1
|
Poimanova EY, Kretova EA, Keshek AK, Andreev EV, Nechaev AN, Prusakov KA, Aldarov KG, Basmanov DV, Akhmetova AI, Yaminsky IV, Ponomarenko SA, Zavyalova EG, Agina EV. A universal approach to the fabrication of reusable EGOFET-based aptasensors with track-etched membranes for biorecognition layers. J Mater Chem B 2025; 13:4681-4692. [PMID: 40134360 DOI: 10.1039/d4tb02536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Nowadays, biosensor platforms based on various organic electrolytic transistors are in great demand due to their ability to specifically determine a wide range of biological analytes with extreme sensitivity. The main drawback of such platforms is their disposability at relatively high costs, preventing widespread application. In this work, we elaborate and successfully demonstrate a proof of concept for a universal approach for the fabrication of a reusable EGOFET-based aptasensor using polymer track-etched membranes as cheap disposable elements for biorecognition layers. We defined the most suitable pore size of track-etched membranes, which was enough for the penetration of viral particle and their capture near the current-carrying layer of EGOFET. The sensitivity of the fabricated EGOFET-based aptasensor to influenza A virus was comparable with disposal EGOFET-based biosensors having a biorecognition layer placed directly on the semiconducting layer. The limit of detection of the fabricated device was 8 × 104 VP mL-1, which was superior to those of antibody-based rapid analysis test systems (1 × 106-4 × 108 VP mL-1) but inferior to those of the PCR method (3 × 102-1.2 × 103 VP mL-1). The elaborated approach paves the way for the simple development of universal point-of-care tools consisting of rapid, non-invasive miniaturized sensors for the detection of a wide range of analytes, which are recognizable by aptamers.
Collapse
Affiliation(s)
- Elena Yu Poimanova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
| | - Elena A Kretova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
| | - Anna K Keshek
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
- Chemistry Department, Lomonosov Moscow State University, Leninskiye gory 1/3, 119991 Moscow, Russian Federation
| | - Evgeny V Andreev
- Joint Institute for Nuclear Research, Dubna, Joliot-Curie Str. 6, 14198 Dubna, Russian Federation
| | - Alexander N Nechaev
- Joint Institute for Nuclear Research, Dubna, Joliot-Curie Str. 6, 14198 Dubna, Russian Federation
| | - Kirill A Prusakov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Center of Technologies and Microfabrication, Malaya Pirogovskaya Str. 1A, 119435 Moscow, Russian Federation
| | - Konstantin G Aldarov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Center of Technologies and Microfabrication, Malaya Pirogovskaya Str. 1A, 119435 Moscow, Russian Federation
| | - Dmitriy V Basmanov
- Lopukhin Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Center of Technologies and Microfabrication, Malaya Pirogovskaya Str. 1A, 119435 Moscow, Russian Federation
| | - Assel I Akhmetova
- Physics Department, Lomonosov Moscow State University, Leninskiye gory 1/2, 119991 Moscow, Russian Federation
| | - Igor V Yaminsky
- Physics Department, Lomonosov Moscow State University, Leninskiye gory 1/2, 119991 Moscow, Russian Federation
| | - Sergey A Ponomarenko
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
- Chemistry Department, Lomonosov Moscow State University, Leninskiye gory 1/3, 119991 Moscow, Russian Federation
| | - Elena G Zavyalova
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
- Chemistry Department, Lomonosov Moscow State University, Leninskiye gory 1/3, 119991 Moscow, Russian Federation
| | - Elena V Agina
- Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences, Profsoyuznaya Str. 70, 117393 Moscow, Russian Federation.
- Department of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, Leninskiye Gory 1/51, 119991 Moscow, Russia
| |
Collapse
|
2
|
Cialla-May D, Bonifacio A, Bocklitz T, Markin A, Markina N, Fornasaro S, Dwivedi A, Dib T, Farnesi E, Liu C, Ghosh A, Popp J. Biomedical SERS - the current state and future trends. Chem Soc Rev 2024; 53:8957-8979. [PMID: 39109571 DOI: 10.1039/d4cs00090k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Surface enhanced Raman spectroscopy (SERS) is meeting the requirements in biomedical science being a highly sensitive and specific analytical tool. By employing portable Raman systems in combination with customized sample pre-treatment, point-of-care-testing (POCT) becomes feasible. Powerful SERS-active sensing surfaces with high stability and modification layers if required are available for testing and application in complex biological matrices such as body fluids, cells or tissues. This review summarizes the current state in sample collection and pretreatment in SERS detection protocols, SERS detection schemes, i.e. direct and indirect SERS as well as targeted and non-targeted SERS, and SERS-active sensing surfaces. Moreover, the recent developments and advances of SERS in biomedical application scenarios, such as infectious diseases, cancer diagnostics and therapeutic drug monitoring is given, which enables the readers to identify the sample collection and preparation protocols, SERS substrates and detection strategies that are best-suited for their specific applications in biomedicine.
