1
|
Li H, Du Y, Zhang L, Xu G, Li F, Zhang D, Zhang L. Discovery of Novel SIRT3 Inhibitors for the Cancer Differentiation Therapy by Structural Modification. Drug Dev Res 2024; 85:e70016. [PMID: 39527674 DOI: 10.1002/ddr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Inhibition of SIRT3 triggered differentiation of multiple myeloma (MM) cells. In discovery of potent SIRT3 inhibitors for cancer differentiation therapy, structural modification was performed on the previously developed lead compound S27. A total of 49 compounds divided into two series were designed and synthesized. In the enzyme inhibitory assay, several molecules (A7, A13, B15, and B26) exhibited potent SIRT3 inhibitory activity and selectivity. Significantly, representative compounds, especially A7, promoted differentiation of MM cells from cancer phenotype to normal cells, accompanied by increased expression of antigen CD49e, human immunoglobulin light chain λ-IgLG and κ-IgLG. Additionally, molecule A7 reversed growth factor IL-6 induced MM cell proliferation, improved the antiproliferative activity of Ixazomib and increased the apoptotic rate of MM cells treated with Ixazomib. Collectively, potent SIRT3 inhibitors with MM cell differentiation potency were developed for the cancer therapy used alone or in combination.
Collapse
Affiliation(s)
- Honggang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, China
| | - Yanmei Du
- Taizhou Polytechnic College, Taizhou, Jiangsu, China
| | - Lihui Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, China
| | - Guangzhao Xu
- Harway Pharma Co., LTD, Dongying, Shandong, China
- Weifang Synovtech New Material Technology CO., LTD, Weifang, Shandong, China
| | - Fahui Li
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, China
| | - Lei Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
2
|
Díaz I, Salido S, Nogueras M, Cobo J. Synthesis of Ethyl Pyrimidine-Quinolincarboxylates Selected from Virtual Screening as Enhanced Lactate Dehydrogenase (LDH) Inhibitors. Int J Mol Sci 2024; 25:9744. [PMID: 39273691 PMCID: PMC11396203 DOI: 10.3390/ijms25179744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The inhibition of the hLDHA (human lactate dehydrogenase A) enzyme has been demonstrated to be of great importance in the treatment of cancer and other diseases, such as primary hyperoxalurias. In that regard, we have designed, using virtual docking screening, a novel family of ethyl pyrimidine-quinolinecarboxylate derivatives (13-18)(a-d) as enhanced hLDHA inhibitors. These inhibitors were synthesised through a convergent pathway by coupling the key ethyl 2-aminophenylquinoline-4-carboxylate scaffolds (7-12), which were prepared by Pfitzinger synthesis followed by a further esterification, to the different 4-aryl-2-chloropyrimidines (VIII(a-d)) under microwave irradiation at 150-170 °C in a green solvent. The values obtained from the hLDHA inhibition were in line with the preliminary of the preliminary docking results, the most potent ones being those with U-shaped disposition. Thirteen of them showed IC50 values lower than 5 μM, and for four of them (16a, 18b, 18c and 18d), IC50 ≈ 1 μM. Additionally, all compounds with IC50 < 10 μM were also tested against the hLDHB isoenzyme, resulting in three of them (15c, 15d and 16d) being selective to the A isoform, with their hLDHB IC50 > 100 μM, and the other thirteen behaving as double inhibitors.
Collapse
Affiliation(s)
| | | | | | - Justo Cobo
- Facultad de Ciencias Experimentales, Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, E-23071 Jaén, Spain; (I.D.); (S.S.); (M.N.)
