1
|
Ren M, Liu D, Qin F, Chen X, Ma W, Tian R, Weng T, Wang D, Astruc D, Liang L. Single-molecule resolution of macromolecules with nanopore devices. Adv Colloid Interface Sci 2025; 338:103417. [PMID: 39889505 DOI: 10.1016/j.cis.2025.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Nanopore-based electrical detection technology holds single-molecule resolution and combines the advantages of high sensitivity, high throughput, rapid analysis, and label-free detection. It is widely applied in the determination of organic and biological macromolecules, small molecules, and nanomaterials, as well as in nucleic acid and protein sequencing. There are a wide variety of organic polymers and biopolymers, and their chemical structures, and conformation in solution directly affect their ensemble properties. Currently, there is limited approach available for the analysis of single-molecule conformation and self-assembled topologies of polymers, dendrimers and biopolymers. Nanopore single-molecule platform offers unique advantages over other sensing technologies, particularly in molecular size differentiation of macromolecules and complex conformation analysis. In this review, the classification of nanopore devices, including solid-state nanopores (SSNs), biological nanopores, and hybrid nanopores is introduced. The recent developments and applications of nanopore devices are summarized, with a focus on the applications of nanopore platform in the resolution of the structures of synthetic polymer, including dendritic, star-shaped, block copolymers, as well as biopolymers, including polysaccharides, nucleic acids and proteins. The future prospects of nanopore sensing technique are ultimately discussed.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China; Chongqing Jiaotong University, Chongqing 400014, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Xun Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Wenhao Ma
- Chongqing University, Chongqing 400044, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Ting Weng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Deqang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Didier Astruc
- University of Bordeaux, ISM UMR CNRS 5255, 33405 Talence Cedex, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China.
| |
Collapse
|
2
|
Chudzińska-Skorupinska J, Wawrzyńczak A, Feliczak-Guzik A. Carbohydrate-based polymer nanocarriers for environmentally friendly applications. Adv Colloid Interface Sci 2025; 338:103415. [PMID: 39884112 DOI: 10.1016/j.cis.2025.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Effective delivery of active substances and drugs is an important part of treatment. In order for a drug to work at the right place in the body, it must be transported there in the right way. For this reason, new carriers are being sought for active substances and drugs that can effectively deliver drugs to the target site without causing additional side effects. These include nanoparticles, microneedles, cubosomes and nanogels, among others. Recently, carriers based on biodegradable polymers such as hyaluronic acid or chitosan are becoming popular. In addition, modern carriers are designed to release the active ingredient in response to a specific agent. This paper reviews the literature from the past 5 years on novel delivery systems with medical, agricultural, food and cosmetic applications, with a special emphasis on the use of carbohydrate-based nanocarriers.
Collapse
Affiliation(s)
| | - Agata Wawrzyńczak
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
3
|
Dai L, Li J, Zhang J, Li X, Liu T, Yu Q, Tao S, Zhou M, Hou H. Development and mechanistic study of phosphate tailings based soil heavy metal prophylactic agents with encapsulated structure for lead stabilization and phosphorus speciation in soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123578. [PMID: 39672046 DOI: 10.1016/j.jenvman.2024.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
The development of materials for the remediation of the environment from solid waste represents an effective utilization strategy. This study presents a novel phosphorus-based slow-release soil agent (SLPs) developed through acid activation of phosphorus tailings. SLPs aim to improve soil properties by gradually releasing phosphorus (P), reducing Pb mobility, and preventing heavy metal contamination. SLPs were synthesized by forming an encapsulated structure via calcification of sodium alginate with calcium (Ca2⁺) and magnesium (Mg2⁺) from the tailings, achieving controlled P release. In soil, SLPs increased P content from 0.23 mg/g to 2.53 mg/g and soil organic matter (SOM) from 8.6 g/kg to 40.19 g/kg, significantly enhancing humic acid, fulvic acid, and organic phosphorus (OP) levels. ESP treatment also shifted the soil P pool, increasing apatite inorganic phosphate (AP) from 0.04 mg/g to 0.16 mg/g, non-apatite inorganic phosphate (NAIP) from 0.12 mg/g to 1.48 mg/g, and OP from 0.05 mg/g to 0.67 mg/g, with OP reaching a peak proportion of 28.55%, up from 23.48% in controls. Correlation analysis and microbial pathway data indicate that OP and microbial communities contribute to Pb stabilization in ESP-treated soil, raising soil Pb stabilization capacity from 7.6 to 8.4 mg/g to 36.2 mg/g. This study highlights a sustainable path for phosphorus tailing use, providing theoretical support for SLP development and emphasizing the role of OP in Pb stabilization.
