonan Xu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Enhui Wang
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Jinyi Zhang
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - You Xu
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Jiyuan Zou
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| | - Jilun Wei
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14201, United States of America
| | - Jing Zuo
- Key Laboratory of Automobile Materials of Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, Jilin Prov., People's Republic of China
| |
Collapse
|
8
|
Nazir A, Huo P, Wang H, Weiqiang Z, Wan Y. A review on plasmonic-based heterojunction photocatalysts for degradation of organic pollutants in wastewater. JOURNAL OF MATERIALS SCIENCE 2023; 58:6474-6515. [PMID: 37065680 PMCID: PMC10039801 DOI: 10.1007/s10853-023-08391-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
UNLABELLED Organic pollutants in wastewater are the biggest problem facing the world today due to population growth, rapid increase in industrialization, urbanization, and technological advancement. There have been numerous attempts to use conventional wastewater treatment techniques to address the issue of worldwide water contamination. However, conventional wastewater treatment has a number of shortcomings, including high operating costs, low efficiency, difficult preparation, fast recombination of charge carriers, generation of secondary waste, and limited light absorption. Therefore, plasmonic-based heterojunction photocatalysts have attracted much attention as a promising method to reduce organic pollutant problems in water due to their excellent efficiency, low operating cost, ease of fabrication, and environmental friendliness. In addition, plasmonic-based heterojunction photocatalysts contain a local surface plasmon resonance that enhances the performance of photocatalysts by improving light absorption and separation of photoexcited charge carriers. This review summarizes the major plasmonic effects in photocatalysts, including hot electron, local field effect, and photothermal effect, and explains the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants. Recent work on the development of plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater is also discussed. Lastly, the conclusions and challenges are briefly described and the direction of future development of heterojunction photocatalysts with plasmonic materials is explored. This review could serve as a guide for the understanding, investigation, and construction of plasmonic-based heterojunction photocatalysts for various organic pollutants degradation. GRAPHICAL ABSTRACT Herein, the plasmonic effects in photocatalysts, such as hot electrons, local field effect, and photothermal effect, as well as the plasmonic-based heterojunction photocatalysts with five junction systems for the degradation of pollutants are explained. Recent work on plasmonic-based heterojunction photocatalysts for the degradation of various organic pollutants in wastewater such as dyes, pesticides, phenols, and antibiotics is discussed. Challenges and future developments are also described.
Collapse
Affiliation(s)
- Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Zhou Weiqiang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Yang Wan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
9
|
Qamar MA, Javed M, Shahid S, Shariq M, Fadhali MM, Ali SK, Khan MS. Synthesis and applications of graphitic carbon nitride (g-C 3N 4) based membranes for wastewater treatment: A critical review. Heliyon 2023; 9:e12685. [PMID: 36660457 PMCID: PMC9842699 DOI: 10.1016/j.heliyon.2022.e12685] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
Semiconducting membrane combined with nanomaterials is an auspicious combination that may successfully eliminate diverse waste products from water while consuming little energy and reducing pollution. Creating an inexpensive, steady, flexible, and diversified business material for membrane production is a critical challenge in membrane technology development. Because of its unusual structure and high catalytic activity, graphitic carbon nitride (g-C3N4) has come out as a viable material for membranes. Furthermore, their great durability, high permanency under challenging environments, and long-term use without decrease in flux are significant advantages. The advanced material techniques used to manage the molecular assembly of g-C3N4 for separation membrane were detailed in this review work. The progress in using g-C3N4-based membranes for water treatment has been detailed in this presentation. The review delivers an updated description of g-C3N4 based membranes and their separation functions and new ideas for future enhancements/adjustments to address their weaknesses in real-world situations. Finally, the ongoing problems and promising future research directions for g-C3N4-based membranes are discussed.
Collapse
Affiliation(s)
- Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan,Corresponding author.
