1
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
2
|
Meyer DF, Moumène A, Rodrigues V. Microbe Profile: Ehrlichia ruminantium - stealthy as it goes. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37994906 DOI: 10.1099/mic.0.001415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Graphical abstract
Summary of
Ehrlichia ruminantium
infection.
E. ruminantium
bacterium is typically spread to ruminants by bite from infected ticks. Following adhesion of infectious elementary bodies to host cell,
E. ruminantium
establishes the depicted intracellular biphasic lifestyle by the means of secreted effector proteins that hijack host cellular pathways. Replicating bacteria (reticulate bodies) fill a large cytoplasmic vacuole named morula inside mammalian or tick cells. Formation of this vacuole is critical for bacterial development and subsequent lysis of the host cell leading to the establishment of heartwater disease. Genetic diversity is one remarkable and biologically significant feature of pathogens in the
Anaplasmataceae
family, including
E. ruminantium
. The maximum-likelihood phylogenetic tree of four representative species of
Ehrlichia
(
E. chaffeensis
str. Arkansas,
E. canis
str. Jake,
E. muris
AS145,
E. ruminantium
str. Gardel) with
Wolbachia
endosymbiont of D. melanogaster as an outgroup was reconstructed on the basis of concatenated nucleic acid alignment of proteins shared by all species (core genomes) with 100 bootstrap resamplings. Major hosts of these bacteria are indicated. Mb, megabase. ORFs, open reading frames. (All images created by S. Mateus, C. Noroy. O. Gros and D.F. Meyer.)
Collapse
Affiliation(s)
- Damien F Meyer
- CIRAD, UMR ASTRE, Centre for Research and surveillance on Vector-borne diseases in the Caribbean, WOAH Reference Laboratory for Heartwater, F- 97170 Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
| | - Amal Moumène
- CIRAD, UMR ASTRE, Centre for Research and surveillance on Vector-borne diseases in the Caribbean, WOAH Reference Laboratory for Heartwater, F- 97170 Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
| | - Valérie Rodrigues
- CIRAD, UMR ASTRE, Centre for Research and surveillance on Vector-borne diseases in the Caribbean, WOAH Reference Laboratory for Heartwater, F- 97170 Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAE, Univ Montpellier, Montpellier, France
| |
Collapse
|
3
|
Li B, He S, Tan Z, Li A, Fan J, Zhao L, Zhang Z, Chu H. Impaired ESX-3 Induces Bedaquiline Persistence in Mycobacterium abscessus Growing Under Iron-Limited Conditions. SMALL METHODS 2023; 7:e2300183. [PMID: 37291735 DOI: 10.1002/smtd.202300183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/15/2023] [Indexed: 06/10/2023]
Abstract
ESX-3 is a secretion pathway which is essential for mycobactin-mediated iron acquisition under iron-limited conditions. Although present in all Mycobacterium sp., ESX-3 remains to be elucidated in Mycobacterium abscessus. In the study reported here, impaired ESX-3 seriously restricts the growth of M. abscesses under iron-limited conditions; growth is salvaged by functional ESX-3 or iron supplementation. Notably, impaired ESX-3 does not kill M. abscesses when environmental iron is insufficient but induces persistence to bedaquiline, a diarylquinoline class antibiotic used to treat multidrug-resistant mycobacteria. One potential mechanism contributing to persistence is the iron deficiency due to impaired ESX-3 suppressing succinate dehydrogenase activity, which dysregulates the tricarboxylic acid cycle and inactivates bedaquiline. Experiments conducted here also demonstrate that the regulator, MtrA, can bind ESX-3 and promote the survival of M. abscessus. As such, this study suggests that a novel pathway involving MtrA, ESX-3, iron metabolism, and the TCA cycle contributes to bedaquiline persistence in M. abscesses growing under iron-limited conditions.
Collapse
Affiliation(s)
- Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhili Tan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Anqi Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- School of Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
4
|
Luu GT, Little JC, Pierce EC, Morin M, Ertekin CA, Wolfe BE, Baars O, Dutton RJ, Sanchez LM. Metabolomics of bacterial-fungal pairwise interactions reveal conserved molecular mechanisms. Analyst 2023; 148:3002-3018. [PMID: 37259951 PMCID: PMC10330857 DOI: 10.1039/d3an00408b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacterial-fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial-fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecules in BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis sp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles (i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and that elucidating their role in complex communities should continue to be a priority.