Collapse
Affiliation(s)
- Luming Dai
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jiahao Li
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing, 526200, Guangdong, China.
| | - Jiaxing Zhang
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xuli Li
- School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Tong Liu
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qinqin Yu
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shaoyang Tao
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Min Zhou
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan, 430072, Hubei, China; Wuhan University (Zhaoqing) Institute of Resources and Environmental Technology, Zhaoqing, 526200, Guangdong, China.
| |
Collapse
|
4
|
Khalaf MM, Gouda M, Abou Taleb MF, Heakal FET, Abd El-Lateef HM. Fabrication of smart nanogel based on carrageenan and green coffee extract as a long-term antifouling agent to improve biofilm prevention in food production. Food Chem 2024; 461:140719. [PMID: 39146677 DOI: 10.1016/j.foodchem.2024.140719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
This study investigates the extract of the bioactive compounds from green coffee extract (GCE) and the loading of two different concentrations of GCE (1% and 2%) onto carrageenan nanogels (CAR NGs) to compare their antibacterial and antibiofilm effects with unloaded nanogels (NGs). The bioactive compounds of GCE were characterized using GC-MS analysis. The GCE1 and GCE2 were successfully deposited onto the surface of CAR NGs. The antibacterial and antibiofilm potential of prepared NGs were conducted against some foodborne pathogens (E. coli O157, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes). The results of GC-MS analysis indicated that there were identified 16 bioactive compounds in GCE, including caffeine (36.27%), Dodemorph (9.04%), and D-Glycero-d-ido-heptose (2.44%), contributing to its antimicrobial properties. The antibacterial coatings demonstrated a notable antimicrobial effect, showing zone of inhibition (ZOI) diameters of up to 37 mm for GCE2 loaded CAR NGs. The minimum inhibitory concentration (MIC) values for GCE2 loaded CAR NGs were 80 ppm for E. coli O157, and 120 ppm for S. enterica, S. aureus, and L. monocytogenes, achieving complete bacterial inactivation within 10-15 min of exposure. Both GCE1 and GCE2 loaded CAR NGs significantly reduced biofilm cell densities on stainless steel (SS) materials for E. coli O157, S. enterica, S. aureus, and L. monocytogenes, with reductions ranging from 60% to 95%. Specifically, biofilm densities were reduced by up to 95% for E. coli O157, 89% for S. enterica, 85% for S. aureus, and 80% for L. monocytogenes. Results of the toxicity evaluation indicated that the NGs were non-toxic and biocompatible, with predicted EC50 values proved their biocompatibility and safety. These results recommended that GCE loaded CAR NGs are promising as natural antimicrobial agents for enhancing food safety and extending shelf life. Further, the study concluded that incorporating GCE into CAR NGs is an effective strategy for developing sustainable antimicrobial coatings for the food industry and manufacturing.
Collapse
Affiliation(s)
- Mai M Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt.