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sammia Shahid
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohammad Shariq
- Department of Physics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohammed M. Fadhali
- Department of Physics, College of Science, Jazan University, Jazan, 45142, Saudi Arabia,Department of Physics, Faculty of Science, Ibb University, Ibb, 70270, Yemen
| | - Syed Kashif Ali
- Department of Chemistry, College of Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd. Shakir Khan
- Department of Physics, College of Science, Al- Zulfi, Majmaah University, Al- Majmaah, 11952, Saudi Arabia
| |
Collapse
|
10
|
Song J, Zhao K, Yin X, Liu Y, Khan I, Liu SY. Photocatalytic degradation of tetracycline hydrochloride with g-C 3N 4/Ag/AgBr composites. Front Chem 2022; 10:1069816. [PMID: 36451930 PMCID: PMC9702527 DOI: 10.3389/fchem.2022.1069816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Graphite carbon nitride (g-C3N4), as a polymer semiconductor photocatalyst, is widely used in the treatment of photocatalytic environmental pollution. In this work, a Z-scheme g-C3N4/Ag/AgBr heterojunction photocatalyst was prepared based on the preparation of a g-C3N4-based heterojunction via in-situ loading through photoreduction method. The g-C3N4/Ag/AgBr composite showed an excellent photocatalytic performance in the degradation of tetracycline hydrochloride pollutants. Among the prepared samples, g-C3N4/Ag/AgBr-8% showed the best photocatalytic ability for the degradation of tetracycline hydrochloride, whose photocatalytic degradation kinetic constant was 0.02764 min-1, which was 9.8 times that of g-C3N4, 2.4 times that of AgBr, and 1.9 times that of Ag/AgBr. In the photocatalytic process, •O2- and •OH are main active oxygen species involved in the degradation of organic pollutants. The photocatalytic mechanism of g-C3N4/Ag/AgBr is mainly through the formation of Z-scheme heterojunctions, which not only effectively improves the separation efficiency of photogenerated electron-hole pairs, but also maintains the oxidation and reduction capability of AgBr and g-C3N4, respectively.
Collapse
Affiliation(s)
- Jiahe Song
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Kun Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xiangbin Yin
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ying Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Iltaf Khan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shu-Yuan Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
11
|
Gao RH, Ge Q, Jiang N, Cong H, Liu M, Zhang YQ. Graphitic carbon nitride (g-C 3N 4)-based photocatalytic materials for hydrogen evolution. Front Chem 2022; 10:1048504. [PMID: 36386003 PMCID: PMC9640947 DOI: 10.3389/fchem.2022.1048504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
The semiconductors, such as TiO2, CdS, ZnO, BiVO4, graphene, produce good applications in photocatalytic water splitting for hydrogen production, and great progress have been made in the synthesis and modification of the materials. As a two-dimensional layered structure material, graphitic carbon nitride (g-C3N4), with the unique properties of high thermostability and chemical inertness, excellent semiconductive ability, affords good potential in photocatalytic hydrogen evolution. However, the related low efficiency of g-C3N4 with fast recombination rate of photogenerated charge carriers, limited visible-light absorption, and low surface area of prepared bulk g-C3N4, has called out the challenge issues to synthesize and modify novel g-C3N4-block photocatalyst. In this review, we have summarized several strategies to improve the photocatalytic performance of pristine g-C3N4 such as pH, morphology control, doping with metal or non-metal elements, metal deposition, constructing a heterojunction or homojunction, dye-sensitization, and so forth. The performances for photocatalytic hydrogen evolution and possible development of g-C3N4 materials are shared with the researchers interested in the relevant fields hereinto.
Collapse
Affiliation(s)
- Rui-Han Gao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Nan Jiang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Mao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Yun-Qian Zhang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Biological Inspired Green Synthesis of TiO2 Coupled g-C3N4 Nanocomposites and Its Improved Activities for Sulfadiazine and Bisphenol A Degradation. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02317-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Sohrabnezhad S, Kazemi Z, Pourahmad Nodehi A. Synthesis and characterization of boehmite/metal – Organic framework of type
AlO
(
OH
)/
MOF
‐74(Zn) for photocatalytic degradation of Congo red dye. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Zahra Kazemi
- Department of Chemistry, Faculty of Science University of Guilan Rasht Iran
| | | |
Collapse
|
15
|
Khan I, Luo M, Khan S, Asghar H, Saeed M, Khan S, Khan A, Humayun M, Guo L, Shi B. Green synthesis of SrO bridged LaFeO 3/g-C 3N 4 nanocomposites for CO 2 conversion and bisphenol A degradation with new insights into mechanism. ENVIRONMENTAL RESEARCH 2022; 207:112650. [PMID: 34979124 DOI: 10.1016/j.envres.2021.112650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Very recently the green synthesis routes of nanomaterials have attracted massive attention as it overcome the sustainability concerns of conventional synthesis approaches. With this heed, in this novel research work we have synthesized the g-C3N4 nanosheets based nanocomposites by utilizing Eriobotrya japonica as mediator and stabilizer agent. Our designed bio-caped and green g-C3N4 nanosheets based nanocomposites have abundant organic functional groups, activated surface and strong adsorption capability which are very favorable for conversion CO2 into useful products and bisphenol A degradation. Beneficial to further upgrade the performances of g-C3N4 nanosheets, the resulting pristine g-C3N4 nanosheets are coupled with LaFeO3 nanosheets via SrO bridge. Based on our experimental results such as TEM, XRD, DRS, TPD, TGA, PL, PEC and FS spectra linked with OH amount it is confirmed that the biologically mediated green g-C3N4 nanosheets are eco-friendly, highly efficient and stable. Furthermore, the coupling of LaFeO3 nanosheets enlarged the surface area, enhanced the charge separation, while the insertion of SrO bridge worked as facilitator for electron transportation and photo-electron modulation. In contrast to pristine green g-C3N4 nanosheets (GCN), the activities of final resulting sample 6LFOS-(4SrO)-GCN are improved by 8.0 times for CO2 conversion (CH4 = 4.2, CO = 9.2 μmol g-1 h-1) and 2.5-fold for bisphenol A degradation (88%) respectively. More specifically, our current research work will open a new gateway to design cost effective, eco-friendly and biological inspired green nanomaterials for CO2 conversion and organic pollutants degradation which will further support the net zero carbon emission manifesto and the optimization of carbon neutrality level.
