1
|
Zhang H, Sun H, Huang S, Lan J, Li H, Yue H. Biomass-Derived Carbon Materials for Electrochemical Sensing: Recent Advances and Future Perspectives. Crit Rev Anal Chem 2024:1-26. [PMID: 39331419 DOI: 10.1080/10408347.2024.2401504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
In recent years, biomass carbon materials have received widespread attention in the field of electrochemical sensors. As a new type of renewable green energy, biomass carbon has the advantages of low cost and abundant resources. After special treatment, it can be used as an ideal electrode material. Since biomass carbon materials have diverse sources and their morphology is difficult to control, researchers have conducted in-depth research on their preparation process, morphology regulation and application. This review summarizes different biomass carbon structures and their preparation methods and explores the applications of these materials in electrochemical sensors. Modification of biomass carbon materials through pretreatment, physical and chemical activation, heteroatom doping, metal compound composite and other methods can make up for the deficiencies in its pore structure, electrical conductivity and surface wettability, thereby improving its electrochemical performance. The effects of different biomass sources, functional groups, constituent elements and modification methods on the morphology, structure and electrochemical properties of biomass carbon materials are discussed, and the applications of this type of material in biological molecules, heavy metal ions and pesticide residues are reviewed. Biomass carbon-based materials show great application potential and development prospects in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Haopeng Zhang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Huaze Sun
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Shuo Huang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jingming Lan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Haiyang Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| | - Hongyan Yue
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, People's Republic of China
| |
Collapse
|
2
|
Younas R, Jubeen F, Bano N, Andreescu S, Zhang H, Hayat A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol Bioeng 2024; 121:2017-2049. [PMID: 38665008 DOI: 10.1002/bit.28718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024]
Abstract
Porous organic frameworks (POFs) represent a significant subclass of nanoporous materials in the field of materials science, offering exceptional characteristics for advanced applications. Covalent organic frameworks (COFs), as a novel and intriguing type of porous material, have garnered considerable attention due to their unique design capabilities, diverse nature, and wide-ranging applications. The unique structural features of COFs, such as high surface area, tuneable pore size, and chemical stability, render them highly attractive for various applications, including targeted and controlled drug release, as well as improving the sensitivity and selectivity of electrochemical biosensors. Therefore, it is crucial to comprehend the methods employed in creating COFs with specific properties that can be effectively utilized in biomedical applications. To address this indispensable fact, this review paper commences with a concise summary of the different methods and classifications utilized in synthesizing COFs. Second, it highlights the recent advancements in COFs for drug delivery, including drug carriers as well as the classification of drug delivery systems and biosensing, encompassing drugs, biomacromolecules, small biomolecules and the detection of biomarkers. While exploring the potential of COFs in the biomedical field, it is important to acknowledge the limitations that researchers may encounter, which could impact the practicality of their applications. Third, this paper concludes with a thought-provoking discussion that thoroughly addresses the challenges and opportunities associated with leveraging COFs for biomedical applications. This review paper aims to contribute to the scientific community's understanding of the immense potential of COFs in improving drug delivery systems and enhancing the performance of biosensors in biomedical applications.
Collapse
Affiliation(s)
- Rida Younas
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Govt College Women University, Faisalabad, Pakistan
| | - Nargis Bano
- Department of Physics and Astronomy College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Hongxia Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
| | - Akhtar Hayat
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Shandong, China
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore, Punjab, Pakistan
| |
Collapse
|
3
|
Zhu H, Li M, Cheng C, Han Y, Fu S, Li R, Cao G, Liu M, Cui C, Liu J, Yang X. Recent Advances in and Applications of Electrochemical Sensors Based on Covalent Organic Frameworks for Food Safety Analysis. Foods 2023; 12:4274. [PMID: 38231710 DOI: 10.3390/foods12234274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
The international community has been paying close attention to the issue of food safety as a matter of public health. The presence of a wide range of contaminants in food poses a significant threat to human health, making it vital to develop detection methods for monitoring these chemical contaminants. Electrochemical sensors using emerging materials have been widely employed to detect food-derived contaminants. Covalent organic frameworks (COFs) have the potential for extensive applications due to their unique structure, high surface area, and tunable pore sizes. The review summarizes and explores recent advances in electrochemical sensors modified with COFs for detecting pesticides, antibiotics, heavy metal ions, and other food contaminants. Furthermore, future challenges and possible solutions will be discussed regarding food safety analysis using COFs.