Collapse
Affiliation(s)
- Gordon T Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| | - Jessica C Little
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Emily C Pierce
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
| | - Manon Morin
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
| | - Celine A Ertekin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| | - Benjamin E Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, 02155, USA
- Tufts University Sensory and Science Center, Medford, Massachusetts, 02155, USA
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093, USA
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, 92093, USA
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064, USA.
| |
Collapse
|
5
|
Luu GT, Little JC, Pierce EC, Morin M, Ertekin CA, Wolfe BE, Baars O, Dutton RJ, Sanchez LM. Metabolomics of bacterial-fungal pairwise interactions reveal conserved molecular mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532449. [PMID: 36993360 PMCID: PMC10054941 DOI: 10.1101/2023.03.13.532449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial-fungal interactions (BFIs) can shape the structure of microbial communities, but the small molecules mediating these BFIs are often understudied. We explored various optimization steps for our microbial culture and chemical extraction protocols for bacterial-fungal co-cultures, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that metabolomic profiles are mainly comprised of fungi derived features, indicating that fungi are the key contributors to small molecule mediated BFIs. LC-inductively coupled plasma MS (LC-ICP-MS) and MS/MS based dereplication using database searching revealed the presence of several known fungal specialized metabolites and structurally related analogues in these extracts, including siderophores such as desferrichrome, desferricoprogen, and palmitoylcoprogen. Among these analogues, a novel putative coprogen analogue possessing a terminal carboxylic acid motif was identified from Scopulariopsis spp. JB370, a common cheese rind fungus, and its structure was elucidated via MS/MS fragmentation. Based on these findings, filamentous fungal species appear to be capable of producing multiple siderophores with potentially different biological roles (i.e. various affinities for different forms of iron). These findings highlight that fungal species are important contributors to microbiomes via their production of abundant specialized metabolites and their role in complex communities should continue to be a priority.
Collapse
Affiliation(s)
- Gordon T. Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| | - Jessica C. Little
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, 60612
| | - Emily C. Pierce
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
| | - Manon Morin
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
| | - Celine A. Ertekin
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| | - Benjamin E. Wolfe
- Department of Biology, Tufts University, Medford, Massachusetts, 02155
- Tufts University Sensory and Science Center, Medford Massachusetts, 02155
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27607
| | - Rachel J. Dutton
- Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093
- Center for Microbiome Innovation, Jacobs School of Engineering, University of California San Diego, La Jolla, 92093
| | - Laura M. Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, 95064
| |
Collapse
|
6
|
Gordon JL, Oliva Chavez AS, Martinez D, Vachiery N, Meyer DF. Possible biased virulence attenuation in the Senegal strain of Ehrlichia ruminantium by ntrX gene conversion from an inverted segmental duplication. PLoS One 2023; 18:e0266234. [PMID: 36800354 PMCID: PMC9937504 DOI: 10.1371/journal.pone.0266234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/16/2022] [Indexed: 02/18/2023] Open
Abstract
Ehrlichia ruminantium is a tick-borne intracellular pathogen of ruminants that causes heartwater, a disease present in Sub-saharan Africa, islands in the Indian Ocean and the Caribbean, inducing significant economic losses. At present, three avirulent strains of E. ruminantium (Gardel, Welgevonden and Senegal isolates) have been produced by a process of serial passaging in mammalian cells in vitro, but unfortunately their use as vaccines do not offer a large range of protection against other strains, possibly due to the genetic diversity present within the species. So far no genetic basis for virulence attenuation has been identified in any E. ruminantium strain that could offer targets to facilitate vaccine production. Virulence attenuated Senegal strains have been produced twice independently, and require many fewer passages to attenuate than the other strains. We compared the genomes of a virulent and attenuated Senegal strain and identified a likely attenuator gene, ntrX, a global transcription regulator and member of a two-component system that is linked to environmental sensing. This gene has an inverted partial duplicate close to the parental gene that shows evidence of gene conversion in different E. ruminantium strains. The pseudogenisation of the gene in the avirulent Senegal strain occurred by gene conversion from the duplicate to the parent, transferring a 4 bp deletion which is unique to the Senegal strain partial duplicate amongst the wild isolates. We confirmed that the ntrX gene is not expressed in the avirulent Senegal strain by RT-PCR. The inverted duplicate structure combined with the 4 bp deletion in the Senegal strain can explain both the attenuation and the faster speed of attenuation in the Senegal strain relative to other strains of E. ruminantium. Our results identify nrtX as a promising target for the generation of attenuated strains of E. ruminantium by random or directed mutagenesis that could be used for vaccine production.