| |
Collapse
|
3
|
Du Y, Wang X, Zhang L, Qin H, Xu G, Li F, Fang C, Li H, Zhang L. Structural modification of 2-phenylquinoline-4-carboxylic acid containing SIRT3 inhibitors for the cancer differentiation therapy. Chem Biol Drug Des 2024; 104:e14595. [PMID: 39085939 DOI: 10.1111/cbdd.14595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Inhibition of SIRT3 exhibited potency in triggering leukemic cell differentiation. In discovery of potent SIRT3 inhibitors for cancer differentiation therapy, structural modification was performed on the previously developed lead compound P6. A total of 33 compounds were designed and synthesized. In the enzyme inhibitory assay, several molecules S18, S26, S27 and T5 showed potent SIRT3 inhibitory activity with IC50 value of 0.53, 1.86, 5.06, and 2.88 μM, respectively. Moreover, the tested compounds exhibited SIRT3 inhibitory selectivity over SIRT1 and SIRT2. Compounds S27 and T5 were potent in inhibition the growth of MM1.S and RPMI-8226 cells in the in vitro antiproliferative test. Significantly, representative compounds, especially S27 and T5, promoted differentiation of tested MM cells in the cellular morphological evaluation, accompanied by increasing the expression of differentiation antigen CD49e and human immunoglobulin light chain lambda and kappa. Additionally, molecule S18 without antiproliferative potency itself, showed significant inhibitory activity against growth factor IL-6 induced RPMI-8226 cell proliferation. Collectively, potent SIRT3 selective inhibitors with MM cell differentiation potency were developed for further discovery of anticancer drugs.
Collapse
Affiliation(s)
- Yanmei Du
- Department of Pharmacology, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaojing Wang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Lihui Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, China
| | - Hongyu Qin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Guangzhao Xu
- Harway Pharma Co., LTD., Dongying, Shandong, China
- Weifang Synovtech New Material Technology Co., LTD., Weifang, Shandong, China
| | - Fahui Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Chunyan Fang
- Department of Pharmacology, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| | - Honggang Li
- Shandong Second Medical University, Weifang, Shandong, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
4
|
Ullah A, Rehman NU, Islam WU, Khan F, Waqas M, Halim SA, Jan A, Muhsinah AB, Khan A, Al-Harrasi A. Identification of small molecular inhibitors of SIRT3 by computational and biochemical approaches a potential target of breast cancer. Sci Rep 2024; 14:12475. [PMID: 38816444 PMCID: PMC11139978 DOI: 10.1038/s41598-024-63177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Sirtuin 3 (SIRT3) belongs to the Sirtuin protein family, which consists of NAD+-dependent lysine deacylase, involved in the regulation of various cellular activities. Dysregulation of SIRT3 activity has been linked to several types of cancer, including breast cancer. Because of its ability to stimulate adaptive metabolic pathways, it can aid in the survival and proliferation of breast cancer cells. Finding new chemical compounds targeted towards SIRT3 was the primary goal of the current investigation. Virtual screening of ~ 800 compounds using molecular docking techniques yielded 8 active hits with favorable binding affinities and poses. Docking studies verified that the final eight compounds formed stable contacts with the catalytic domain of SIRT3. Those compounds have good pharmacokinetic/dynamic properties and gastrointestinal absorption. Based on excellent pharmacokinetic and pharmacodynamic properties, two compounds (MI-44 and MI-217) were subjected to MD simulation. Upon drug interaction, molecular dynamics simulations demonstrate mild alterations in the structure of proteins and stability. Binding free energy calculations revealed that compounds MI-44 (- 45.61 ± 0.064 kcal/mol) and MI-217 (- 41.65 ± 0.089 kcal/mol) showed the maximum energy, suggesting an intense preference for the SIRT3 catalytic site for attachment. The in-vitro MTT assay on breast cancer cell line (MDA-MB-231) and an apoptotic assay for these potential compounds (MI-44/MI-217) was also performed, with flow cytometry to determine the compound's ability to cause apoptosis in breast cancer cells. The percentage of apoptotic cells (including early and late apoptotic cells) increased from 1.94% in control to 79.37% for MI-44 and 85.37% for MI-217 at 15 μM. Apoptotic cell death was effectively induced by these two compounds in a flow cytometry assay indicating them as a good inhibitor of human SIRT3. Based on our findings, MI-44 and MI-217 merit additional investigation as possible breast cancer therapeutics.
