1
|
Danso Ofori A, Su W, Zheng T, Datsomor O, Titriku JK, Xiang X, Kandhro AG, Ahmed MI, Mawuli EW, Awuah RT, Zheng A. Jasmonic Acid (JA) Signaling Pathway in Rice Defense Against Chilo suppressalis Infestation. RICE (NEW YORK, N.Y.) 2025; 18:7. [PMID: 39964588 PMCID: PMC11836255 DOI: 10.1186/s12284-025-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Jasmonic acid (JA) signaling plays a crucial role in rice defense against the striped stem borer, Chilo suppressalis, a notorious pest causing significant yield losses. This review explores the current understanding of JA-mediated defense mechanisms in rice, focusing on the molecular basis, regulatory elements, and practical implications for pest management. JA biosynthesis and signaling pathways are induced upon C. suppressalis infestation, leading to the activation of various defense responses. These include upregulation of JA-responsive genes involved in the production of proteinase inhibitors, volatile organic compounds, and other defensive compounds. The review also discusses the crosstalk between JA and other hormonal pathways, such as salicylic acid and ethylene, in fine-tuning defense responses. Structural modifications in rice plants, such as cell wall reinforcement and accumulation of secondary metabolites, have been highlighted as key components of JA-mediated defense against C. suppressalis. Furthermore, the practical applications of this knowledge in breeding insect-resistant rice varieties and developing sustainable pest management strategies were explored. Future research directions are proposed to further elucidate the complexities of JA signaling in rice-insect interactions and harness this knowledge to enhance crop protection.
Collapse
Affiliation(s)
- Andrews Danso Ofori
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Su
- Renshou County Agricultural and Rural Bureau, Meishan, 620500, China
| | - Tengda Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Osmond Datsomor
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - John Kwame Titriku
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xing Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Abdul Ghani Kandhro
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Muhammad Irfan Ahmed
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Edzesi Wisdom Mawuli
- Biotechnology Unit, Plant Improvement and Productivity Division, Council for Scientific and Industrial Research, Fumesua, Kumasi, Ghana.
| | - Richard Tuyee Awuah
- Crop and Soil Science Department, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana.
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Department of Plant Pathology, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Wang B, Huang D, Cao C, Gong Y. Insect α-Amylases and Their Application in Pest Management. Molecules 2023; 28:7888. [PMID: 38067617 PMCID: PMC10708458 DOI: 10.3390/molecules28237888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Amylase is an indispensable hydrolase in insect growth and development. Its varied enzymatic parameters cause insects to have strong stress resistance. Amylase gene replication is a very common phenomenon in insects, and different copies of amylase genes enable changes in its location and function. In addition, the classification, structure, and interaction between insect amylase inhibitors and amylases have also invoked the attention of researchers. Some plant-derived amylase inhibitors have inhibitory activities against insect amylases and even mammalian amylases. In recent years, an increasing number of studies have clarified the effects of pesticides on the amylase activity of target and non-target pests, which provides a theoretical basis for exploring safe and efficient pesticides, while the exact lethal mechanisms and safety in field applications remain unclear. Here, we summarize the most recent advances in insect amylase studies, including its sequence and characteristics and the regulation of amylase inhibitors (α-AIs). Importantly, the application of amylases as the nanocide trigger, RNAi, or other kinds of pesticide targets will be discussed. A comprehensive foundation will be provided for applying insect amylases to the development of new-generation insect management tools and improving the specificity, stability, and safety of pesticides.
Collapse
Affiliation(s)
| | | | - Chunxia Cao
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| | - Yan Gong
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (B.W.)