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
5
|
Cottet C, Fernández-García M, Peltzer MA. Evaluation of Different Concentrations of Antimicrobial Quaternary Polymers on the Behavior of Gelatin- and Starch-Based Films. Polymers (Basel) 2024; 16:3168. [PMID: 39599259 PMCID: PMC11597982 DOI: 10.3390/polym16223168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Nowadays, incorporating quaternary ammonium groups into polymers is one of the most promising strategies for preparing antimicrobial biomaterials for general applications. The main objective of this work was to evaluate the effect of different concentrations of antimicrobial quaternary polymers in gelatin- and starch-based films for the development of active materials intended for applications in food packaging and medical fields. Two antimicrobial biobased polymers, called MeFPIAx (MeFPIA1 and MeFPIA2), were previously synthesized through the radical polymerization of itaconic acid (IA), followed by their subsequent functionalization and modification. Both polymers were incorporated into a new blend of gelatin and starch (15% w/w, 4:1 mass ratio), using glycerol (30% w/w) as a plasticizer. Films were prepared using the casting technique from aqueous dispersions of the polymers and their structure was characterized by Fourier Transform Infrared Spectroscopy with Attenuated Total Reflectance (FTIR-ATR). The findings of this study showed the addition of MeFPIAx had a significant effect (p < 0.05), resulting in films with higher tensile strength (TS) and a higher Young's modulus (YM), with values close to 20 MPa and exceeding 250 MPa, respectively. On the other hand, elongation at break (EB) values lower than 80% were obtained. Additionally, the swelling was reduced from ~400% to 100% and a reduction in water vapor permeability (Pw) was observed, thanks to the increased interaction between the polymeric chains. Differential scanning calorimetry (DSC) scans showed that the addition of MeFPIAx increased the glass transition temperatures (Tg) from 29 °C to 65 °C. Furthermore, thermogravimetry analysis (TGA) indicated an increase in the initial degradation temperatures, suggesting that the films were more thermally resistant. Finally, the films exhibited slight antioxidant activity but significant antimicrobial activity, achieving bacterial reduction values greater than 70% with the incorporation of MeFPIAx polymers against Gram-positive Staphylococcus aureus.
Collapse
Affiliation(s)
- Celeste Cottet
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Buenos Aires B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - M. Fernández-García
- Institute of Polymer Science and Technology, Superior Council of Scientific Investigations (ICTP-CSIC), 28006 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, SUSPLAST, CSIC, 28006 Madrid, Spain
| | - M. A. Peltzer
- Laboratory of Obtention, Modification, Characterization and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Buenos Aires B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
6
|
Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González-Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. Towards realizing nano-enabled precision delivery in plants. NATURE NANOTECHNOLOGY 2024; 19:1255-1269. [PMID: 38844663 DOI: 10.1038/s41565-024-01667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 09/18/2024]
Abstract
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Juan Pablo Giraldo
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA
| | | | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Ristroph
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Gerald J Wang
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christine O Hendren
- Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | | | - Adam Caparco
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Khara D Grieger
- Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Su-Ji Jeon
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | | - Hagay Kohay
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vivek Kumar
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Swadeshmukul Santra
- Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Robert D Tilton
- Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason C White
- The Connecticut Agricultural Research Station, New Haven, CT, USA
| |
Collapse
|
7
|
Sapna, Sharma C, Pathak P, Yadav SP, Gautam S. Potential of emerging “all-natural” edible coatings to prevent post-harvest losses of vegetables and fruits for sustainable agriculture. PROGRESS IN ORGANIC COATINGS 2024; 193:108537. [DOI: 10.1016/j.porgcoat.2024.108537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Nguyen HN, Tran PT, Le NAT, Nguyen QH, Bui DD. Synthesis of Nano Sulfur/Chitosan-Copper Complex and Its Nematicidal Effect against Meloidogyne incognita In Vitro and on Coffee Pots. THE PLANT PATHOLOGY JOURNAL 2024; 40:261-271. [PMID: 38835297 PMCID: PMC11162862 DOI: 10.5423/ppj.oa.10.2023.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/16/2024] [Accepted: 03/16/2024] [Indexed: 06/06/2024]
Abstract
Sulfur is one of the inorganic elements used by plants to develop and produce phytoalexin to resist certain diseases. This study reported a method for preparing a material for plant disease resistance. Sulfur nanoparticles (SNPs) stabilized in the chitosan-Cu2+ (CS-Cu2+) complex were synthesized by hydrolysis of Na2S2O3 in an acidic medium. The obtained SNPs/CS-Cu2+ complex consisting of 0.32% S, 4% CS, and 0.7% Cu (w/v), contained SNPs with an average size of ~28 nm as measured by transmission electron microscopy images. The X-ray diffraction pattern of the SNPs/CSCu2+ complex showed that SNPs had orthorhombic crystal structures. Interaction between SNPs and the CS-Cu2+ complex was also investigated by ultraviolet-visible. Results in vitro nematicidal effect of materials against Meloidogyne incognita showed that SNPs/CS-Cu2+ complex was more effective in killing second-stage juveniles (J2) nematodes and inhibiting egg hatching than that of CS and CS-Cu2+ complex. The values of LC50 in killing J2 nematodes and EC50 in inhibiting egg hatching of SNPs/CS-Cu2+ complex were 75 and 51 mg/l, respectively. These values were lower than those of CS and the CS-Cu2+ complex. The test results on the nematicidal effect against M. incognita on coffee pots showed that the SNPs/CS-Cu2+ complex was 100% effective at a concentration of 150 mg/l. Therefore, the SNPs/CS-Cu2+ complex could be considered as a biochemical material with potential for agricultural applications to control root-knot nematodes.