Collapse
Affiliation(s)
- Atta Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, PO Box 33, Nizwa, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, PO Box 33, Nizwa, Oman
| | - Waseem Ul Islam
- Department of Pharmacy, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, PO Box 33, Nizwa, Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, PO Box 33, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, PO Box 33, Nizwa, Oman.
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, 61441, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, PO Box 33, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, PO Box 33, Nizwa, Oman.
| |
Collapse
|
5
|
Shen H, Ma W, Hu Y, Liu Y, Song Y, Fu L, Qin Z. Mitochondrial Sirtuins in Cancer: A Revisited Review from Molecular Mechanisms to Therapeutic Strategies. Theranostics 2024; 14:2993-3013. [PMID: 38773972 PMCID: PMC11103492 DOI: 10.7150/thno.97320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
The sirtuin (SIRT) family is well-known as a group of deacetylase enzymes that rely on nicotinamide adenine dinucleotide (NAD+). Among them, mitochondrial SIRTs (SIRT3, SIRT4, and SIRT5) are deacetylases located in mitochondria that regulate the acetylation levels of several key proteins to maintain mitochondrial function and redox homeostasis. Mitochondrial SIRTs are reported to have the Janus role in tumorigenesis, either tumor suppressive or oncogenic functions. Although the multi-faceted roles of mitochondrial SIRTs with tumor-type specificity in tumorigenesis, their critical functions have aroused a rising interest in discovering some small-molecule compounds, including inhibitors and activators for cancer therapy. Herein, we describe the molecular structures of mitochondrial SIRTs, focusing on elucidating their regulatory mechanisms in carcinogenesis, and further discuss the recent advances in developing their targeted small-molecule compounds for cancer therapy. Together, these findings provide a comprehensive understanding of the crucial roles of mitochondrial SIRTs in cancer and potential new therapeutic strategies.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Ma
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yaowen Song
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Breast Surgery, Department of Outpatient, and Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
6
|
Wang X, Zhang L, Wang X, Zhu D, Xu G, Li H, Zhang L. Discovery of (2-(4-Substituted phenyl)quinolin-4-yl)(4-isopropylpiperazin-1-yl)methanone Derivatives as Potent Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors. ChemMedChem 2024; 19:e202300498. [PMID: 38054966 DOI: 10.1002/cmdc.202300498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an increasingly important role in the treatment of hyperlipidemia. In pursuit of potent small molecules that block the PCSK9/low-density lipoprotein receptor (LDLR) protein-protein interaction (PPI), a series of 2-phenylquinoline-4-carboxylic acid derivatives were designed and synthesized based on previously derived molecules. In the in vitro PPI inhibition test, compounds M1, M12, M14, M18 and M27 exhibited potent activities with IC50 values of 6.25 μM, 0.91 μM, 2.81 μM, 4.26 μM and 0.76 μM, respectively, compared with SBC-115337 (IC50 value of 9.24 μM). Molecular docking and molecular dynamics simulations revealed the importance of hydrophobic interactions in the binding of inhibitors to the PPI interface of PCSK9. In LDLR expression and LDL uptake assays, the tested compounds M1, M12 and M14 were found to restore LDLR expression levels and to increase the extracellular LDL uptake capacity of HepG2 cells in the presence of exogenous PCSK9. Collectively, novel small-molecule PCSK9/LDLR PPI inhibitors (especially M12) with in vitro lipid lowering ability, were discovered as lead compounds for further development of hypolipidemic drugs.
Collapse
Affiliation(s)
- Xiaojing Wang
- Department of Medicinal Chemistry School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Xue Wang
- Department of Pharmacology School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Dongqi Zhu
- Department of Pharmacology School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Guangzhao Xu
- Harway Pharma Co., Ltd., Dongying, Shandong, China
- Weifang Synovtech New Material Technology Co., Ltd., Weifang, Shandong, China
| | - Honggang Li
- Weifang Medical University, Weifang, Shandong, China
| | - Lei Zhang
- Department of Medicinal Chemistry School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
7
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|