Collapse
Affiliation(s)
- Iltaf Khan
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China; Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China; School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China.
| | - Mingsheng Luo
- College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, PR China; Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China.
| | - Sohail Khan
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa, 94640, Pakistan
| | - Humaira Asghar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Shoaib Khan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Aftab Khan
- College of Agriculture, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Muhammad Humayun
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Guo
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China
| | - Buchang Shi
- Department of Chemistry, Eastern Kentucky University, Richmond, KY, 40475, USA
| |
Collapse
|
16
|
Zhao Y, Zada A, Yang Y, Pan J, Wang Y, Yan Z, Xu Z, Qi K. Photocatalytic Removal of Antibiotics on g-C 3N 4 Using Amorphous CuO as Cocatalysts. Front Chem 2021; 9:797738. [PMID: 34957051 PMCID: PMC8692713 DOI: 10.3389/fchem.2021.797738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Amorphous CuO is considered as an excellent cocatalyst, owing to its large surface area and superior conductivity compared with its crystalline counterpart. The current work demonstrates a facile method to prepare amorphous CuO, which is grown on the surface of graphitic carbon nitride (g-C3N4) and is then applied for the photocatalytic degradation of tetracycline hydrochloride. The prepared CuO/g-C3N4 composite shows higher photocatalytic activities compared with bare g-C3N4. Efficient charge transfer between g-C3N4 and CuO is confirmed by the photocurrent response spectra and photoluminescence spectra. This work provides a facile approach to prepare low-cost composites for the photocatalytic degradation of antibiotics to safeguard the environment.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yang Yang
- College of Physical Science and Technology, Shenyang Normal University, Shenyang, China
| | - Jing Pan
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yan Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhaoxiong Yan
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan, China
| | - Zhihua Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan, China
| | - Kezhen Qi
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| |
Collapse
|
17
|
Ahmad F, Zhu D, Sun J. Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:64. [DOI: 10.1186/s12302-021-00505-y] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 07/23/2024]
Abstract
AbstractTetracycline pollution is a growing global threat to aquatic and terrestrial biodiversity due to its unprecedented use in aquaculture, livestock, and human disease prevention. The influx of tetracycline may annihilate the microbial ecology structure in the environment and pose a severe threat to humans by disturbing the food chain. Although significant research data are available in the literature on various aspects of tetracycline, including detection techniques, degradation mechanisms, degradation products, and policy statements to curtail the issue, there is a scarcity of a report to compile the recent data in the literature for better analysis and comparison by the policymakers. To achieve this paucity in knowledge, the current study aims at collecting data on the available degradation strategies, mechanisms involved in biodegradable and non-biodegradable routes, the main factor affecting degradation strategies, compile novel detection techniques of tetracycline antibiotics in the environment, discuss antibiotic resistance genes and their potential role in degradation. Finally, limitations in the current bioremediation techniques and the future prospects are discussed with pointers for the decision-makers for a safer environment.
Collapse
|
18
|
Synthesis of Ag Loaded ZnO/BiOCl with High Photocatalytic Performance for the Removal of Antibiotic Pollutants. CRYSTALS 2021. [DOI: 10.3390/cryst11080981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ag@ZnO/BiOCl composites were successfully prepared by in situ precipitation and hydrothermal synthesis and used for the photocatalytic degradation of tetracycline hydrochloride antibiotics. An enhanced photodegradation efficiency was detected after loading Ag nanoparticles, which is attributed to the surface plasmon resonance effect. The optimized sample containing 4% Ag showed 80.4% degradation efficiency in 80 min, which is 2.1 and 1.9 times higher than those of ZnO and ZnO/BiOCl, respectively. The major degrading species involved in the photocatalytic process were detected to be super oxide anions and holes. Based on the obtained results, a possible charge transfer and degradation mechanism has been proposed. This study shows that Ag@ZnO/BiOCl catalyst has a good potential for photodegradation of organic pollutants in water.
