1
|
Ibarra-Gutiérrez JG, Segura-Quezada LA, Hernández-Velázquez ED, García-Dueñas AK, Millán-Cortés JA, Mondragón-Hernández K, Miranda-Navarrete LK, Valtierra-Camarena EM, Yebra-Rivera SY, Alférez-Carmona OE, Ávalos-Otero OE, Chávez-Rivera R, de León-Solís C, Ortíz-Alvarado R, Solorio-Alvarado CR. Iodine(III)-Containing Reagents in Photo-Assisted and Photo-Catalyzed Organic Synthesis. Molecules 2025; 30:784. [PMID: 40005096 PMCID: PMC11858466 DOI: 10.3390/molecules30040784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Iodine(III) reagents have become a highly relevant tool in organic synthesis due to their great versatility as strong but green oxidants. Several transformations involving cyclizations as well as functionalization of different organic cores have been broadly described and reviewed. Herein, the participation of these reagents in photochemical transformations exclusively by direct irradition or in photoredox cycles using some transition metals, will be briefly described as well as some plausible further transformations that potentially can be developed.
Collapse
Affiliation(s)
- Jaime G. Ibarra-Gutiérrez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Luis A. Segura-Quezada
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Edson D. Hernández-Velázquez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Ana K. García-Dueñas
- Instituto de Ciencias Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Universidad S/N, Morelia 58000, Mich., Mexico;
| | - José A. Millán-Cortés
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Kevin Mondragón-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Luz K. Miranda-Navarrete
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Evelyn M. Valtierra-Camarena
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Steffi Y. Yebra-Rivera
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Omar E. Alférez-Carmona
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Oliver E. Ávalos-Otero
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| | - Rubén Chávez-Rivera
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, col. Matamoros, Morelia 58240, Mich., Mexico;
| | - Claudia de León-Solís
- Escuela de Estudios de Postgrado, Facultad de Ingeniería, Universidad e San Carlos de Guatemala, Guatemala 01012, Guatemala
| | - Rafael Ortíz-Alvarado
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, col. Matamoros, Morelia 58240, Mich., Mexico;
| | - César R. Solorio-Alvarado
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Guanajuato, Noria Alta S/N, Guanajuato 36050, Gto., Mexico; (J.G.I.-G.); (L.A.S.-Q.); (E.D.H.-V.); (J.A.M.-C.); (K.M.-H.); (L.K.M.-N.); (E.M.V.-C.); (S.Y.Y.-R.); (O.E.A.-C.); (O.E.Á.-O.)
| |
Collapse
|
2
|
Mamgain R, Sakthivel K, Singh FV. Recent advances in transition-metal-free arylation reactions involving hypervalent iodine salts. Beilstein J Org Chem 2024; 20:2891-2920. [PMID: 39559439 PMCID: PMC11572100 DOI: 10.3762/bjoc.20.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Diaryliodonium salts have become widely recognized as arylating agents in the last two decades. Both, symmetrical and unsymmetrical forms of these salts serve as effective electrophilic arylating reagents in various organic syntheses. The use of diaryliodoniums in C-C and carbon-heteroatom bond formations, particularly under metal-free conditions, has further enhanced the popularity of these reagents. In this review, we concentrate on various arylation reactions involving carbon and other heteroatoms, encompassing rearrangement reactions in the absence of any metal catalyst, and summarize advancements made in the last five years.
Collapse
Affiliation(s)
- Ritu Mamgain
- Department of Chemistry, SAS, Vellore Institute of Technology Chennai, Chennai-600 127, Tamil Nadu, India
| | - Kokila Sakthivel
- Department of Chemistry, SAS, Vellore Institute of Technology Chennai, Chennai-600 127, Tamil Nadu, India
| | - Fateh V Singh
- Department of Chemistry, SAS, Vellore Institute of Technology Chennai, Chennai-600 127, Tamil Nadu, India
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Pan Y, Wang L, Shi Y, Huang G, Bu X, Yang X, Zhao Z. Base-Mediated Visible-Light-Driven C-H Arylation of Quinoxalin-2(1 H)-Ones in Ethanol. J Org Chem 2024; 89:14217-14227. [PMID: 39324442 DOI: 10.1021/acs.joc.4c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Prior methods for visible-light-driven C-H arylation of quinoxalin-2(1H)-ones relied on external photocatalysts. Herein, we report a photocatalyst-free approach for this arylation. In this approach, β-dicarbonyl iodonium ylides, combined with t-BuOK in ethanol, act as aryl precursors, forming electron donor-acceptor (EDA) complexes. These complexes enhance light absorption, facilitating efficient single electron transfer and aryl radical formation. Consequently, various quinoxalin-2(1H)-ones undergo precise and efficient arylation without external photocatalysts. This protocol exhibits excellent tolerance toward diverse functional groups, with mild reaction conditions and eco-friendly solvents, revealing a high Ecoscale value.
