1
|
Gao N, Yu A, Yang W, Zhang X, Shen Y, Fu X. Enzymatic de novo oligonucleotide synthesis: Emerging techniques and advancements. Biotechnol Adv 2025; 82:108604. [PMID: 40368114 DOI: 10.1016/j.biotechadv.2025.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/23/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Oligonucleotide synthesis serves as a cornerstone of modern life sciences, enabling groundbreaking advancements across molecular diagnostics, therapeutic development, and transformative technologies including DNA data storage and programmable biological systems. While phosphoramidite-based chemical synthesis remains the industrial standard, its limitations in producing long-sequence constructs, cumulative error rates, and reliance on toxic solvents pose significant challenges for next-generation applications. Emerging enzymatic synthesis approaches offer a paradigm shift by harnessing the inherent precision and environmental sustainability of biological systems. This comprehensive review systematically examines the evolving landscape of oligonucleotide synthesis technologies. We first analyze the mechanistic foundations and persistent limitations of conventional chemical methods, followed by a critical evaluation of enzymatic strategies with particular emphasis on terminal deoxynucleotidyl transferase (TdT)-mediated template-independent polymerization. The work provides detailed insights into enzymatic reaction engineering, including substrate specificity profiling of nucleotide analogs and innovative solid-phase synthesis platforms enabling iterative nucleotide addition. Furthermore, we discuss emerging high-throughput synthesis architectures and commercial translation efforts. In summary, this review comprehensively encapsulates the advancements and commercialization status of enzymatic synthesis technologies, offering valuable guidance that can expedite the innovative development of enzymatic oligonucleotide manufacturing platforms.
Collapse
Affiliation(s)
- Nanfeng Gao
- BGI Research, Changzhou 213299, China; BGI Research, Shenzhen 518083, China
| | - Aimiao Yu
- BGI Research, Changzhou 213299, China; BGI Research, Shenzhen 518083, China
| | - Weikang Yang
- BGI Research, Changzhou 213299, China; BGI Research, Shenzhen 518083, China
| | - Xiandi Zhang
- BGI Research, Changzhou 213299, China; BGI Research, Shenzhen 518083, China
| | - Yue Shen
- BGI Research, Changzhou 213299, China; BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Fu
- BGI Research, Changzhou 213299, China; BGI Research, Shenzhen 518083, China.
| |
Collapse
|
2
|
Bizat PN, Sabat N, Hollenstein M. Recent Advances in Biocatalytic and Chemoenzymatic Synthesis of Oligonucleotides. Chembiochem 2025; 26:e202400987. [PMID: 39854143 DOI: 10.1002/cbic.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Access to synthetic oligonucleotides is crucial for applications in diagnostics, therapeutics, synthetic biology, and nanotechnology. Traditional solid phase synthesis is limited by sequence length and complexities, low yields, high costs and poor sustainability. Similarly, polymerase-based approaches such as in vitro transcription and primer extension reactions do not permit any control on the positioning of modifications and display poor substrate tolerance. In response, biocatalytic and chemoenzymatic strategies have emerged as promising alternatives, offering selective and efficient pathways for oligonucleotide synthesis. These methods leverage the precision and efficiency of enzymes to construct oligonucleotides with high fidelity. Recent advancements have focused on optimized systems and/or engineered enzymes enabling the incorporation of chemically modified nucleotides. Biocatalytic approaches, particularly those using DNA/RNA polymerases provide advantages in milder reaction conditions and enhanced sustainability. Chemoenzymatic methods, combining chemical synthesis and enzymes, have proven to be effective in overcoming limitations of traditional solid phase synthesis. This review summarizes recent developments in biocatalytic and chemoenzymatic strategies to construct oligonucleotides, highlighting innovations in enzyme engineering, substrate and reaction condition optimization for various applications. We address crucial details of the methods, their advantages, and limitations as well as important insights for future research directions in oligonucleotide production.