Collapse
Affiliation(s)
- Jonathan L. Gordon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | - Adela S. Oliva Chavez
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
| | | | | | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, CIRAD, INRAe, Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
7
|
Liu H, Knox CA, Jakkula LUMR, Wang Y, Peddireddi L, Ganta RR. Evaluating EcxR for Its Possible Role in Ehrlichia chaffeensis Gene Regulation. Int J Mol Sci 2022; 23:12719. [PMID: 36361509 PMCID: PMC9657007 DOI: 10.3390/ijms232112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 04/14/2024] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted intraphagosomal bacterium, is the causative agent of human monocytic ehrlichiosis. The pathogen also infects several other vertebrate hosts. E. chaffeensis has a biphasic developmental cycle during its growth in vertebrate monocytes/macrophages and invertebrate tick cells. Host- and vector-specific differences in the gene expression from many genes of E. chaffeensis are well documented. It is unclear how the organism regulates gene expression during its developmental cycle and for its adaptation to vertebrate and tick host cell environments. We previously mapped promoters of several E. chaffeensis genes which are recognized by its only two sigma factors: σ32 and σ70. In the current study, we investigated in assessing five predicted E. chaffeensis transcription regulators; EcxR, CtrA, MerR, HU and Tr1 for their possible roles in regulating the pathogen gene expression. Promoter segments of three genes each transcribed with the RNA polymerase containing σ70 (HU, P28-Omp14 and P28-Omp19) and σ32 (ClpB, DnaK and GroES/L) were evaluated by employing multiple independent molecular methods. We report that EcxR binds to all six promoters tested. Promoter-specific binding of EcxR to several gene promoters results in varying levels of gene expression enhancement. This is the first detailed molecular characterization of transcription regulators where we identified EcxR as a gene regulator having multiple promoter-specific interactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Duan N, Ma X, Cui H, Wang Z, Chai Z, Yan J, Li X, Feng Y, Cao Y, Jin Y, Bai F, Wu W, Rikihisa Y, Cheng Z. Insights into the mechanism regulating the differential expression of the P28-OMP outer membrane proteins in obligatory intracellular pathogen Ehrlichia chaffeensis. Emerg Microbes Infect 2021; 10:461-471. [PMID: 33660592 PMCID: PMC7971322 DOI: 10.1080/22221751.2021.1899054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ehrlichia chaffeensis causes human monocytic ehrlichiosis (HME), which is one of the most prevalent, life-threatening emerging infectious zoonoses. The life cycle of E. chaffeensis includes ticks and mammals, in which E. chaffeensis proteins are expressed differentially contributing to bacterial survival and infection. Among the E. chaffeensis P28-OMP outer membrane proteins, OMP-1B and P28 are predominantly expressed in tick cells and mammalian macrophages, respectively. The mechanisms regulating this differential expression have not been comprehensively studied. Here, we demonstrate that the transcriptional regulators EcxR and Tr1 regulate the differential expression of omp-1B and p28 in E. chaffeensis. Recombinant E. chaffeensis Tr1 bound to the promoters of omp-1B and p28, and transactivated omp-1B and p28 promoter-EGFP fusion constructs in Escherichia coli. The consensus sequence of Tr1 binding motifs was AC/TTATA as determined with DNase I footprint assay. Tr1 showed a higher affinity towards the p28 promoter than the omp-1B promoter as determined with surface plasmon resonance. EcxR activated the tr1 expression in response to a temperature decrease. At 37°C low level of Tr1 activated the p28 expression. At 25°C high level of Tr1 activated the omp-1B expression, while repressing the p28 expression by binding to an additional site upstream of the p28 gene. Our data provide insights into a novel mechanism mediated by Tr1 regulating E. chaffeensis differential gene expression, which may aid in the development of new therapeutics for HME.