Collapse
Affiliation(s)
- Hong Nhung Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Phuoc Tho Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | - Nghiem Anh Tuan Le
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| | | | - Duy Du Bui
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
9
|
Eldadamony NM, Ghoniem AA, Al-Askar AA, Attia AA, El-Hersh MS, Elattar KM, Alrdahi H, Saber WIA. Optimization of pullulan production by Aureobasidium pullulans using semi-solid-state fermentation and artificial neural networks: Characterization and antibacterial activity of pullulan impregnated with Ag-TiO 2 nanocomposite. Int J Biol Macromol 2024; 269:132109. [PMID: 38714281 DOI: 10.1016/j.ijbiomac.2024.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
This study presents a novel and efficient approach for pullulan production using artificial neural networks (ANNs) to optimize semi-solid-state fermentation (S-SSF) on faba bean biomass (FBB). This method achieved a record-breaking pullulan yield of 36.81 mg/g within 10.82 days, significantly exceeding previous results. Furthermore, the study goes beyond yield optimization by characterizing the purified pullulan, revealing its unique properties including thermal stability, amorphous structure, and antioxidant activity. Energy-dispersive X-ray spectroscopy and scanning electron microscopy confirmed its chemical composition and distinct morphology. This research introduces a groundbreaking combination of ANNs and comprehensive characterization, paving the way for sustainable and cost-effective pullulan production on FBB under S-SSF conditions. Additionally, the study demonstrates the successful integration of pullulan with Ag@TiO2 nanoparticles during synthesis using Fusarium oxysporum. This novel approach significantly enhances the stability and efficacy of the nanoparticles by modifying their surface properties, leading to remarkably improved antibacterial activity against various human pathogens. These findings showcase the low-cost production medium, and extensive potential of pullulan not only for its intrinsic properties but also for its ability to significantly improve the performance of nanomaterials. This breakthrough opens doors to diverse applications in various fields.
Collapse
Affiliation(s)
- Noha M Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abdulaziz A Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Attia A Attia
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Mohammed S El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura 35516, Egypt.
| | - Haifa Alrdahi
- School of Computer Science, Faculty of Science and Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
| | - WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt.
| |
Collapse
|
10
|
Satchanska G, Davidova S, Petrov PD. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers (Basel) 2024; 16:1159. [PMID: 38675078 PMCID: PMC11055061 DOI: 10.3390/polym16081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Natural and synthetic polymers are a versatile platform for developing biomaterials in the biomedical and environmental fields. Natural polymers are organic compounds that are found in nature. The most common natural polymers include polysaccharides, such as alginate, hyaluronic acid, and starch, proteins, e.g., collagen, silk, and fibrin, and bacterial polyesters. Natural polymers have already been applied in numerous sectors, such as carriers for drug delivery, tissue engineering, stem cell morphogenesis, wound healing, regenerative medicine, food packaging, etc. Various synthetic polymers, including poly(lactic acid), poly(acrylic acid), poly(vinyl alcohol), polyethylene glycol, etc., are biocompatible and biodegradable; therefore, they are studied and applied in controlled drug release systems, nano-carriers, tissue engineering, dispersion of bacterial biofilms, gene delivery systems, bio-ink in 3D-printing, textiles in medicine, agriculture, heavy metals removal, and food packaging. In the following review, recent advancements in polymer chemistry, which enable the imparting of specific biomedical functions of polymers, will be discussed in detail, including antiviral, anticancer, and antimicrobial activities. This work contains the authors' experimental contributions to biomedical and environmental polymer applications. This review is a vast overview of natural and synthetic polymers used in biomedical and environmental fields, polymer synthesis, and isolation methods, critically assessessing their advantages, limitations, and prospects.