Collapse
Affiliation(s)
- Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Alois Bonifacio
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio 6, 34127 Trieste (TS), Italy
| | - Thomas Bocklitz
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
- Faculty of Mathematics, Physics and Computer Science, University of Bayreuth (UBT), Nürnberger Straße 38, 95440 Bayreuth, Germany
| | - Alexey Markin
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| | - Natalia Markina
- Institute of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| | - Stefano Fornasaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste (TS), Italy
| | - Aradhana Dwivedi
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Tony Dib
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Chen Liu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Arna Ghosh
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
3
|
Li J, Guan R, Wuethrich A, Yan M, Cheng J, Liu G, Zhan J, Trau M, Sun Y. High Accuracy of Clinical Verification of Electrohydrodynamic-Driven Nanobox-on-Mirror Platform for Molecular Identification of Respiratory Viruses. Anal Chem 2024; 96:4495-4504. [PMID: 38445954 DOI: 10.1021/acs.analchem.3c05120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The molecular detection of multiple respiratory viruses provides evidence for the rational use of drugs and effective health management. Herein, we developed and tested the clinical performance of an electrohydrodynamic-driven nanobox-on-mirror platform (E-NoM) for the parallel, accurate, and sensitive detection of four respiratory viral antigens. The E-NoM platform uses gold-silver alloy nanoboxes as the core material with the deposition of a silver layer as a shell on the core surfaces to amplify and enable a reproducible Raman signal readout that facilitates accurate detection. Additionally, the E-NoM platform employs gold microelectrode arrays as the mirror with electrohydrodynamics to manipulate the fluid flow and enhance molecular interactions for an improved biosensing response. The presence of viral antigens binds the nanobox-based core-shell nanostructure on the gold microelectrode and creates the nanocavity with extremely strong "hot spots" to benefit sensitive analysis. Significantly, in a large clinical cohort with 227 patients, the designed E-NoM platform demonstrates the capability of screening respiratory infection with achieved clinical specificity, sensitivity, and accuracy of 100.0, 96.48, and 96.91%, respectively. It is anticipated that the E-NoM platform can find a position in clinical usage for respiratory disease diagnosis.
Collapse
Affiliation(s)
- Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rui Guan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mingzhe Yan
- Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430023, P. R. China
| | - Jing Cheng
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430072, P. R. China
| | - Guorong Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing Hubei Provincial Center for Disease Control and Prevention, Wuhan 430072, P. R. China
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
4
|
Sharma S, Kumar R, Yadav RM. Polyacrylonitrile as a versatile matrix for gold nanoparticle-based SERS substrates. NANOSCALE ADVANCES 2024; 6:1065-1073. [PMID: 38356638 PMCID: PMC10863703 DOI: 10.1039/d3na01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
As an effective and ultrasensitive molecule detection technique, surface-enhanced Raman spectroscopy (SERS) needs efficient and highly responsive substrates to further enhance its sensitivity and utility. In this work, the preparation and characterisation of polyacrylonitrile/gold nanoparticle (PAN/AuNPs) composite porous films have been described for SERS-based detection of methylene blue (MB) dye. The PAN/AuNPs composite films were prepared with a simple dip coating technique, yielding a highly porous structure with uniformly dispersed Au nanoparticles (AuNPs). Scanning electron microscopy (SEM) revealed a linked pore network within the films. In X-ray diffraction (XRD), the characteristic crystal peak of AuNP clusters was observed, proving the presence of AuNPs in the composite. UV-vis absorption spectra also indicated the existence of the AuNPs. The methylene blue (MB) dye has been detected using PAN/AuNPs composite SERS substrates. These substrates showed excellent sensitivity by detecting 50 nM dye concentration and enhancing the Raman peak intensity at 1622 cm-1. The SERS enhancement factor (EF) for MB detection was determined to be around 106, demonstrating the remarkable sensitivity of the PAN/AuNPs composite porous films. The findings demonstrate the enormous potential of PAN/AuNPs composite porous films as reliable SERS substrates, displaying their efficacy in detecting trace levels of analytes in chemical and biological sensing applications.