Collapse
Affiliation(s)
- Nan Duan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Xiaohui Ma
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Heting Cui
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zhexuan Wang
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Zhouyi Chai
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Jiaqi Yan
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Xiaoxiao Li
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yingxing Feng
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yu Cao
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yongxin Jin
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Fang Bai
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Weihui Wu
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Zhihui Cheng
- Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| |
Collapse
|
9
|
Mutations in Ehrlichia chaffeensis Genes ECH_0660 and ECH_0665 Cause Transcriptional Changes in Response to Zinc or Iron Limitation. J Bacteriol 2021; 203:e0002721. [PMID: 33875547 PMCID: PMC8316085 DOI: 10.1128/jb.00027-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia chaffeensis causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's ECH_0660 gene, which encodes a phage head-to-tail connector protein, resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In this study, we describe the characterization of a cluster of seven genes spanning from ECH_0659 to ECH_0665, which contained four genes encoding bacterial phage proteins, including the ECH_0660 gene. Assessment of the promoter region upstream of the first gene of the seven genes (ECH_0659) in Escherichia coli demonstrated transcriptional enhancement under zinc and iron starvation conditions. Furthermore, transcription of the seven genes was significantly higher under zinc and iron starvation conditions for E. chaffeensis carrying a mutation in the ECH_0660 gene compared to the wild-type pathogen. In contrast, for the ECH_0665 gene mutant with the function disruption, transcription from the genes was mostly similar to that of the wild type or was moderately downregulated. Recently, we reported that this mutation caused a minimal impact on the pathogen's in vivo growth, as it persisted similarly to the wild type. The current study is the first to describe how zinc and iron contribute to E. chaffeensis biology. Specifically, we demonstrated that the functional disruption in the gene encoding the phage head-to-tail connector protein in E. chaffeensis results in the enhanced transcription of seven genes, including those encoding phage proteins, under zinc and iron limitation. IMPORTANCE Ehrlichia chaffeensis, a tick-transmitted bacterium, causes human monocytic ehrlichiosis by replicating within phagosomes of monocytes/macrophages. A function disruption mutation within the pathogen's gene encoding a phage head-to-tail connector protein resulted in the rapid clearance of the pathogen in vivo, while aiding in induction of sufficient immunity in a host to protect against wild-type infection challenge. In the current study, we investigated if the functional disruption in the phage head-to-tail connector protein gene caused transcriptional changes resulting from metal ion limitations. This is the first study describing how zinc and iron may contribute to E. chaffeensis replication.
Collapse
|
10
|
Revisiting Ehrlichia ruminantium Replication Cycle Using Proteomics: The Host and the Bacterium Perspectives. Microorganisms 2021; 9:microorganisms9061144. [PMID: 34073568 PMCID: PMC8229282 DOI: 10.3390/microorganisms9061144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium–host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.
Collapse
|
11
|
hTLR2 interacting peptides of pathogenic leptospiral outer membrane proteins. Microb Pathog 2021; 155:104895. [PMID: 33878396 DOI: 10.1016/j.micpath.2021.104895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
To adapt into the host system from moist environment Leptospira alter their gene expression by inducing differential expression of the genes encoding virulence factors. Knowledge about the molecular pathogenesis and virulent evolution remains limited to Leptospira. The pathogenic organism sense the environmental changes mainly through their outer membrane proteins that in-turn activates the signal transduction pathways to overcome the stress to adaptation into host system and to evade immunity. In this present study, we analyzed the expression profile of virulence associated OMPs regulated under various stress conditions like temperatures, iron deprivation, osmotic stress and low to high passages in single scale and characterized the selected proteins by MALDI-TOF MS/MS and their role in pathogenesis were predicted by implying in-silico analysis. To identify differential expression profile, the extracted OMPs were resolved through 2DE and compared the OMPs profile from various in-vivo like conditions in single scale and found 61 upregulated OMPs and three potentially virulent proteins were earmarked for their significance in pathogenesis. Further, the in-silico analysis revealed that differentially expressed protein has MHC-I T-cell, MHC-II T-cell and B-cell epitopes which showed an interaction between human TLR2 proteins confirmed by CABS docking and interaction network unveiled to understand the leptospiral virulent mechanism and host adaptation.