Collapse
Affiliation(s)
- Galina Satchanska
- BioLaboratory, Department of Natural Sciences, New Bulgarian University, Montevideo Str. 21, 1618 Sofia, Bulgaria;
| | - Slavena Davidova
- BioLaboratory, Department of Natural Sciences, New Bulgarian University, Montevideo Str. 21, 1618 Sofia, Bulgaria;
| | - Petar D. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev Str., Bl.103A, 1113 Sofia, Bulgaria;
| |
Collapse
|
11
|
Wasyłeczko M, Wojciechowski C, Chwojnowski A. Polyethersulfone Polymer for Biomedical Applications and Biotechnology. Int J Mol Sci 2024; 25:4233. [PMID: 38673817 PMCID: PMC11049998 DOI: 10.3390/ijms25084233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Polymers stand out as promising materials extensively employed in biomedicine and biotechnology. Their versatile applications owe much to the field of tissue engineering, which seamlessly integrates materials engineering with medical science. In medicine, biomaterials serve as prototypes for organ development and as implants or scaffolds to facilitate body regeneration. With the growing demand for innovative solutions, synthetic and hybrid polymer materials, such as polyethersulfone, are gaining traction. This article offers a concise characterization of polyethersulfone followed by an exploration of its diverse applications in medical and biotechnological realms. It concludes by summarizing the significant roles of polyethersulfone in advancing both medicine and biotechnology, as outlined in the accompanying table.
Collapse
Affiliation(s)
- Monika Wasyłeczko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ksiecia Trojdena 4, 02-109 Warsaw, Poland; (C.W.); (A.C.)
| | | | | |
Collapse
|
12
|
Dhanapal A, Thiruvengadam M, Vairavanathan J, Venkidasamy B, Easwaran M, Ghorbanpour M. Nanotechnology Approaches for the Remediation of Agricultural Polluted Soils. ACS OMEGA 2024; 9:13522-13533. [PMID: 38559935 PMCID: PMC10975622 DOI: 10.1021/acsomega.3c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution.
Collapse
Affiliation(s)
- Anand
Raj Dhanapal
- Chemistry
and Bioprospecting Division, Institute of Forest Genetics and Tree
Breeding (IFGTB), Forest Campus, Indian
Council of Forestry Research and Education (ICFRE), Coimbatore 641 002, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department
of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic
of Korea
- Center
for Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Jayavarshini Vairavanathan
- Department
of Biotechnology, Karpagam Academy of Higher
Education, Coimbatore 641 021, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department
of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals,
Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil
Nadu, India
| | - Maheswaran Easwaran
- Department
of Research Analytics, Saveetha Dental College and Hospitals, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Mansour Ghorbanpour
- Department
of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
- Institute
of Nanoscience and Nanotechnology, Arak
University, Arak 38156-8-8349, Iran
| |
Collapse
|
13
|
Saberi Riseh R, Hassanisaadi M, Vatankhah M, Varma RS, Thakur VK. Nano/Micro-Structural Supramolecular Biopolymers: Innovative Networks with the Boundless Potential in Sustainable Agriculture. NANO-MICRO LETTERS 2024; 16:147. [PMID: 38457088 PMCID: PMC10923760 DOI: 10.1007/s40820-024-01348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/09/2024] [Indexed: 03/09/2024]
Abstract
Sustainable agriculture plays a crucial role in meeting the growing global demand for food while minimizing adverse environmental impacts from the overuse of synthetic pesticides and conventional fertilizers. In this context, renewable biopolymers being more sustainable offer a viable solution to improve agricultural sustainability and production. Nano/micro-structural supramolecular biopolymers are among these innovative biopolymers that are much sought after for their unique features. These biomaterials have complex hierarchical structures, great stability, adjustable mechanical strength, stimuli-responsiveness, and self-healing attributes. Functional molecules may be added to their flexible structure, for enabling novel agricultural uses. This overview scrutinizes how nano/micro-structural supramolecular biopolymers may radically alter farming practices and solve lingering problems in agricultural sector namely improve agricultural production, soil health, and resource efficiency. Controlled bioactive ingredient released from biopolymers allows the tailored administration of agrochemicals, bioactive agents, and biostimulators as they enhance nutrient absorption, moisture retention, and root growth. Nano/micro-structural supramolecular biopolymers may protect crops by appending antimicrobials and biosensing entities while their eco-friendliness supports sustainable agriculture. Despite their potential, further studies are warranted to understand and optimize their usage in agricultural domain. This effort seeks to bridge the knowledge gap by investigating their applications, challenges, and future prospects in the agricultural sector. Through experimental investigations and theoretical modeling, this overview aims to provide valuable insights into the practical implementation and optimization of supramolecular biopolymers in sustainable agriculture, ultimately contributing to the development of innovative and eco-friendly solutions to enhance agricultural productivity while minimizing environmental impact.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran.