Collapse
Affiliation(s)
- Saloni Sharma
- Department of Physics, VSSD College, CSJM University Kanpur 208002 U.P. India
| | - Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur 208016 U.P. India
| | - Ram Manohar Yadav
- Department of Physics, VSSD College, CSJM University Kanpur 208002 U.P. India
- Department of Physics, University of Allahabad Prayagraj 211002 U.P. India
| |
Collapse
|
5
|
Zhdanov G, Gambaryan A, Akhmetova A, Yaminsky I, Kukushkin V, Zavyalova E. Nanoisland SERS-Substrates for Specific Detection and Quantification of Influenza A Virus. BIOSENSORS 2023; 14:20. [PMID: 38248397 PMCID: PMC10813417 DOI: 10.3390/bios14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based aptasensors for virus determination have attracted a lot of interest recently. This approach provides both specificity due to an aptamer component and a low limit of detection due to signal enhancement by a SERS substrate. The most successful SERS-based aptasensors have a limit of detection (LoD) of 10-100 viral particles per mL (VP/mL) that is advantageous compared to polymerase chain reactions. These characteristics of the sensors require the use of complex substrates. Previously, we described silver nanoisland SERS-substrate with a reproducible and uniform surface, demonstrating high potency for industrial production and a suboptimal LoD of 4 × 105 VP/mL of influenza A virus. Here we describe a study of the sensor morphology, revealing an unexpected mechanism of signal enhancement through the distortion of the nanoisland layer. A novel modification of the aptasensor was proposed with chromium-enhanced adhesion of silver nanoparticles to the surface as well as elimination of the buffer-dependent distortion-triggering steps. As a result, the LoD of the Influenza A virus was decreased to 190 VP/mL, placing the nanoisland SERS-based aptasensors in the rank of the most powerful sensors for viral detection.
Collapse
Affiliation(s)
- Gleb Zhdanov
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (E.Z.)
- Moscow Institute of Physics and Technology, Institute of Quantum Technologies, 141700 Dolgoprudny, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia
| | - Assel Akhmetova
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (I.Y.)
| | - Igor Yaminsky
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.A.); (I.Y.)
| | - Vladimir Kukushkin
- Osipyan Institute of Solid State Physics of the Russian Academy of Science, 142432 Chernogolovka, Russia;
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Z.); (E.Z.)
- Moscow Institute of Physics and Technology, Institute of Quantum Technologies, 141700 Dolgoprudny, Russia
| |
Collapse
|
6
|
Kukushkin V, Ambartsumyan O, Subekin A, Astrakhantseva A, Gushchin V, Nikonova A, Dorofeeva A, Zverev V, Keshek A, Meshcheryakova N, Zaborova O, Gambaryan A, Zavyalova E. Multiplex Lithographic SERS Aptasensor for Detection of Several Respiratory Viruses in One Pot. Int J Mol Sci 2023; 24:ijms24098081. [PMID: 37175786 PMCID: PMC10178974 DOI: 10.3390/ijms24098081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Rapid and reliable techniques for virus identification are required in light of recurring epidemics and pandemics throughout the world. Several techniques have been distributed for testing the flow of patients. Polymerase chain reaction with reverse transcription is a reliable and sensitive, though not rapid, tool. The antibody-based strip is a rapid, though not reliable, and sensitive tool. A set of alternative tools is being developed to meet all the needs of the customer. Surface-enhanced Raman spectroscopy (SERS) provides the possibility of single molecule detection taking several minutes. Here, a multiplex lithographic SERS aptasensor was developed aiming at the detection of several respiratory viruses in one pot within 17 min. The four labeled aptamers were anchored onto the metal surface of four SERS zones; the caught viruses affect the SERS signals of the labels, providing changes in the analytical signals. The sensor was able to decode mixes of SARS-CoV-2 (severe acute respiratory syndrome coronavirus two), influenza A virus, respiratory syncytial virus, and adenovirus within a single experiment through a one-stage recognition process.
Collapse
Affiliation(s)
- Vladimir Kukushkin
- Osipyan Institute of Solid State Physics, Russian Academy of Science, 142432 Chernogolovka, Russia
| | | | - Alexei Subekin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anna Astrakhantseva
- Osipyan Institute of Solid State Physics, Russian Academy of Science, 142432 Chernogolovka, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gushchin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, 123098 Moscow, Russia
| | - Alexandra Nikonova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Vitaly Zverev
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Anna Keshek
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moscow, Russia
| | | | - Olga Zaborova
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moscow, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research, Development of Immune and Biological Products RAS, 108819 Moscow, Russia
| | - Elena Zavyalova
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Kara N, Ayoub N, Ilgu H, Fotiadis D, Ilgu M. Aptamers Targeting Membrane Proteins for Sensor and Diagnostic Applications. Molecules 2023; 28:molecules28093728. [PMID: 37175137 PMCID: PMC10180177 DOI: 10.3390/molecules28093728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Many biological processes (physiological or pathological) are relevant to membrane proteins (MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as predictive molecular biomarkers for disease diagnosis and prognosis. Indeed, cell surface MPs are an important class of attractive targets of the currently prescribed therapeutic drugs and diagnostic molecules used in disease detection. The oligonucleotides known as aptamers can be selected against a particular target with high affinity and selectivity by iterative rounds of in vitro library evolution, known as Systematic Evolution of Ligands by EXponential Enrichment (SELEX). As an alternative to antibodies, aptamers offer unique features like thermal stability, low-cost, reuse, ease of chemical modification, and compatibility with various detection techniques. Particularly, immobilized-aptamer sensing platforms have been under investigation for diagnostics and have demonstrated significant value compared to other analytical techniques. These "aptasensors" can be classified into several types based on their working principle, which are commonly electrochemical, optical, or mass-sensitive. In this review, we review the studies on aptamer-based MP-sensing technologies for diagnostic applications and have included new methodological variations undertaken in recent years.