Collapse
|
12
|
Cenens W, Andrade MO, Llontop E, Alvarez-Martinez CE, Sgro GG, Farah CS. Bactericidal type IV secretion system homeostasis in Xanthomonas citri. PLoS Pathog 2020; 16:e1008561. [PMID: 32453788 PMCID: PMC7286519 DOI: 10.1371/journal.ppat.1008561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/10/2020] [Accepted: 04/18/2020] [Indexed: 11/19/2022] Open
Abstract
Several Xanthomonas species have a type IV secretion system (T4SS) that injects a cocktail of antibacterial proteins into neighbouring Gram-negative bacteria, often leading to rapid lysis upon cell contact. This capability represents an obvious fitness benefit since it can eliminate competition while the liberated contents of the lysed bacteria could provide an increase in the local availability of nutrients. However, the production of this Mega Dalton-sized molecular machine, with over a hundred subunits, also imposes a significant metabolic cost. Here we show that the chromosomal virB operon, which encodes the structural genes of this T4SS in X. citri, is regulated by the conserved global regulator CsrA. Relieving CsrA repression from the virB operon produced a greater number of T4SSs in the cell envelope and an increased efficiency in contact-dependent lysis of target cells. However, this was also accompanied by a physiological cost leading to reduced fitness when in co-culture with wild-type X. citri. We show that T4SS production is constitutive despite being downregulated by CsrA. Cells subjected to a wide range of rich and poor growth conditions maintain a constant density of T4SSs in the cell envelope and concomitant interbacterial competitiveness. These results show that CsrA provides a constant though partial repression on the virB operon, independent of the tested growth conditions, in this way controlling T4SS-related costs while at the same time maintaining X. citri's aggressive posture when confronted by competitors.
Collapse
Affiliation(s)
- William Cenens
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, São Paulo, SP, Brazil
| | - Maxuel O. Andrade
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, R. Giuseppe Máximo Scolfaro, Campinas, SP, Brazil
| | - Edgar Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, São Paulo, SP, Brazil
| | - Cristina E. Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, Brazil
| | - Germán G. Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, São Paulo, SP, Brazil
| | - Chuck S. Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 748, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Cabezas-Cruz A, Espinosa P, Alberdi P, de la Fuente J. Tick-Pathogen Interactions: The Metabolic Perspective. Trends Parasitol 2019; 35:316-328. [PMID: 30711437 DOI: 10.1016/j.pt.2019.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/03/2023]
Abstract
The first tick genome published in 2016 provided an invaluable tool for studying the molecular basis of tick-pathogen interactions. Metabolism is a key element in host-pathogen interactions. However, our knowledge of tick-pathogen metabolic interactions is very limited. Recently, a systems biology approach, using omics datasets, has revealed that tick-borne pathogen infection induces transcriptional reprograming affecting several metabolic pathways in ticks, facilitating infection, multiplication, and transmission. Results suggest that the response of tick cells to tick-borne pathogens is associated with tolerance to infection. Here we review our current understanding of the modulation of tick metabolism by tick-borne pathogens, with a focus on the model intracellular bacterium Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France.
| | - Pedro Espinosa
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
14
|
Best A, Abu Kwaik Y. Nutrition and Bipartite Metabolism of Intracellular Pathogens. Trends Microbiol 2019; 27:550-561. [PMID: 30655036 DOI: 10.1016/j.tim.2018.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/20/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
The host is a nutrient-rich niche for microbial pathogens, but one that comes with obstacles and challenges. Many intracellular pathogens like Legionella pneumophila, Coxiella burnetii, Listeria monocytogenes, and Chlamydia trachomatis have developed bipartite metabolism within their hosts. This style of metabolic regulation enables pathogen sensing of specific nutrients to engage them into catabolic and anabolic processes, and contributes to temporal and spatial pathogen phenotypic modulation. Not only have intracellular pathogens adapted their metabolism to the host, they have also acquired idiosyncratic strategies to exploit host nutritional supplies and intercept metabolites. Francisella tularensis and Anaplasma phagocytophilum alter host autophagy, Shigella flexneri intercepts all host pyruvate, while L. pneumophila induces host protein degradation and blocks protein translation. Strategies of pathogen manipulation of host nutrients could serve as therapeutic targets.
Collapse
Affiliation(s)
- Ashley Best
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, KY, USA; Center for Predictive Medicine, College of Medicine, University of Louisville, KY, USA.
| |
Collapse
|