Collapse
Affiliation(s)
- Yitong Pan
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Yunhong Shi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Guoqing Huang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
5
|
Upadhyaya K, Dubbu S. Advancing carbohydrate functionality: The role of hypervalent iodine. Carbohydr Res 2024; 542:109175. [PMID: 38865797 DOI: 10.1016/j.carres.2024.109175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Hypervalent iodine reagents have undergone significant development and widespread application in the functionalization of carbohydrates. This is primarily attributed to their exceptional properties, including mildness, ease of handling, high selectivity, environmental friendliness, and stability. This review aims to emphasize the utilization of hypervalent iodine compounds in the functionalization of carbohydrates. The present article covers various aspects, including glycal functionalization, C-H or N-H insertion reactions, O-arylations, C-2 deoxy-2-iodo glycoconjugates, iminosugars, and C3-oxo-glycals, achieved through the use of hypervalent iodine reagents/catalysts. Additionally, it explores hypervalent iodine-mediated bioactive 1,3,5-trioxocane synthesis followed by rare sugars synthesis.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sateesh Dubbu
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
6
|
Jia H, Li N, Tang C, Ni W, Zhao X, Sun J, Wu F, Shen X, Zhai H. α-Acyloxylation of Ketones/Cyclic Ethers Mediated by Hypervalent Iodine(III) Reagents as Oxidants and Nucleophilic Sources. J Org Chem 2024; 89:2055-2063. [PMID: 38207340 DOI: 10.1021/acs.joc.3c02526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
This study describes a catalyst-free α-acyloxylation of ketones and a KBr-mediated α-acyloxylation of cyclic ethers. These conversions are effectively mediated by hypervalent iodine(III) reagents serving dual roles as the oxidant and nucleophilic source. Consequently, esters are produced directly in moderate to excellent yields. The proposed method features good functional group compatibility, a broad substrate scope, and high synthetic efficiency and is remarkably environmentally friendly.
Collapse
Affiliation(s)
- Hao Jia
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Nan Li
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Chunmei Tang
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Wenjing Ni
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Xinru Zhao
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Jing Sun
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Fufang Wu
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Xiaobao Shen
- Biomass Oligosaccharides Engineering Technology Research Center of Anhui Province, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang 236037, China
| | - Hongbin Zhai
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| |
Collapse
|
7
|
Shetgaonkar SE, Jothish S, Dohi T, Singh FV. Iodine(V)-Based Oxidants in Oxidation Reactions. Molecules 2023; 28:5250. [PMID: 37446912 DOI: 10.3390/molecules28135250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The chemistry of hypervalent iodine reagents has now become quite valuable due to the reactivity of these compounds under mild reaction conditions and their resemblance in chemical properties to transition metals. The environmentally friendly nature of these reagents makes them suitable for Green Chemistry. Reagents with a dual nature, such as iodine(III) reagents, are capable electrophiles, while iodine(V) reagents are known for their strong oxidant behavior. Various iodine(V) reagents including IBX and DMP have been used as oxidants in organic synthesis either in stoichiometric or in catalytic amounts. In this review article, we describe various oxidation reactions induced by iodine(V) reagents reported in the past decade.
