1
|
Suh PF, Elanga-Ndille E, Tchouakui M, Sandeu MM, Tagne D, Wondji C, Ndo C. Impact of insecticide resistance on malaria vector competence: a literature review. Malar J 2023; 22:19. [PMID: 36650503 PMCID: PMC9847052 DOI: 10.1186/s12936-023-04444-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Since its first report in Anopheles mosquitoes in 1950s, insecticide resistance has spread very fast to most sub-Saharan African malaria-endemic countries, where it is predicted to seriously jeopardize the success of vector control efforts, leading to rebound of disease cases. Supported mainly by four mechanisms (metabolic resistance, target site resistance, cuticular resistance, and behavioural resistance), this phenomenon is associated with intrinsic changes in the resistant insect vectors that could influence development of invading Plasmodium parasites. A literature review was undertaken using Pubmed database to collect articles evaluating directly or indiretly the impact of insecticide resistance and the associated mechanisms on key determinants of malaria vector competence including sialome composition, anti-Plasmodium immunity, intestinal commensal microbiota, and mosquito longevity. Globally, the evidence gathered is contradictory even though the insecticide resistant vectors seem to be more permissive to Plasmodium infections. The actual body of knowledge on key factors to vectorial competence, such as the immunity and microbiota communities of the insecticide resistant vector is still very insufficient to definitively infer on the epidemiological importance of these vectors against the susceptible counterparts. More studies are needed to fill important knowledge gaps that could help predicting malaria epidemiology in a context where the selection and spread of insecticide resistant vectors is ongoing.
Collapse
Affiliation(s)
- Pierre Fongho Suh
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Yaoundé I, P.O. Box 837, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
| | - Maurice Marcel Sandeu
- Department of Medical Entomology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine and Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Darus Tagne
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Faculty of Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Charles Wondji
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
- Department of Biological Sciences, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon.
| |
Collapse
|
2
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
3
|
Adelman ZN, Kojin BB. Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective? JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1997-2005. [PMID: 34018548 DOI: 10.1093/jme/tjab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, a substantial number of anti-malarial effector genes have been evaluated for their ability to block parasite infection in the mosquito vector. While many of these approaches have yielded significant effects on either parasite intensity or prevalence of infection, just a few have been able to completely block transmission. Additionally, many approaches, while effective against the parasite, also disrupt or alter important aspects of mosquito physiology, leading to corresponding changes in lifespan, reproduction, and immunity. As the most promising approaches move towards field-based evaluation, questions of effector gene robustness and durability move to the forefront. In this forum piece, we critically evaluate past effector gene approaches with an eye towards developing a deeper pipeline to augment the current best candidates.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| | - Bianca B Kojin
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| |
Collapse
|
4
|
Condé R, Hernandez-Torres E, Claudio-Piedras F, Recio-Tótoro B, Maya-Maldonado K, Cardoso-Jaime V, Lanz-Mendoza H. Heat Shock Causes Lower Plasmodium Infection Rates in Anopheles albimanus. Front Immunol 2021; 12:584660. [PMID: 34248924 PMCID: PMC8264367 DOI: 10.3389/fimmu.2021.584660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
The immune response of Anopheles mosquitoes to Plasmodium invasion has been extensively studied and shown to be mediated mainly by the nitric oxide synthase (NOS), dual oxidase (DUOX), phenoloxidase (PO), and antimicrobial peptides activity. Here, we studied the correlation between a heat shock insult, transcription of immune response genes, and subsequent susceptibility to Plasmodium berghei infection in Anopheles albimanus. We found that transcript levels of many immune genes were drastically affected by the thermal stress, either positively or negatively. Furthermore, the transcription of genes associated with modifications of nucleic acid methylation was affected, suggesting an increment in both DNA and RNA methylation. The heat shock increased PO and NOS activity in the hemolymph, as well as the transcription of several immune genes. As consequence, we observed that heat shock increased the resistance of mosquitoes to Plasmodium invasion. The data provided here could help the understanding of infection transmission under the ever more common heat waves.