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural Collage (SRUC), Edinburgh, EH9 3JG, UK.
| |
Collapse
|
14
|
Xiong Q, Liang W, Shang W, Xie Z, Cheng J, Yu B, Fang Y, Sun L, Zhao J. Bidirectional Uptake, Transfer, and Transport of Dextran-Based Nanoparticles in Plants for Multidimensional Enhancement of Pesticide Utilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305693. [PMID: 37828638 DOI: 10.1002/smll.202305693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Indexed: 10/14/2023]
Abstract
The development of effective multifunctional nano-delivery approaches for pesticide absorption remains a challenge. Here, a dextran-based pesticide delivery system (MBD) is constructed to deliver tebuconazole for multidimensionally enhancing its effective utilization on tomato plants. Spherical MBD nanoparticles are obtained through two-step esterification of dextran, followed by tebuconazole loading using the Michael addition reaction. Confocal laser scanning microscopy shows that fluorescein isothiocyanate-labeled MBD nanoparticles can be bidirectionally transported in tomato plants and a modified quick, easy, cheap, effective, rugged, and safe-HPLC approach demonstrates the capacity to carry tebuconazole to plant tissues after 24 h of root uptake and foliar spray, respectively. Additionally, MBD nanoparticles could increase the retention of tebuconazole on tomato leaves by up to nearly 2.1 times compared with the tebuconazole technical material by measuring the tebuconazole content retained on the leaves. In vitro antifungal and pot experiments show that MBD nanoparticles improve the inhibitory effect of tebuconazole against botrytis cinerea by 58.4% and the protection against tomato gray molds by 74.9% compared with commercial suspensions. Furthermore, the MBD nanoparticles do not affect the healthy growth of tomato plants. These results underline the potential for the delivery system to provide a strategy for multidimensional enhancement of pesticide efficacy.
Collapse
Affiliation(s)
- Qiuyu Xiong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenlong Liang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenxuan Shang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhengang Xie
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jingli Cheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bin Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yun Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Li Sun
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, P. R. China
| | - Jinhao Zhao
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
15
|
Panja A, Paul S, Jha P, Ghosh S, Prasad R. Waste and their polysaccharides: Are they worth bioprocessing? BIORESOURCE TECHNOLOGY REPORTS 2023; 24:101594. [DOI: 10.1016/j.biteb.2023.101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Shakoor Shar A, Wang N, Chen T, Zhao X, Weng Y. Development of PLA/Lignin Bio-Composites Compatibilized by Ethylene Glycol Diglycidyl Ether and Poly (ethylene glycol) Diglycidyl Ether. Polymers (Basel) 2023; 15:4049. [PMID: 37896293 PMCID: PMC10610451 DOI: 10.3390/polym15204049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Poly (lactic acid) (PLA) is a promising green substitute for conventional petroleum-based plastics in a variety of applications. However, the wide application of PLA is still limited by its disadvantages, such as slow crystallization rate, inadequate gas barrier, thermal degradation, etc. In this study, lignin (1, 3, 5 PHR) was incorporated into PLA to improve the thermal, mechanical, and barrier properties of PLA. Two low-viscosity epoxy resins, ethylene glycol diglycidyl ether (EGDE) and poly (ethylene glycol) diglycidyl ether (PEGDE), were used as compatibilizers to enhance the performance of the composites. The addition of lignin improved the onset degradation temperature of PLA by up to 15 °C, increased PLA crystallinity, improved PLA tensile strength by approximately 15%, and improved PLA oxygen barrier by up to 58.3%. The addition of EGDE and PEGDE both decreased the glass transition, crystallization, and melting temperatures of the PLA/lignin composites, suggesting their compatabilizing and plasticizing effects, which contributed to improved oxygen barrier properties of the PLA/lignin composites. The developed PLA/lignin composites with improved thermal, mechanical, and gas barrier properties can potentially be used for green packaging applications.