Collapse
Affiliation(s)
- Samata E Shetgaonkar
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Subhiksha Jothish
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-0058, Shiga, Japan
| | - Fateh V Singh
- Chemistry Division, School of Advanced Sciences (SAS), Vellore Institute of Technology, Chennai 600127, Tamil Nadu, India
| |
Collapse
|
8
|
Orvoš J, Pančík F, Fischer R. Facile One‐Step Oxidation of
N
‐Boc‐Protected Diarylhydrazines to Diaryldiazenes with (Diacetoxyiodo)benzene under Mild Conditions. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Jakub Orvoš
- Institute of Organic Chemistry Catalysis and Petrochemistry Slovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic
| | - Filip Pančík
- Institute of Chemistry Slovak Academy of Sciences Dúbravská cesta 9 845 38 Bratislava Slovak Republic
| | - Róbert Fischer
- Institute of Organic Chemistry Catalysis and Petrochemistry Slovak University of Technology in Bratislava Radlinského 9 812 37 Bratislava Slovak Republic
| |
Collapse
|
9
|
Sarkar A, Saha M, Das AR, Banerjee A, Majumder R, Bandyopadhyay D. Hypervalent iodine mediated Pd(II)‐catalyzed
ortho
‐C(
sp
2
−H) functionalization of azoles deciphering Hantzsch ester and malononitrile as the functional group surrogates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anindita Sarkar
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Moumita Saha
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Asish R. Das
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Adrita Banerjee
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | - Romit Majumder
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | | |
Collapse
|
10
|
Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Progress in organocatalysis with hypervalent iodine catalysts. Chem Soc Rev 2022; 51:8102-8139. [PMID: 36063409 DOI: 10.1039/d2cs00206j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine compounds as environmentally friendly and relatively inexpensive reagents have properties similar to transition metals. They are employed as alternatives to transition metal catalysts in organic synthesis as mild, nontoxic, selective and recyclable catalytic reagents. Formation of C-N, C-O, C-S, C-F and C-C bonds can be seamlessly accomplished by hypervalent iodine catalysed oxidative functionalisations. The aim of this review is to highlight recent developments in the utilisation of iodine(III) and iodine(V) catalysts in the synthesis of a wide range of organic compounds including chiral catalysts for stereoselective synthesis. Polymer-, magnetic nanoparticle- and metal organic framework-supported hypervalent iodine catalysts are also described.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Samata E Shetgaonkar
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Manjula Krishnan
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
11
|
Tabaru K, Obora Y. Synergic Palladium Catalysis for Aerobic Oxidative Coupling. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuki Tabaru
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| | - Yasushi Obora
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| |
Collapse
|
12
|
Shetgaonkar SE, Raju A, China H, Takenaga N, Dohi T, Singh FV. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents. Front Chem 2022; 10:909250. [PMID: 35844643 PMCID: PMC9283985 DOI: 10.3389/fchem.2022.909250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Transition metal-catalyzed direct oxidative coupling reactions via C–H bond activation have emerged as a straightforward strategy for the construction of complex molecules in organic synthesis. The direct transformation of C–H bonds into carbon–carbon and carbon–heteroatom bonds renders the requirement of prefunctionalization of starting materials and, therefore, represents a more efficient alternative to the traditional cross-coupling reactions. The key to the unprecedented progress made in this area has been the identification of an appropriate oxidant that facilitates oxidation and provides heteroatom ligands at the metal center. In this context, hypervalent iodine compounds have evolved as mainstream reagents particularly because of their excellent oxidizing nature, high electrophilicity, and versatile reactivity. They are environmentally benign reagents, stable, non-toxic, and relatively cheaper than inorganic oxidants. For many years, palladium catalysis has dominated these oxidative coupling reactions, but eventually, other transition metal catalysts such as gold, copper, platinum, iron, etc. were found to be promising alternate catalysts for facilitating such reactions. This review article critically summarizes the recent developments in non-palladium-catalyzed oxidative coupling reactions mediated by hypervalent iodine (III) reagents with significant emphasis on understanding the mechanistic aspects in detail.
Collapse
Affiliation(s)
| | - Aleena Raju
- Chemistry Division, School of Advanced Science, VIT University, Chennai, India
| | - Hideyasu China
- Department of Medical Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | | | - Toshifumi Dohi
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
- *Correspondence: Toshifumi Dohi, ; Fateh V. Singh,
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Science, VIT University, Chennai, India
- *Correspondence: Toshifumi Dohi, ; Fateh V. Singh,
| |
Collapse
|
13
|
Palladium-Catalyzed Organic Reactions Involving Hypervalent Iodine Reagents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123900. [PMID: 35745020 PMCID: PMC9230104 DOI: 10.3390/molecules27123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 01/13/2023]
Abstract
The chemistry of polyvalent iodine compounds has piqued the interest of researchers due to their role as important and flexible reagents in synthetic organic chemistry, resulting in a broad variety of useful organic molecules. These chemicals have potential uses in various functionalization procedures due to their non-toxic and environmentally friendly properties. As they are also strong electrophiles and potent oxidizing agents, the use of hypervalent iodine reagents in palladium-catalyzed transformations has received a lot of attention in recent years. Extensive research has been conducted on the subject of C—H bond functionalization by Pd catalysis with hypervalent iodine reagents as oxidants. Furthermore, the iodine(III) reagent is now often used as an arylating agent in Pd-catalyzed C—H arylation or Heck-type cross-coupling processes. In this article, the recent advances in palladium-catalyzed oxidative cross-coupling reactions employing hypervalent iodine reagents are reviewed in detail.