Collapse
Affiliation(s)
- Renaud Condé
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Erika Hernandez-Torres
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Fabiola Claudio-Piedras
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Benito Recio-Tótoro
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico.,Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Krystal Maya-Maldonado
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Victor Cardoso-Jaime
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
5
|
Dieme C, Zmarlak NM, Brito-Fravallo E, Travaillé C, Pain A, Cherrier F, Genève C, Calvo-Alvarez E, Riehle MM, Vernick KD, Rotureau B, Mitri C. Exposure of Anopheles mosquitoes to trypanosomes reduces reproductive fitness and enhances susceptibility to Plasmodium. PLoS Negl Trop Dis 2020; 14:e0008059. [PMID: 32032359 PMCID: PMC7032731 DOI: 10.1371/journal.pntd.0008059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 02/20/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
During a blood meal, female Anopheles mosquitoes are potentially exposed to diverse microbes in addition to the malaria parasite, Plasmodium. Human and animal African trypanosomiases are frequently co-endemic with malaria in Africa. It is not known whether exposure of Anopheles to trypanosomes influences their fitness or ability to transmit Plasmodium. Using cell and molecular biology approaches, we found that Trypanosoma brucei brucei parasites survive for at least 48h after infectious blood meal in the midgut of the major malaria vector, Anopheles coluzzii before being cleared. This transient survival of trypanosomes in the midgut is correlated with a dysbiosis, an alteration in the abundance of the enteric bacterial flora in Anopheles coluzzii. Using a developmental biology approach, we found that the presence of live trypanosomes in mosquito midguts also reduces their reproductive fitness, as it impairs the viability of laid eggs by affecting their hatching. Furthermore, we found that Anopheles exposure to trypanosomes enhances their vector competence for Plasmodium, as it increases their infection prevalence. A transcriptomic analysis revealed that expression of only two Anopheles immune genes are modulated during trypanosome exposure and that the increased susceptibility to Plasmodium was microbiome-dependent, while the reproductive fitness cost was dependent only on the presence of live trypanosomes but was microbiome independent. Taken together, these results demonstrate multiple effects upon Anopheles vector competence for Plasmodium caused by eukaryotic microbes interacting with the host and its microbiome, which may in turn have implications for malaria control strategies in co-endemic areas. In nature, females Anopheles mosquitoes that transmit the malaria parasites Plasmodium, take successive blood meals to maximize their offspring. During these blood meals, mosquitoes are exposed to a variety of microbes present in the host blood in addition to Plasmodium, the obligate parasite that causes malaria. The Trypanosoma parasites, causing trypanosomiases, are sympatric with the malaria parasites in numerous African regions, therefore, a single female mosquito could be in contact with both pathogens concurrently or through successive blood meals. In this work, we showed that exposure of females Anopheles mosquitoes to Trypanosoma enhanced their susceptibility to malaria parasites, reduced their reproductive fitness and modulated their bacterial gut flora. While the effect of trypanosomes ingestion on Plasmodium infection is microbiome dependent, the phenotype on the reproductive fitness is microbiome independent. These results highlight the need for considering the effect of eukaryotic microbes on Anopheles biology for malaria control strategies.
Collapse
Affiliation(s)
- Constentin Dieme
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Natalia Marta Zmarlak
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Graduate School of Life Sciences ED515, Sorbonne Universities, UPMC Paris VI, Paris, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- Institut Pasteur–Bioinformatics and Biostatistics Hub–C3BI, USR 3756 IP CNRS–Paris, France
| | - Floriane Cherrier
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Estefanía Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Kenneth D. Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201, Institut Pasteur, Paris, France
- * E-mail: (BR); (CM)
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique, UMR2000, Paris, France
- * E-mail: (BR); (CM)
| |
Collapse
|
6
|
Jeanrenaud ACSN, Brooke BD, Oliver SV. Second generation effects of larval metal pollutant exposure on reproduction, longevity and insecticide tolerance in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors 2020; 13:4. [PMID: 31910892 PMCID: PMC6947826 DOI: 10.1186/s13071-020-3886-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