Collapse
Affiliation(s)
- Pierre Nicolas Bizat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
3
|
Di L, Chen M, Han Y, Guo S, Gong X, Ye S, Zhu C. Rational design of terminal deoxynucleotidyl transferase for RNA primer elongation. Int J Biol Macromol 2025; 309:142712. [PMID: 40174852 DOI: 10.1016/j.ijbiomac.2025.142712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
The short synthetic oligonucleotides have laid foundations for modern digital biology, biomaterial, and new therapeutics. However, our abilities to synthesize arbitrary sequences of oligonucleotides were stifled by the decades old phosphoramidite chemistry. The template-independent polymerase, Terminal Deoxynucleotidyl Transferase (TdT), is central to de novo enzymatic DNA synthesis through extensive engineering at the substrate binding site, yet the engineered TdT remained inaccessible to the majority of RNA primers. Here we rationally engineered the primer recognition site of TdT for RNA-primed polymerization. We demonstrated the elevation of RNA elongation activity from 20 % to >90 % on a diverse set of primers and evaluated the reaction dynamics. Pairing with the natural nucleotide substrates, the designed R-TdTs could simplify the analytical procedure for RNA sequences. We developed two proof-of-principle methods for feasible detection of trace amount of microRNAs. Combined with the versatile mutations at substrate binding pocket to accommodate nucleotide building blocks, our designed RNA-editing enzymes would become easily adaptable for a wide range of future applications in de novo synthesis of nucleic acid and synthetic biology.
Collapse
Affiliation(s)
- Linyan Di
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Moyan Chen
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yuqi Han
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Guo
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoqun Gong
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Sheng Ye
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| | - Cheng Zhu
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Wiegand DJ, Rittichier J, Meyer E, Lee H, Conway NJ, Ahlstedt D, Yurtsever Z, Rainone D, Kuru E, Church GM. Template-independent enzymatic synthesis of RNA oligonucleotides. Nat Biotechnol 2025; 43:762-772. [PMID: 38997579 DOI: 10.1038/s41587-024-02244-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/11/2024] [Indexed: 07/14/2024]
Abstract
RNA oligonucleotides have emerged as a powerful therapeutic modality to treat disease, yet current manufacturing methods may not be able to deliver on anticipated future demand. Here, we report the development and optimization of an aqueous-based, template-independent enzymatic RNA oligonucleotide synthesis platform as an alternative to traditional chemical methods. The enzymatic synthesis of RNA oligonucleotides is made possible by controlled incorporation of reversible terminator nucleotides with a common 3'-O-allyl ether blocking group using new CID1 poly(U) polymerase mutant variants. We achieved an average coupling efficiency of 95% and demonstrated ten full cycles of liquid phase synthesis to produce natural and therapeutically relevant modified sequences. We then qualitatively assessed the platform on a solid phase, performing enzymatic synthesis of several N + 5 oligonucleotides on a controlled-pore glass support. Adoption of an aqueous-based process will offer key advantages including the reduction of solvent use and sustainable therapeutic oligonucleotide manufacturing.
Collapse
Affiliation(s)
- Daniel J Wiegand
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
- EnPlusOne Biosciences Inc., Watertown, MA, USA
| | - Jonathan Rittichier
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
- EnPlusOne Biosciences Inc., Watertown, MA, USA
| | - Ella Meyer
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
- EnPlusOne Biosciences Inc., Watertown, MA, USA
| | - Howon Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | - Nicholas J Conway
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA
| | | | | | | | - Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA.