Collapse
Affiliation(s)
- Abdul Shakoor Shar
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (A.S.S.); (N.W.); (T.C.)
| | - Ningning Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (A.S.S.); (N.W.); (T.C.)
| | - Tianyu Chen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (A.S.S.); (N.W.); (T.C.)
| | - Xiaoying Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (A.S.S.); (N.W.); (T.C.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (A.S.S.); (N.W.); (T.C.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing 100048, China
| |
Collapse
|
17
|
Ghiorghita CA, Lazar MM, Ghimici L, Dinu MV. Self-Assembled Chitosan/Dialdehyde Carboxymethyl Cellulose Hydrogels: Preparation and Application in the Removal of Complex Fungicide Formulations from Aqueous Media. Polymers (Basel) 2023; 15:3496. [PMID: 37688121 PMCID: PMC10490195 DOI: 10.3390/polym15173496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Environmental contamination with pesticides occurs at a global scale as a result of prolonged usage and, therefore, their removal by low-cost and environmentally friendly systems is actively demanded. In this context, our study was directed to investigate the feasibility of using some self-assembled hydrogels, comprising chitosan (CS) and carboxymethylcellulose (CMC) or dialdehyde (DA)-CMC, for the removal of four complex fungicide formulations, namely Melody Compact (MC), Dithane (Dt), Curzate Manox (CM), and Cabrio®Top (CT). Porous CS/CMC and CS/DA-CMC hydrogels were prepared as discs by combining the semi-dissolution acidification sol-gel transition method with a freeze-drying approach. The obtained CS/CMC and CS/DA-CMC hydrogels were characterized by gel fraction yield, FTIR, SEM, swelling kinetics, and uniaxial compression tests. The batch-sorption studies indicated that the fungicides' removal efficiency (RE%) by the CS/CMC hydrogels was increased significantly with increasing sorbent doses reaching 94%, 93%, 66% and 48% for MC, Dt, CM and CT, respectively, at 0.2 g sorbent dose. The RE values were higher for the hydrogels prepared using DA-CMC than for those prepared using non-oxidized CMC when initial fungicide concentrations of 300 mg/L or 400 mg/L were used. Our results indicated that CS/DA-CMC hydrogels could be promising biosorbents for mitigating pesticide contamination of aqueous environments.
Collapse
Affiliation(s)
| | | | | | - Maria Valentina Dinu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41 A, 700487 Iasi, Romania; (C.-A.G.); (M.M.L.); (L.G.)
| |
Collapse
|
18
|
Wypij M, Rai M, Zemljič LF, Bračič M, Hribernik S, Golińska P. Pullulan-based films impregnated with silver nanoparticles from the Fusarium culmorum strain JTW1 for potential applications in the food industry and medicine. Front Bioeng Biotechnol 2023; 11:1241739. [PMID: 37609118 PMCID: PMC10441246 DOI: 10.3389/fbioe.2023.1241739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection-Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods. Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes. Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications.