Background Members of the Anopheles gambiae complex breed in clean, sunlit temporary bodies of water. Anthropogenic pollution is, however, altering the breeding sites of the vectors with numerous biological effects. Although the effects of larval metal pollution have previously been examined, this study aims to assess the transgenerational effects of larval metal pollution on the major malaria vector An. arabiensis. Methods Two laboratory strains of An. arabiensis, SENN (insecticide-susceptible) and SENN-DDT (insecticide-resistant), were used in this study. After being bred in water polluted with either cadmium chloride, copper nitrate or lead nitrate, several life history characteristics that can have epidemiological implications (fertility, apoptotic damage to reproductive structures, adult longevity and insecticide tolerance) were examined in the adults and compared to those of adults bred in clean water. Results All metal treatments reduced fecundity in SENN, but only lead treatment reduced fertility in SENN-DDT. Cadmium chloride exposure resulted in apoptosis and deformation of the testes in both strains. After breeding generation F0 in polluted water, F1 larvae bred in clean water showed an increase in longevity in SENN-DDT adult females. In contrast, after breeding the F0 generation in polluted water, longevity was reduced after cadmium and copper exposure in the F1 generation. Larval metal exposure resulted in an increase in insecticide tolerance in adults of the SENN strain, with SENN-DDT adults gaining the greatest fold increase in insecticide tolerance. Conclusions This study demonstrates that a single exposure to metal pollution can have transgenerational effects that are not negated by subsequent breeding in clean water. ![]()
Collapse
Affiliation(s)
- Alexander C S N Jeanrenaud
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa. .,Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
7
|
Bassene H, Niang EHA, Fenollar F, Dipankar B, Doucouré S, Ali E, Michelle C, Raoult D, Sokhna C, Mediannikov O. 16S Metagenomic Comparison of Plasmodium falciparum-Infected and Noninfected Anopheles gambiae and Anopheles funestus Microbiota from Senegal. Am J Trop Med Hyg 2018; 99:1489-1498. [PMID: 30350766 DOI: 10.4269/ajtmh.18-0263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the context of the pre-elimination of malaria, biological control may provide an alternative or additional tool to current malaria control strategies. During their various stages of development, mosquitoes undergo subsequent changes in their associated microbiota, depending on their environment and nutritional status. Although Anopheles gambiae s.l. and Anopheles funestus are the two major malaria vectors in Senegal, the composition of their microbiota is not yet well known. In this study, we explored the microbiota of mosquitoes naturally infected or not by Plasmodium falciparum (Pf) using the 16S ribosomal RNA gene-based bacterial metagenomic approach. In both vector species, the microbiota was more diverse in Pf-infected samples than in the noninfected ones, although the total number of reads appeared to be higher in noninfected mosquitoes. Overall, the microbiota was different between the two vector species. Noteworthy, the bacterial microbiota was significantly different between Pf-positive and Pf-negative groups whatever the species, but was similar between individuals of the same infection status within a species. Overall, the phylum of Proteobacteria was the most predominant in both species, with bacteria of the genus Burkholderia outweighing the others in noninfected vectors. The presence of some specific bacterial species such as Asaia bogorensis, Enterobacter cloacae, Burkholderia fungorum, and Burkholderia cepacia was also observed in Pf-free samples only. These preliminary observations pave the way for further characterization of the mosquito microbiota to select promising bacterial candidates for potential use in an innovative approach to controlling malaria and overcoming the challenges to achieving a malaria-free world.
Collapse
Affiliation(s)
- Hubert Bassene
- Aix Marseille Université, IRD, Assistance Publique-Hopitaux Marseille, Service de Santé des Armées, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France.,Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International Université Cheikh Anta Diop-Institut de Recherche pour le Développement, Dakar, Sénégal
| | - El Hadji Amadou Niang
- Aix Marseille Université, IRD, AP-HM, Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France.,Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD) de Dakar, Dakar, Sénégal.,Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International Université Cheikh Anta Diop-Institut de Recherche pour le Développement, Dakar, Sénégal
| | - Florence Fenollar
- Aix Marseille Université, IRD, Assistance Publique-Hopitaux Marseille, Service de Santé des Armées, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Bachar Dipankar
- Aix Marseille Université, IRD, AP-HM, Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
| | - Souleymane Doucouré
- Aix Marseille Université, IRD, Assistance Publique-Hopitaux Marseille, Service de Santé des Armées, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France.,Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International Université Cheikh Anta Diop-Institut de Recherche pour le Développement, Dakar, Sénégal
| | - Essoham Ali
- Laboratoire d'Études et de Recherche en Statistique et Développement (LERSTAD), Université Gaston Berger de Saint Louis, St. Louis, Sénégal
| | - Caroline Michelle
- Aix Marseille Université, IRD, AP-HM, Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, AP-HM, Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
| | - Cheikh Sokhna
- Aix Marseille Université, IRD, Assistance Publique-Hopitaux Marseille, Service de Santé des Armées, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France.,Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Campus International Université Cheikh Anta Diop-Institut de Recherche pour le Développement, Dakar, Sénégal
| | - Oleg Mediannikov
- Aix Marseille Université, IRD, AP-HM, Microbes, Evolution, Phylogeny and Infection (MEPHI), Marseille, France
| |
Collapse
|