| |
Collapse
|
5
|
Dhara D, Mulard LA, Hollenstein M. Natural, modified and conjugated carbohydrates in nucleic acids. Chem Soc Rev 2025; 54:2948-2983. [PMID: 39936337 DOI: 10.1039/d4cs00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Storage of genetic information in DNA occurs through a unique ordering of canonical base pairs. However, this would not be possible in the absence of the sugar-phosphate backbone which is essential for duplex formation. While over a hundred nucleobase modifications have been identified (mainly in RNA), Nature is rather conservative when it comes to alterations at the level of the (deoxy)ribose sugar moiety. This trend is not reflected in synthetic analogues of nucleic acids where modifications of the sugar entity is commonplace to improve the properties of DNA and RNA. In this review article, we describe the main incentives behind sugar modifications in nucleic acids and we highlight recent progress in this field with a particular emphasis on therapeutic applications, the development of xeno-nucleic acids (XNAs), and on interrogating nucleic acid etiology. We also describe recent strategies to conjugate carbohydrates and oligosaccharides to oligonucleotides since this represents a particularly powerful strategy to improve the therapeutic index of oligonucleotide drugs. The advent of glycoRNAs combined with progress in nucleic acid and carbohydrate chemistry, protein engineering, and delivery methods will undoubtedly yield more potent sugar-modified nucleic acids for therapeutic, biotechnological, and synthetic biology applications.
Collapse
Affiliation(s)
- Debashis Dhara
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Laurence A Mulard
- Department of Structural Biology and Chemistry, Laboratory for Chemistry of Biomolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3523, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, Université Paris Cité, CNRS UMR 352328, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
6
|
Zhai L, Wang Z, Liu F, Xu C, Wang J, Han H, Xie Q, Zhang W, Zheng Y, Buell AK, Dong Y. Semi-rational evolution of a recombinant DNA polymerase for modified nucleotide incorporation efficiency. PLoS One 2025; 20:e0316531. [PMID: 39951433 PMCID: PMC11828419 DOI: 10.1371/journal.pone.0316531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/12/2024] [Indexed: 02/16/2025] Open
Abstract
Engineering improved B-family DNA polymerases to catalyze 3'-O-modified nucleotide reversible terminators is limited by an insufficient understanding of the structural determinants that define polymerization efficiency. To explore the key mechanism for unnatural nucleotide incorporation, we engineered a B-family DNA polymerase from Thermococcus Kodakaraenis (KOD pol) by using semi-rational design strategies. We first scanned the active pocket of KOD pol through site-directed saturation mutagenesis and combinatorial mutations and identified a variant Mut_C2 containing five mutation sites (D141A, E143A, L408I, Y409A, A485E) using a high-throughput microwell-based screening method. Mut_C2 demonstrated high catalytic efficiency in incorporating 3'-O-azidomethyl-dATP labeled with a Cy3 dye, whereas the wild-type KOD pol failed to catalyze it. Computational simulations were then conducted of the DNA binding region of KOD pol to predict additional mutations with enhanced catalytic activity, which were subsequently experimentally verified. By a stepwise combinatorial mutagenesis approach, we obtained an eleven-mutation variant, named Mut_E10 by introducing additional mutations to the Mut_C2 variant. Mut_E10, which carried six specific mutations (S383T, Y384F, V389I, V589H, T676K, and V680M) within the DNA-binding region, demonstrated over 20-fold improvement in enzymatic activity as compared to Mut_C2. In addition, Mut_E10 demonstrated satisfactory performance in two different sequencing platforms (BGISEQ-500 and MGISEQ-2000), indicating its potential for commercialization. Our study demonstrates that a significant enhancement in its catalytic efficiency towards modified nucleotides can be achieved efficiently through combinatorial mutagenesis of residues in the active site and DNA binding region of DNA polymerases. These findings contribute to a comprehensive understanding of the mechanisms that underlie the incorporation of modified nucleotides by DNA polymerase. The sites of beneficial mutations, as well as the nucleotide incorporation mechanism identified in this study, can provide valuable guidance for the engineering of other B-family DNA polymerases.