Collapse
Affiliation(s)
- Nilufer Kara
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
| | - Nooraldeen Ayoub
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Huseyin Ilgu
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012 Bern, Switzerland
| | - Muslum Ilgu
- Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
- Aptalogic Inc., Ames, IA 50014, USA
| |
Collapse
|
8
|
Kukushkin V, Kristavchuk O, Andreev E, Meshcheryakova N, Zaborova O, Gambaryan A, Nechaev A, Zavyalova E. Aptamer-coated track-etched membranes with a nanostructured silver layer for single virus detection in biological fluids. Front Bioeng Biotechnol 2023; 10:1076749. [PMID: 36704305 PMCID: PMC9871243 DOI: 10.3389/fbioe.2022.1076749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Aptasensors based on surface-enhanced Raman spectroscopy (SERS) are of high interest due to the superior specificity and low limit of detection. It is possible to produce stable and cheap SERS-active substrates and portable equipment meeting the requirements of point-of-care devices. Here we combine the membrane filtration and SERS-active substrate in the one pot. This approach allows efficient adsorption of the viruses from the solution onto aptamer-covered silver nanoparticles. Specific determination of the viruses was provided by the aptamer to influenza A virus labeled with the Raman-active label. The SERS-signal from the label was decreased with a descending concentration of the target virus. Even several virus particles in the sample provided an increase in SERS-spectra intensity, requiring only a few minutes for the interaction between the aptamer and the virus. The limit of detection of the aptasensor was as low as 10 viral particles per mL (VP/mL) of influenza A virus or 2 VP/mL per probe. This value overcomes the limit of detection of PCR techniques (∼103 VP/mL). The proposed biosensor is very convenient for point-of-care applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Gambaryan
- Chumakov Federal Scientific Centre for Research and Development of Immune and Biological Products RAS, Moscow, Russia
| | | | - Elena Zavyalova
- Lomonosov Moscow State University, Moscow, Russia,*Correspondence: Elena Zavyalova,
| |
Collapse
|
9
|
Kukushkin V, Ambartsumyan O, Astrakhantseva A, Gushchin V, Nikonova A, Dorofeeva A, Zverev V, Gambaryan A, Tikhonova D, Sovetnikov T, Akhmetova A, Yaminsky I, Zavyalova E. Lithographic SERS Aptasensor for Ultrasensitive Detection of SARS-CoV-2 in Biological Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213854. [PMID: 36364630 PMCID: PMC9659100 DOI: 10.3390/nano12213854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 05/27/2023]
Abstract
In this paper, we propose a technology for the rapid and sensitive detection of the whole viral particles of SARS-CoV-2 using double-labeled DNA aptamers as recognition elements together with the SERS method for detecting the optical response. We report on the development of a SERS-aptasensor based on a reproducible lithographic SERS substrate, featuring the combination of high speed, specificity, and ultrasensitive quantitative detection of SARS-CoV-2 virions. The sensor makes it possible to identify SARS-CoV-2 in very low concentrations (the limit of detection was 100 copies/mL), demonstrating a sensitivity level comparable to the existing diagnostic golden standard-the reverse transcription polymerase chain reaction.
Collapse
Affiliation(s)
- Vladimir Kukushkin
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
| | - Oganes Ambartsumyan
- Department of Microbiology, Virology and Immunology, I.M. Sechenov First Moscow State Medical University, 125009 Moscow, Russia
| | - Anna Astrakhantseva
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Vladimir Gushchin
- N. F. Gamaleya Federal Research Center for Epidemiology & Microbiology, 123098 Moscow, Russia
| | - Alexandra Nikonova
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | | | - Vitaly Zverev
- Department of Microbiology, Virology and Immunology, I.M. Sechenov First Moscow State Medical University, 125009 Moscow, Russia
- Mechnikov Research Institute of Vaccines and Sera, 105064 Moscow, Russia
| | - Alexandra Gambaryan
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products RAS, 108819 Moscow, Russia
| | - Daria Tikhonova
- Osipyan Institute of Solid State Physics of Russian Academy of Science, 142432 Chernogolovka, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Timofei Sovetnikov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Assel Akhmetova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Yaminsky
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena Zavyalova
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|