Collapse
|
14
|
Soni R, Sihag M, Rani N, Kinger M, Aneja DK. Aqueous Mediated Reactions Involving Hypervalent Iodine Reagents. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rinku Soni
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Monika Sihag
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Neha Rani
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Mayank Kinger
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Deepak Kumar Aneja
- Department of Chemistry Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| |
Collapse
|
15
|
Niu Y, Cao CK, Ge C, Qu H, Chen C. The Pd-catalyzed synthesis of difluoroethyl and difluorovinyl compounds with a chlorodifluoroethyl iodonium salt (CDFI). CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ivanov DM, Bokach NA, Yu Kukushkin V, Frontera A. Metal Centers as Nucleophiles: Oxymoron of Halogen Bond-Involving Crystal Engineering. Chemistry 2021; 28:e202103173. [PMID: 34623005 PMCID: PMC9298210 DOI: 10.1002/chem.202103173] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
This review highlights recent studies discovering unconventional halogen bonding (HaB) that involves positively charged metal centers. These centers provide their filled d‐orbitals for HaB, and thus behave as nucleophilic components toward the noncovalent interaction. This role of some electron‐rich transition metal centers can be considered an oxymoron in the sense that the metal is, in most cases, formally cationic; consequently, its electron donor function is unexpected. The importance of Ha⋅⋅⋅d‐[M] (Ha=halogen; M is Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au)) interactions in crystal engineering is emphasized by showing remarkable examples (reported and uncovered by our processing of the Cambridge Structural Database), where this Ha⋅⋅⋅d‐[M] directional interaction guides the formation of solid supramolecular assemblies of different dimensionalities.
Collapse
Affiliation(s)
- Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul, 656049, Russian Federation
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain
| |
Collapse
|
17
|
Abdolalian P, Tizhoush SK, Farshadfar K, Ariafard A. The role of hypervalent iodine(iii) reagents in promoting alkoxylation of unactivated C(sp 3)-H bonds catalyzed by palladium(ii) complexes. Chem Sci 2021; 12:7185-7195. [PMID: 34123345 PMCID: PMC8153247 DOI: 10.1039/d1sc01230d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Although Pd(OAc)2-catalysed alkoxylation of the C(sp3)-H bonds mediated by hypervalent iodine(iii) reagents (ArIX2) has been developed by several prominent researchers, there is no clear mechanism yet for such crucial transformations. In this study, we shed light on this important issue with the aid of the density functional theory (DFT) calculations for alkoxylation of butyramide derivatives. We found that the previously proposed mechanism in the literature is not consistent with the experimental observations and thus cannot be operating. The calculations allowed us to discover an unprecedented mechanism composed of four main steps as follows: (i) activation of the C(sp3)-H bond, (ii) oxidative addition, (iii) reductive elimination and (iv) regeneration of the active catalyst. After completion of step (i) via the CMD mechanism, the oxidative addition commences with an X ligand transfer from the iodine(iii) reagent (ArIX2) to Pd(ii) to form a square pyramidal complex in which an iodonium occupies the apical position. Interestingly, a simple isomerization of the resultant five-coordinate complex triggers the Pd(ii) oxidation. Accordingly, the movement of the ligand trans to the Pd-C(sp3) bond to the apical position promotes the electron transfer from Pd(ii) to iodine(iii), resulting in the reduction of iodine(iii) concomitant with the ejection of the second X ligand as a free anion. The ensuing Pd(iv) complex then undergoes the C-O reductive elimination by nucleophilic attack of the solvent (alcohol) on the sp3 carbon via an outer-sphere SN2 mechanism assisted by the X- anion. Noteworthy, starting from the five coordinate complex, the oxidative addition and reductive elimination processes occur with a very low activation barrier (ΔG ‡ 0-6 kcal mol-1). The strong coordination of the alkoxylated product to the Pd(ii) centre causes the regeneration of the active catalyst, i.e. step (iv), to be considerably endergonic, leading to subsequent catalytic cycles to proceed with a much higher activation barrier than the first cycle. We also found that although, in most cases, the alkoxylation reactions proceed via a Pd(ii)-Pd(iv)-Pd(ii) catalytic cycle, the other alternative in which the oxidation state of the Pd(ii) centre remains unchanged during the catalysis could be operative, depending on the nature of the organic substrate.
Collapse
Affiliation(s)
- Payam Abdolalian
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Samaneh K Tizhoush
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University Central Tehran Branch, Poonak Tehran 1469669191 Iran
- School of Natural Sciences - Chemistry, University of Tasmania Private Bag 75 Hobart TAS 7001 Australia
| |
Collapse
|
18
|
Abstract
The focus article discusses the innovation of hypervalent(iii) iodine regarding skeletal rearrangement, cycloaddition and cyclization, and sp3 C–H functionalization in natural product synthesis.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology
- School of Medicine
- Shenzhen
- People's Republic of China
| |
Collapse
|