Collapse
Affiliation(s)
- Lili Zhai
- BGI Research, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Zi Wang
- BGI Research, Shenzhen, China
| | | | | | | | | | | | | | - Yue Zheng
- BGI Research, Shenzhen, China
- BGI Research, Hangzhou, China
| | - Alexander K. Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
7
|
Bian T, Pei Y, Gao S, Zhou S, Sun X, Dong M, Song J. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Adv Healthc Mater 2024; 13:e2401207. [PMID: 39036821 DOI: 10.1002/adhm.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Xeno nucleic acid (XNA) are artificial nucleic acids, in which the chemical composition of the sugar moiety is changed. These modifications impart distinct physical and chemical properties to XNAs, leading to changes in their biological, chemical, and physical stability. Additionally, these alterations influence the binding dynamics of XNAs to their target molecules. Consequently, XNAs find expanded applications as functional materials in diverse fields. This review provides a comprehensive summary of the distinctive biophysical properties exhibited by various modified XNAs and explores their applications as innovative functional materials in expanded fields.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou, 310014, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Aarhus, DK-8000, Denmark
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
8
|
Karalkar NB, Kent T, Tredinnick T, Betancurt-Anzola L, Delarue M, Pomerantz R, Benner SA. Template-Independent Enzymatic RNA Synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617423. [PMID: 39416189 PMCID: PMC11482782 DOI: 10.1101/2024.10.09.617423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A route to prepare ribonucleoside triphosphates featuring a 3'-aminoxy (3'-O-NH 2 ) removable blocking group is reported here. We then show that versions of two DNA polymerases, human DNA polymerase theta (Polθ) and mimiviral PrimPol, accept these triphosphates as substrates to add single nucleotides to an RNA primer under engineered conditions. Cleaving the O-N bond in the 3'-O-NH 2 group within the extended primer regenerates the 3'-OH group, facilitating subsequent polymerase cycles that add a second, selected, nucleotide. These enzymes and triphosphates together enable template-independent enzymatic RNA synthesis (TIERS) exploiting a cyclic reversible termination framework. The study shows that this process is ready for instrument adaptation by using it to add three ribonucleotides in three cycles using an engineered Polθ. This work creates a new way to synthesize RNA with a de novo defined sequence, without requiring the protecting groups, hazardous solvents, and sensitive reagents that bedevil phosphoramidite-based RNA synthesis.
Collapse
|
9
|
Sun L, Xiang Y, Du Y, Wang Y, Ma J, Wang Y, Wang X, Wang G, Chen T. Template-independent synthesis and 3'-end labelling of 2'-modified oligonucleotides with terminal deoxynucleotidyl transferases. Nucleic Acids Res 2024; 52:10085-10101. [PMID: 39149896 PMCID: PMC11417362 DOI: 10.1093/nar/gkae691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Xenobiotic nucleic acids (XNAs) are artificial genetic polymers with altered structural moieties and useful features, such as enhanced biological and chemical stability. Enzymatic synthesis and efficient labelling of XNAs are crucial for their broader application. Terminal deoxynucleotidyl transferases (TdTs) have been exploited for the de novo synthesis and labelling of DNA and demonstrated the capability of recognizing various substrates. However, the activities of TdTs for the synthesis and labelling of commonly used XNAs with 2' modifications have not been systematically explored. In this work, we explored and demonstrated the varied activities of three TdTs (bovine TdT, MTdT-evo and murine TdT) for the template-independent incorporation of 2'-methoxy NTPs, 2'-fluoro NTPs and 2'-fluoroarabino NTPs into the 3' ends of single- and double-stranded DNAs and the extension of 2'-modified XNAs with (d)NTPs containing a natural or unnatural nucleobase. Taking advantages of these activities, we established a strategy for protecting single-stranded DNAs from exonuclease I degradation by TdT-synthesized 2'-modified XNA tails and methods for 3'-end labelling of 2'-modified XNAs by TdT-mediated synthesis of G-quadruplex-containing tails or incorporation of nucleotides with a functionalized nucleobase. A DNA-2'-fluoroarabino nucleic acid (FANA) chimeric hydrogel was also successfully constructed based on the extraordinary activity of MTdT-evo for template-independent FANA synthesis.