Collapse
|
19
|
Liu SY, Ru J, Liu F. NiP/CuO composites: Electroless plating synthesis, antibiotic photodegradation and antibacterial properties. CHEMOSPHERE 2021; 267:129220. [PMID: 33316618 DOI: 10.1016/j.chemosphere.2020.129220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
This work reports a simple method to prepare nickel-phosphorus (Ni-P) alloy modified CuO (Ni-P/CuO) composite, which shows excellent performance in terms of photodegradation antibiotics, particularly regarding the antibacterial properties. The Ni-P/CuO composites were prepared via two steps. The first step was to produce CuO by the hydrothermal method and the second step was to grow Ni-P in-situ on the surface of CuO through electroless plating. After loading of Ni-P, the photocatalytic activity of CuO for the decomposition of antibiotics is significantly increased under visible light irradiation. The photocatalytic activity of Ni-P/CuO with 4 wt% Ni-P loading is 25 times higher than that of CuO. Compared with CuO, the antibacterial activity of Ni-P/CuO with 4 wt% Ni-P loading against Escherichia coli is strongly increased. Based on the photoluminescence and photocurrent measurements of CuO and Ni-P/CuO, Ni-P cocatalyst improves the separation and transfer of the photogenerated charge in CuO, and enhances the photocatalytic activity of antibacterial performance. This work reveals that using Ni-P as the cocatalyst can strengthen the photocatalytic performance of CuO, which has great application potential in water purification and antibacterial treatments.
Collapse
Affiliation(s)
- Shu-Yuan Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China.
| | - Jiling Ru
- Department of Medicament, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110024, China
| | - Fanzhe Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| |
Collapse
|
20
|
Khan I, Luo M, Guo L, Khan S, Wang C, Khan A, Saeed M, Zaman S, Qi K, Liu QL. Enhanced visible-light photoactivities of porous LaFeO 3 by synchronously doping Ni 2+ and coupling TS-1 for CO 2 reduction and 2,4,6-trinitrophenol degradation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01112j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
TOC showing the enhanced visible-light photoactivities of porous LaFeO3 by synchronously doping with Ni2+ and coupling with TS-1 for CO2 reduction and 2,4,6-trinitrophenol degradation.
Collapse
Affiliation(s)
- Iltaf Khan
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
- Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Mingsheng Luo
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
- Beijing Key Laboratory of Clean Fuels and Efficient Catalytic Emission Reduction Technology, Beijing 102617, China
- Beijing Academy of Safety Engineering and Technology, 19 Qing-Yuan North Road, Daxing District, Beijing, 102617, China
| | - Lin Guo
- School of Chemistry and Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
| | - Shoaib Khan
- Department of Horticulture, Jiangxi Agricultural University, Nanchang, China
| | - Chunjuan Wang
- College of Agriculture, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Aftab Khan
- College of Agriculture, Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Muhmmad Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Saeed Zaman
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Environmental Science and Engineering Research Center, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Qing long Liu
- School of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
| |
Collapse
|
21
|
Design of 2D–2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04262-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Ghasemi M, Khataee A, Gholami P, Soltani RDC, Hassani A, Orooji Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 267:110629. [PMID: 32349954 DOI: 10.1016/j.jenvman.2020.110629] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The modified multifunctional electrodes for electro-Fenton (EF) process are suggested to be promising cathodes for in situ electro-generation and activation of H2O2 to produce hydroxyl radicals (•OH). However, heterogeneous EF process still faces the challenges of limited catalytic activity and releasing of massive amounts of transition metals to the solution after removal of organic pollutants. The main aim of the present investigation was to prepare a cathode containing carbon nanotubes (CNTs) and CuFe nano-layered double hydroxide (NLDH) for degradation and mineralization of cefazolin antibiotic through electro-Fenton process. Structural and electrochemical analyses demonstrated that CuFeNLDH-CNTs nanocomposite was successfully incorporated on the surface of graphite cathode. Due to the increased formation of •OH in the reactor, the incorporation of CNTs into NLDH matrix with a catalyst loading of 0.1 g substantially improved the degradation efficiency of cefazolin (89.9%) in comparison with CNTs-coated (28.7%) and bare graphite cathode (22.8%) within 100 min. In the presence of 15 mM of ethanol, the degradation efficiency of cefazolin was remarkably decreased to 43.7% by the process, indicating the major role of •OH in the destruction of target molecules. Acidic conditions favored the degradation efficiency of cefazolin by the modified EF process. Mineralization efficiency of the bio-refractory compound was obtained to be 70.1% in terms of chemical oxygen demand (COD) analysis after 300 min. The gas chromatography-mass spectroscopy (GC-MS) analysis was also implemented to identify the intermediate byproducts generated during the degradation of cefazolin in the CuFeNLDH-CNTs/EF reactor.
Collapse
Affiliation(s)
- Masoumeh Ghasemi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Peyman Gholami
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki 00014, Finland
| | - Reza Darvishi Cheshmeh Soltani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, 38196-93345, Arak, Iran
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|