Collapse
Affiliation(s)
- Magdalena Wypij
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
- Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, India
| | | | - Matej Bračič
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Silvo Hribernik
- Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
19
|
Trzcińska-Wencel J, Wypij M, Rai M, Golińska P. Biogenic nanosilver bearing antimicrobial and antibiofilm activities and its potential for application in agriculture and industry. Front Microbiol 2023; 14:1125685. [PMID: 36891391 PMCID: PMC9986290 DOI: 10.3389/fmicb.2023.1125685] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Due to the increasing resistance of bacteria and fungi to antimicrobials, it is necessary to search for effective alternatives to prevent and treat pathogens causing diseases in humans, animals, and plants. In this context, the mycosynthesized silver nanoparticles (AgNPs) are considered as a potential tool to combat such pathogenic microorganisms. Methods AgNPs were synthesized from Fusarium culmorum strain JTW1 and characterized by Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Nanoparticle Tracking Analysis (NTA), Dynamic Light Scattering (DLS) and Zeta potential measurement. The minimum inhibitory (MIC) and biocidal concentrations (MBC) were determined against 13 bacterial strains. Moreover, the combined effect of AgNPs with antibiotics (streptomycin, kanamycin, ampicillin, tetracycline) was also studied by determining the Fractional Inhibitory Concentration (FIC) index. The anti-biofilm activity was examined by crystal violet and fluorescein diacetate (FDA) assays. Furthermore, antifungal activity of AgNPs was evaluated against a panel of phytopathogenic fungi viz., Botrytis, Colletotrichum, Fusarium, Phoma, Sclerotinia, and an oomycete pathogen Phytophthora by agar well-diffusion and micro-broth dilution method to evaluate the minimal AgNPs concentrations that inhibit fungal spore germination. Results Fungi-mediated synthesis resulted in the formation of small (15.56 ± 9.22 nm), spherical and stable (zeta potential of - 38.43 mV) AgNPs with good crystallinity. The results of FTIR spectroscopy indicated the presence of various functional groups, namely hydroxyl, amino, and carboxyl ones, from the biomolecules on the surface of AgNPs. The AgNPs showed antimicrobial and antibiofilm formation activities against Gram-positive and Gram-negative bacteria. The values of MIC and MBC ranged between 16-64 and 32-512 μg mL-1, respectively. The enhanced effect of AgNPs in combination with antibiotics was confirmed against human pathogens. The highest synergistic effect (FIC = 0.0625) was demonstrated by the combination of AgNPs with streptomycin against two strains of Escherichia coli (ATCC 25922 and ATCC 8739), followed by Klebsiella pneumoniae and Pseudomonas aeruginosa (FIC = 0.125). Enhanced effects of AgNPs with ampicillin were also shown against Staphylococcus aureus ATCC 25923 (FIC = 0.125) and P. aeruginosa (FIC = 0.25), as well as kanamycin against S. aureus ATCC 6538 (FIC = 0.25). The crystal violet assay revealed that the lowest concentration of AgNPs (0.125 μg mL-1) reduced the development of biofilms of Listeria monocytogenes and Salmonella enterica, while the maximum resistance was shown by Salmonella infantis, its biofilm was reduced after exposure to a concentration of 512 μg mL-1. A high inhibitory effect on the activity of bacterial hydrolases was observed by the FDA assay. AgNPs at a concentration of 0.125 μg mL-1 reduced the hydrolytic activity of all biofilms formed by the tested pathogens, except E. coli ATCC 25922, P. aeruginosa, and Pectobacterium carotovorum (efficient concentration was 2-fold higher, at 0.25 μg mL-1), while the hydrolytic activity of E. coli ATCC 8739, Salmonella infantis and S. aureus ATCC 6538 was suppressed after treatment with AgNPs at concentrations of 0.5, 2 and 8 μg mL-1, respectively. Moreover, AgNPs inhibited fungal growth and spore germination of Botrytis cinerea, Phoma lingam, and Sclerotinia sclerotiorum. MIC and MFC values of AgNPs against spores of these fungal strains were determined at 64, 256, and 32 μg mL-1, and zones of growth inhibition were 4.93, 9.54, and 3.41 mm, respectively. Discussion Fusarium culmorum strain JTW1 was found to be an eco-friendly biological system for an easy, efficient and inexpensive synthesis of AgNPs. In our study, the mycosynthesised AgNPs demonstrated remarkable antimicrobial (antibacterial and antifungal) and antibiofilm activities against a wide range of human and plant pathogenic bacteria and fungi singly and in combination with antibiotics. These AgNPs could be applied in medicine, agriculture, and food industry to control such pathogens that cause numerous human diseases and crop losses. However, before using them extensive animal studies are required to evaluate the toxicity, if any.
Collapse
Affiliation(s)
| | - Magdalena Wypij
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Toruń, Poland.,Nanobiotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra, India
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|