Collapse
Affiliation(s)
- Leping Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuming Xiang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yangming Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Jiezhao Ma
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Yaxin Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Xueting Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
10
|
Sabat N, Stämpfli A, Hanlon S, Bisagni S, Sladojevich F, Püntener K, Hollenstein M. Template-dependent DNA ligation for the synthesis of modified oligonucleotides. Nat Commun 2024; 15:8009. [PMID: 39271668 PMCID: PMC11399401 DOI: 10.1038/s41467-024-52141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Chemical modification of DNA is a common strategy to improve the properties of oligonucleotides, particularly for therapeutics and nanotechnology. Existing synthetic methods essentially rely on phosphoramidite chemistry or the polymerization of nucleoside triphosphates but are limited in terms of size, scalability, and sustainability. Herein, we report a robust alternative method for the de novo synthesis of modified oligonucleotides using template-dependent DNA ligation of shortmer fragments. Our approach is based on the fast and scaled accessibility of chemically modified shortmer monophosphates as substrates for the T3 DNA ligase. This method has shown high tolerance to chemical modifications, flexibility, and overall efficiency, thereby granting access to a broad range of modified oligonucleotides of different lengths (20 → 120 nucleotides). We have applied this method to the synthesis of clinically relevant antisense drugs and ultramers containing diverse modifications. Furthermore, the designed chemoenzymatic approach has great potential for diverse applications in therapeutics and biotechnology.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| |
Collapse
|
11
|
Niogret G, Chériaux C, Bonhomme F, Levi-Acobas F, Figliola C, Ulrich G, Gasser G, Hollenstein M. A toolbox for enzymatic modification of nucleic acids with photosensitizers for photodynamic therapy. RSC Chem Biol 2024; 5:841-852. [PMID: 39211468 PMCID: PMC11353023 DOI: 10.1039/d4cb00103f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
Photodynamic therapy (PDT) is an approved cancer treatment modality. Despite its high efficiency, PDT is limited in terms of specificity and by the poor solubility of the rather lipophilic photosensitizers (PSs). In order to alleviate these limitations, PSs can be conjugated to oligonucleotides. However, most conjugation methods often involve complex organic synthesis and result in the appendage of single modifications at the 3'/5' termini of oligonucleotides. Here, we have investigated the possibility of bioconjugating a range of known PSs by polymerase-mediated synthesis. We have prepared a range of modified nucleoside triphosphates by different conjugation methods and investigated the substrate tolerance of these nucleotides for template-dependent and -independent DNA polymerases. This method represents a mild and versatile approach for the conjugation of single or multiple PSs onto oligonucleotides and can be useful to further improve the efficiency of the PDT treatment.
Collapse
Affiliation(s)
- Germain Niogret
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids 28, rue du Docteur Roux 75724 Paris Cedex 15 France
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Camille Chériaux
- Institut de Chimie et Procédés pour L'Energie, L'Environnement et La Santé (ICPEES), Groupe de Chimie Organique pour Les Matériaux, La Biologie et L'Optique (COMBO), CNRS UMR 7515, École de Chimie, Polymères, Matériaux de Strasbourg (ECPM) 25, Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique 28, rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids 28, rue du Docteur Roux 75724 Paris Cedex 15 France
| | - Carlotta Figliola
- Institut de Chimie et Procédés pour L'Energie, L'Environnement et La Santé (ICPEES), Groupe de Chimie Organique pour Les Matériaux, La Biologie et L'Optique (COMBO), CNRS UMR 7515, École de Chimie, Polymères, Matériaux de Strasbourg (ECPM) 25, Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour L'Energie, L'Environnement et La Santé (ICPEES), Groupe de Chimie Organique pour Les Matériaux, La Biologie et L'Optique (COMBO), CNRS UMR 7515, École de Chimie, Polymères, Matériaux de Strasbourg (ECPM) 25, Rue Becquerel 67087 Strasbourg Cedex 02 France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology 75005 Paris France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids 28, rue du Docteur Roux 75724 Paris Cedex 15 France
| |
Collapse
|
12
|