Collapse
Affiliation(s)
- Hongwei Zhu
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Minjie Li
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- Internal Trade Food Science Research Institute Co., Ltd., Beijing 102209, China
| | - Cuilin Cheng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Han
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruiling Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | | | | | - Can Cui
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
| | - Jia Liu
- Beijing Key Laboratory of Nutrition & Health and Food Safety, Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition and Health Research Institute Co., Ltd., Beijing 102209, China
- Internal Trade Food Science Research Institute Co., Ltd., Beijing 102209, China
- COFCO Corporation, Beijing 100020, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Xue R, Liu YS, Huang SL, Yang GY. Recent Progress of Covalent Organic Frameworks Applied in Electrochemical Sensors. ACS Sens 2023; 8:2124-2148. [PMID: 37276465 DOI: 10.1021/acssensors.3c00269] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As an emerging porous crystalline organic material, the covalent organic frameworks (COFs) are given more and more attention in many fields, such as gas storage and separation, catalysis, energy storage and conversion, luminescent devices, drug delivery, pollutant adsorption and removal, analysis and detection due to their special advantages of high crystallinity, flexible designability, controllable porosities and topologies, intrinsic chemical and thermal stability. In recent years, the COFs are applied in analytical chemistry, for instance, chromatography, solid-phase microextraction, luminescent and colorimetric sensing, surface-enhanced Raman scattering and electroanalytical chemistry. The COFs decorated electrodes show high performance for detecting trace substances with remarkable selectivity and sensitivity, such as heavy metal ions, glucose, hydrogen peroxide, drugs, antibiotics, explosives, phenolic compounds, pesticides, disease metabolites and so on. This review mainly summarized the application of COF based electrochemical sensor according to different target analytes.
Collapse
Affiliation(s)
- Rui Xue
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yin-Sheng Liu
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Lab of Eco-Environments Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
5
|
Lu Z, Wang Y, Li G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. BIOSENSORS 2023; 13:291. [PMID: 36832057 PMCID: PMC9954712 DOI: 10.3390/bios13020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Food safety is a key issue in promoting human health and sustaining life. Food analysis is essential to prevent food components or contaminants causing foodborne-related illnesses to consumers. Electrochemical sensors have become a desirable method for food safety analysis due to their simple, accurate and rapid response. The low sensitivity and poor selectivity of electrochemical sensors working in complex food sample matrices can be overcome by coupling them with covalent organic frameworks (COFs). COFs are a kind of novel porous organic polymer formed by light elements, such as C, H, N and B, via covalent bonds. This review focuses on the recent progress in COF-based electrochemical sensors for food safety analysis. Firstly, the synthesis methods of COFs are summarized. Then, a discussion of the strategies is given to improve the electrochemistry performance of COFs. There follows a summary of the recently developed COF-based electrochemical sensors for the determination of food contaminants, including bisphenols, antibiotics, pesticides, heavy metal ions, fungal toxin and bacterium. Finally, the challenges and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhenyu Lu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). SENSORS 2022; 22:s22134758. [PMID: 35808255 PMCID: PMC9268951 DOI: 10.3390/s22134758] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Covalent organic frameworks (COFs) are defined as crystalline organic polymers with programmable topological architectures using properly predesigned building blocks precursors. Since the development of the first COF in 2005, many works are emerging using this kind of material for different applications, such as the development of electrochemical sensors and biosensors. COF shows superb characteristics, such as tuneable pore size and structure, permanent porosity, high surface area, thermal stability, and low density. Apart from these special properties, COF’s electrochemical behaviour can be modulated using electroactive building blocks. Furthermore, the great variety of functional groups that can be inserted in their structures makes them interesting materials to be conjugated with biological recognition elements, such as antibodies, enzymes, DNA probe, aptamer, etc. Moreover, the possibility of linking them with other special nanomaterials opens a wide range of possibilities to develop new electrochemical sensors and biosensors.