| |
Collapse
|
3
|
Møller MS, Svensson B. Structure, Function and Protein Engineering of Cereal-Type Inhibitors Acting on Amylolytic Enzymes. Front Mol Biosci 2022; 9:868568. [PMID: 35402513 PMCID: PMC8990303 DOI: 10.3389/fmolb.2022.868568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous plants, including cereals, contain seed proteins able to inhibit amylolytic enzymes. Some of these inhibitors, the CM-proteins (soluble in chloroform:methanol mixtures)—also referred to as cereal-type inhibitors (CTIs)—are the topic of this review. CM-proteins were first reported 75 years ago. They are small sulfur-rich proteins of the prolamine superfamily embracing bifunctional α-amylase/trypsin inhibitors (ATIs), α-amylase inhibitors (AIs), limit dextrinase inhibitors (LDIs), and serine protease inhibitors. Phylogenetically CM-proteins are predicted across poaceae genomes and many isoforms are identified in seed proteomes. Their allergenicity and hence adverse effect on humans were recognized early on, as were their roles in plant defense. Generally, CTIs target exogenous digestive enzymes from insects and mammals. Notably, by contrast LDI regulates activity of the endogenous starch debranching enzyme, limit dextrinase, during cereal seed germination. CM-proteins are four-helix bundle proteins and form enzyme complexes adopting extraordinarily versatile binding modes involving the N-terminal and different loop regions. A number of these inhibitors have been characterized in detail and here focus will be on target enzyme specificity, molecular recognition, forces and mechanisms of binding as well as on three-dimensional structures of CM-protein–enzyme complexes. Lastly, prospects for CM-protein exploitation, rational engineering and biotechnological applications will be discussed.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Reddy KKA, Jayashree M, Govindu PCV, Gowd KH. Ligand-induced transition in conformations of vicinal cysteine disulfides in proteins. Proteins 2020; 89:599-613. [PMID: 33378101 DOI: 10.1002/prot.26039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/04/2020] [Accepted: 12/12/2020] [Indexed: 01/02/2023]
Abstract
Vicinal cysteine disulfides are thought to be associated with specific conformations of cysteine disulfides due to the restricted rotation of single bonds in an eight-membered cyclic disulfide loop. Conformations of vicinal cysteine disulfides are analyzed using χ1 , χ2 , χ3 , χ2 ', χ1 ' torsion angles in the crystal structures of proteins retrieved from Protein Data Bank (PDB). 85% of vicinal disulfides have (+, -)LHStaple conformation with trans configuration of the peptide bond and 9% have (-, -)RHStaple conformation with cis configured peptide bond. Conformational analysis of dipeptide Cys-Cys vicinal disulfide by density functional theory (DFT) further supported (+, -)LHStaple, (-, -)RHStaple, and (+, +)RHStaple as the preferred conformations of vicinal disulfides. Interestingly, the rare conformations of vicinal disulfides are observed in the ligand-bound forms of proteins and have higher disulfide strain energy. Conformations of vicinal disulfides in palmitoyl protein thioesterase 1, AChBP, and α7 nicotinic receptor are changed from preferred (+, -)LHStaple to rare (+, -)AntiLHHook/(+, -)AntiRHHook/(+, +)RHStaple conformation due to binding of ligands. Surprisingly, ligands are proximal to the vicinal disulfides in protein complexes that exhibited rare conformations of vicinal disulfides. The report has identified (+, -) LHStaple/(-, -) RHStaple as the hallmark conformations of vicinal disulfides and unraveled ligand-induced transition in conformations of vicinal cysteine disulfides in proteins.
Collapse
Affiliation(s)
- K Kasi Amarnath Reddy
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, India
| | - Muddagoni Jayashree
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, India
| | - Panchada Ch V Govindu
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, India
| |
Collapse
|
5
|
Catalytic and antimicrobial properties of α-amylase immobilised on the surface of metal oxide nanoparticles. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01921-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractNew methods of obtaining products containing enzymes reduce the costs associated with obtaining them, increase the efficiency of processes and stabilize the created biocatalytic systems. In the study a catalytic system containing the enzyme α-amylase immobilized on ZnO nanoparticle and Fe3O4 nanoparticles was created. The efficiency of the processes was obtained with variables: concentrations of enzymes, temperatures and times, to define the best conditions for running the process, for which were determined equilibrium and kinetics of adsorption. The most effective parameters of α-amylase immobilization on metal oxides were determined, obtaining 100.8 mg/g sorption capacity for ZnO and 102.9 mg/g for Fe3O4 nanoparticles. Base on the best parameters, ZnO-α-amylase was investigated as an antimicrobial agent and Fe3O4-α-amylase was tested as a catalyst in the process of starch hydrolysis. As a result of the conducted experiments, it was found that α-amylase immobilized on Fe3O4 nanoparticles maintained high catalytic activity (the reaction rate constant KM = 0.7799 [g/dm3] and the maximum reaction rate Vmax = 8.660 [g/(dm3min)]).
Collapse
|