Pichon M, Hollenstein M. Controlled enzymatic synthesis of oligonucleotides. Commun Chem 2024; 7:138. [PMID: 38890393 PMCID: PMC11189433 DOI: 10.1038/s42004-024-01216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Oligonucleotides are advancing as essential materials for the development of new therapeutics, artificial genes, or in storage of information applications. Hitherto, our capacity to write (i.e., synthesize) oligonucleotides is not as efficient as that to read (i.e., sequencing) DNA/RNA. Alternative, biocatalytic methods for the de novo synthesis of natural or modified oligonucleotides are in dire need to circumvent the limitations of traditional synthetic approaches. This Perspective article summarizes recent progress made in controlled enzymatic synthesis, where temporary blocked nucleotides are incorporated into immobilized primers by polymerases. While robust protocols have been established for DNA, RNA or XNA synthesis is more challenging. Nevertheless, using a suitable combination of protected nucleotides and polymerase has shown promises to produce RNA oligonucleotides even though the production of long DNA/RNA/XNA sequences (>1000 nt) remains challenging. We surmise that merging ligase- and polymerase-based synthesis would help to circumvent the current shortcomings of controlled enzymatic synthesis.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, Rue du Docteur Roux, 75724, Paris Cedex 15, France.
| |
Collapse
|
13
|
Pichon M, Levi-Acobas F, Kitoun C, Hollenstein M. 2',3'-Protected Nucleotides as Building Blocks for Enzymatic de novo RNA Synthesis. Chemistry 2024; 30:e202400137. [PMID: 38403849 DOI: 10.1002/chem.202400137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.
Collapse
Affiliation(s)
- Maëva Pichon
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Fabienne Levi-Acobas
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Camélia Kitoun
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
14
|
Obexer R, Nassir M, Moody ER, Baran PS, Lovelock SL. Modern approaches to therapeutic oligonucleotide manufacturing. Science 2024; 384:eadl4015. [PMID: 38603508 DOI: 10.1126/science.adl4015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
Therapeutic oligonucleotides are a powerful drug modality with the potential to treat many diseases. The rapidly growing number of therapies that have been approved and that are in advanced clinical trials will place unprecedented demands on our capacity to manufacture oligonucleotides at scale. Existing methods based on solid-phase phosphoramidite chemistry are limited by their scalability and sustainability, and new approaches are urgently needed to deliver the multiton quantities of oligonucleotides that are required for therapeutic applications. The chemistry community has risen to the challenge by rethinking strategies for oligonucleotide production. Advances in chemical synthesis, biocatalysis, and process engineering technologies are leading to increasingly efficient and selective routes to oligonucleotide sequences. We review these developments, along with remaining challenges and opportunities for innovations that will allow the sustainable manufacture of diverse oligonucleotide products.
Collapse
Affiliation(s)
- R Obexer
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - M Nassir
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - E R Moody
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| | - P S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - S L Lovelock
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Qin B, Wang Q, Wang Y, Han F, Wang H, Jiang S, Yu H. Enzymatic Synthesis of TNA Protects DNA Nanostructures. Angew Chem Int Ed Engl 2024; 63:e202317334. [PMID: 38323479 DOI: 10.1002/anie.202317334] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
Xeno-nucleic acids (XNAs) are synthetic genetic polymers with improved biological stabilities and offer powerful molecular tools such as aptamers and catalysts. However, XNA application has been hindered by a very limited repertoire of tool enzymes, particularly those that enable de novo XNA synthesis. Here we report that terminal deoxynucleotide transferase (TdT) catalyzes untemplated threose nucleic acid (TNA) synthesis at the 3' terminus of DNA oligonucleotide, resulting in DNA-TNA chimera resistant to exonuclease digestion. Moreover, TdT-catalyzed TNA extension supports one-pot batch preparation of biostable chimeric oligonucleotides, which can be used directly as staple strands during self-assembly of DNA origami nanostructures (DONs). Such TNA-protected DONs show enhanced biological stability in the presence of exonuclease I, DNase I and fetal bovine serum. This work not only expands the available enzyme toolbox for XNA synthesis and manipulation, but also provides a promising approach to fabricate DONs with improved stability under the physiological condition.