Collapse
|
7
|
Lin X, Mei Y, He C, Luo Y, Yang M, Kuang Y, Ma X, Zhang H, Huang Q. Electrochemical Biosensing Interface Based on Carbon Dots-Fe 3O 4 Nanomaterial for the Determination of Escherichia coli O157:H7. Front Chem 2021; 9:769648. [PMID: 34869216 PMCID: PMC8640100 DOI: 10.3389/fchem.2021.769648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli (E. coli) O157:H7 can cause many food safety incidents, which seriously affect human health and economic development. Therefore, the sensitive, accurate, and rapid determination of E. coli O157:H7 is of great significance for preventing the outbreak and spread of foodborne diseases. In this study, a carbon dots-Fe3O4 nanomaterial (CDs-Fe3O4)-based sensitive electrochemical biosensor for E. coli O157:H7 detection was developed. The CDs have good electrical conductivity, and the surface of carbon dots contains abundant carboxyl groups, which can be used to immobilize probe DNA. Meanwhile, the CDs can be used as a reducing agent to prepare CDs-Fe3O4 nanomaterial. The Fe3O4 nanomaterial can improve the performance of the electrochemical biosensor; it also can realize the recovery of CDs-Fe3O4 due to its magnetism. As expected, the electrochemical biosensor has excellent specificity of E. coli O157:H7 among other bacteria. The electrochemical biosensor also exhibited good performance for detecting E. coli O157:H7 with the detection range of 10-108 CFU/ml, and the detection limit of this electrochemical biosensor was 6.88 CFU/ml (3S/N). Furthermore, this electrochemical biosensor was successfully used for monitoring E. coli O157:H7 in milk and water samples, indicating that this electrochemical biosensor has good application prospect. More importantly, this research can provide a new idea for the detection of other bacteria and viruses.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Yanqiu Mei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Chen He
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Min Yang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Ying Kuang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| | - Xiaoming Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, China
| | - Huifang Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, China
| | - Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Oil-tea in Medical Health Care and Functional Product Development Engineering Research Center in Jiangxi, School of Public Health and Health Management, School of Pharmacy, School of Medical and Information Engineering, The Science Research Center, Gannan Medical University, Ganzhou, China
| |
Collapse
|
8
|
Liu L, Huang L, Yu D, Zhang G, Dong S. FeS 2 nanoparticles decorated carbonized Luffa cylindrica as biofilm substrates for fabricating high performance biosensors. Talanta 2021; 232:122416. [PMID: 34074404 DOI: 10.1016/j.talanta.2021.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 11/29/2022]
Abstract
A high-performance microbial biosensor was fabricated with a reasonably designed biofilm substrate, where the aerogel of carbonized Luffa cylindrica (LC) was used as the scaffold for loading biofilm and FeS2 nanoparticles (FeS2NPs) were employed to modify this aerogel (FeS2NPs/GelLC). The fabricated FeS2NPs/GelLC exhibited a spring-like structure similar with that of the raw LC, which facilitated the linkage of the scaffold and promoted its mechanical strength, and further prolonged the service period of the as-prepared biosensor from few days to two months. Meanwhile, the introduced FeS2NPs improved the microbial electron transfer of the biofilm and causing an increase in the sensor's signals from 155.0 ± 2.6 to 352.0 ± 17.1 nA and a decrease in the detection limit from 0.95 to 0.38 mg O L-1 (S/N = 3) for the detection of glucose-glutamic acid (GGA). More important, the FeS2NPs had been demonstrated to have the capability for modulating a persistent shift of the microbial community with organic pollutant biodegradability. Compared with the GelLC, the FeS2NPs/GelLC exhibited a promising performance for measuring the synthetic sewage and real water samples in BOD assay and an increasing inhibition-ratio for detecting 3,5-dichlorophenol (DCP) in toxicity assay. Based on the vast resource and renewability of LC, this work pave a new avenue for developing high-performance microbial biosensors that are expected to be the engineering production.
Collapse
Affiliation(s)
- Ling Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Dengbin Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, PR China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guangxin Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, The High-tech North District, 4888 Sheng Bei Street, Changchun, 130102, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of the Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|