Collapse
Affiliation(s)
- Bohe Qin
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Qi Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuang Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Feng Han
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Haiyan Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Shuoxing Jiang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
16
|
Niogret G, Bouvier-Müller A, Figazzolo C, Joyce JM, Bonhomme F, England P, Mayboroda O, Pellarin R, Gasser G, Tucker JHR, Tanner JA, Savage GP, Hollenstein M. Interrogating Aptamer Chemical Space Through Modified Nucleotide Substitution Facilitated by Enzymatic DNA Synthesis. Chembiochem 2024; 25:e202300539. [PMID: 37837257 DOI: 10.1002/cbic.202300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Chemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties. This method lowers the synthetic burden often associated with post-SELEX approaches and allowed to identify one additional sequence that maintains binding to the PvLDH target protein, albeit with reduced specificity. In addition, while bioisosteres often improve the potency of small molecule drugs, this does not extend to chemically modified aptamers. Overall, this versatile method can be applied for the post-SELEX modification of other aptamers and functional nucleic acids.
Collapse
Affiliation(s)
- Germain Niogret
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Alix Bouvier-Müller
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Chiara Figazzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Jack M Joyce
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, Department of Structural Biology and Chemistry, Unité de Chimie Biologique Epigénétique UMR CNRS 3523, 28, rue du Docteur Roux, CEDEX 15, 75724, Paris, France
| | - Patrick England
- Plateforme de Biophysique Moléculaire, C2RT, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Olena Mayboroda
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Riccardo Pellarin
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3528, 28, rue du Docteur Roux, 75015, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julian A Tanner
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
17
|
Sabat N, Stämpfli A, Flamme M, Hanlon S, Bisagni S, Sladojevich F, Püntener K, Hollenstein M. Artificial nucleotide codons for enzymatic DNA synthesis. Chem Commun (Camb) 2023; 59:14547-14550. [PMID: 37987464 DOI: 10.1039/d3cc04933g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Herein, we report the high-yielding solid-phase synthesis of unmodified and chemically modified trinucleotide triphosphates (dN3TPs). These synthetic codons can be used for enzymatic DNA synthesis provided their scaffold is stabilized with phosphorothioate units. Enzymatic synthesis with three rather than one letter nucleotides will be useful to produce xenonucleic acids (XNAs) and for in vitro selection of modified functional nucleic acids.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Marie Flamme
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
18
|
Brzezinska J, Trzciński S, Strzelec J, Chmielewski MK. From CPG to hybrid support: Review on the approaches in nucleic acids synthesis in various media. Bioorg Chem 2023; 140:106806. [PMID: 37660625 DOI: 10.1016/j.bioorg.2023.106806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Solid-phase synthesis is, to date, the preferred method for the manufacture of oligonucleotides, in quantities ranging from a few micrograms for research purposes to several kilograms for therapeutic or commercial use. But for large-scale oligonucleotide manufacture, scaling up and hazardous waste production pose challenges that necessitate the investigation of alternate synthetic techniques. Despite the disadvantages of glass supports, using soluble supports as a substitute presents difficulties because of their high overall yield and complex purification steps. To address these challenges, various independent approaches have been developed; however, other problems such as insufficient cycle efficiency and synthesis of oligonucleotide chains of desired length continue to exist. In this study, we present a review of the current developments, advantages, and difficulties of recently reported alternatives to supports based on controlled pore glass, and discuss the importance of a support choice to resolve issues arising during oligonucleotide synthesis.
Collapse
Affiliation(s)
- Jolanta Brzezinska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Stanisław Trzciński
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Joanna Strzelec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; FutureSynthesis sp. z o.o., ul. Rubież 46B, 61-612 Poznan, Poland.
| |
Collapse
|