1
|
Cao T, Gnanagobal H, Dang M, Chakraborty S, Hossain A, Vasquez I, Valderrama K, O'Brien N, Boyce D, Santander J. Influence of Vibrio anguillarum culture conditions on the efficacy of bacterin-based vaccines in lumpfish (Cyclopterus lumpus). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110133. [PMID: 39892679 DOI: 10.1016/j.fsi.2025.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Lumpfish (Cyclopterus lumpus) is used as cleaner fish to control sea lice infestations in Atlantic salmon (Salmo salar) farms across the North Atlantic. Vibrio anguillarum, the causative agent of vibriosis, is a recurrent bacterial pathogen affecting lumpfish. Bacterin-based vaccines are frequently used to control vibriosis in finfish, but their efficacy is not always consistent. Culture conditions significantly influence synthesis of bacterial outer membrane and secreted proteins, which are critical antigens, and thus impact the immunogenicity of bacterin-based vaccines. In this study, we assessed the effect of V. anguillarum culture conditions on vaccine efficacy in lumpfish. V. anguillarum was cultured under iron-limited at 15 °C, and iron-rich or iron-limited conditions at 28 °C with 2 % NaCl, and these cultures were used to prepare bacterins. A commercial vaccine was used as positive control, while PBS and PBS adjuvant were negative controls. Lumpfish were intraperitoneally immunized and challenged 12 weeks post-immunization with 10-100 times the LD50 dose of V. anguillarum. Bacterins prepared from V. anguillarum grown under iron-limited conditions at 28 °C with 2 % NaCl and mixed with adjuvant conferred the highest protection compared to other preparations and commercial vaccines. In contrast, bacterins derived from V. anguillarum cultured under iron-limited conditions at 15 °C conferred the lowest protection. Reverse vaccinology and transcriptomic analyses of V. anguillarum grown under optimal immunogenic conditions revealed 323 upregulated genes, of which 211 were high-antigenicity proteins suitable for subunit vaccines. This study provides critical knowledge for effective vaccine formulation against V. anguillarum and identifies potential antigens for subunit vaccine development.
Collapse
Affiliation(s)
- Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Nicole O'Brien
- Newfoundland and Labrador Provincial Government, Aquatic Animal Health Division, NL, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building (JBARB). Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
2
|
Xiao Y, Wang J, Sun P, Ding T, Li J, Deng Y. Formation and resuscitation of viable but non-culturable (VBNC) yeast in the food industry: A review. Int J Food Microbiol 2025; 426:110901. [PMID: 39243533 DOI: 10.1016/j.ijfoodmicro.2024.110901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The viable but non-culturable (VBNC) state is a survival strategy adopted by microorganisms in response to unfavorable conditions in the environment. VBNC cells are unable to form colonies but still maintain a low level of activity, posing a potential threat to food safety and public health. Therefore, the development of effective strategies to prevent the formation and resuscitation of VBNC cells of microorganisms is a key challenge in food science and microbiology research. However, current research on VBNC cells has primarily focused on bacteria, with relatively limited reports on fungi. This paper provides a comprehensive and systematic review of yeast in the VBNC state, discussing various factors that induce and facilitate resuscitation, along with detection methods and formation and recovery mechanisms. A comprehensive understanding of the induction and resuscitation of yeast in the VBNC state and exploration of its molecular mechanism hold significant implications for food safety and public health. It is imperative to enhance our comprehension of the underlying mechanisms and contributory factors pertaining to VBNC yeast, thereby facilitating the efficient management of the food fermentation process and ensuring the integrity of food quality and safety.
Collapse
Affiliation(s)
- Yang Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; School of Food Engineering, Qingdao Institute of Technology, Qingdao 266300, China
| | - Jiayang Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Pengdong Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Ting Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Jingyuan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China; Shandong Technology Innovation Center of Special Food, Qingdao 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| |
Collapse
|
3
|
Lin Y, Fang M, Liu J, Zhang Y, Yu Y. Transcriptomic analyses of Vibrio parahaemolyticus under the phenyllactic acid stress. Appl Microbiol Biotechnol 2024; 108:180. [PMID: 38285117 PMCID: PMC10824802 DOI: 10.1007/s00253-024-13024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Phenyllactic acid (PLA) generally recognized as a natural organic acid shows against Vibrio parahaemolyticus activity. In this study, V. parahaemolyticus ATCC17802 (Vp17802) was cultured under the stress of 1/2MIC PLA, and then the antibacterial mechanisms were explored via transcriptomics. The minimum inhibitory concentration (MIC) of PLA against Vp17802 was 3.2 mg/mL, and the time-kill analysis resulted that Vp17802 was inhibited. PLA was able to destroy the bacterial membrane, leading to the leakage of intracellular substances and decline of ATP levels. The RNA-sequencing analysis results indicated that 1616 significantly differentially expressed genes were identified, among which 190 were up-regulated and 1426 were down-regulated. Down-regulation of the icd2 gene in the TCA cycle mediates blockage of tyrosine metabolic, arginine biosynthesis, and oxidative phosphorylation, causing insufficient energy supply of Vp17802. Moreover, PLA could cause amino acids, metal ions, and phosphate transporters to be blocked, affecting the acquisition of nutrients. The treatment by PLA altered the expression of genes encoding functions involved in quorum sensing, flagellar assembly, and cell chemotaxis pathway, which may be interfering with the biofilm formation in Vp17802, reducing cell motility. Overall, 1.6 mg/mL PLA inhibited the growth of Vp17802 by disrupting to uptake of nutrients, cell metabolism, and the formation of biofilms. The results suggested a new direction for exploring the activity of PLA against Vp17802 and provided a theoretical basis for bacterial pathogen control in the food industry. KEY POINTS: •RNA sequencing was carried out to indicate the antibacterial mechanism of Vp17802. •The icd2 gene in the TCA cycle mediates blockage of metabolic of Vp17802. •The biofilm formation has interfered with 1.6 mg/mL PLA, which could reduce cell motility and virulence.
Collapse
Affiliation(s)
- Yilin Lin
- South China University of Technology, School of Food Sciences and Engineering, Guangzhou, 510640, China
| | - Meimei Fang
- South China University of Technology, School of Food Sciences and Engineering, Guangzhou, 510640, China
| | - Jun Liu
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Yehui Zhang
- Sericulture & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China.
| | - Yigang Yu
- South China University of Technology, School of Food Sciences and Engineering, Guangzhou, 510640, China.
- South China University of Technology, Research Center of Food Safety and Detection, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Wang J, Yang Z, Lu P, Sun Y, Xue S, Tang X, Xiao H. Effects of UV-B radiation on epiphytic bacterial communities on male and female Sargassum thunbergii. Sci Rep 2023; 13:3985. [PMID: 36894683 PMCID: PMC9998616 DOI: 10.1038/s41598-022-26494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/15/2022] [Indexed: 03/11/2023] Open
Abstract
The effects of increased UV-B radiation on macroalgae have been widely studied, but knowledge concerning the response of communities of algal epiphytic bacteria to increased UV-B radiation and differences between male and female algae is still lacking. Via 16S rDNA high-throughput sequencing technology, changes in the epiphytic bacterial communities on male and female S. thunbergii under increased UV-B radiation were studied in the lab. Under different UV-B radiation intensities, although the α diversity and community composition of epiphytic bacteria changed little, the β diversity indicated that the community structure of bacteria on S. thunbergii was obviously clustered, and the relative abundance of dominant bacteria and indicator species changed considerably. There were unique bacteria in each experimental group, and the bacteria whose abundance obviously changed were members of groups related to environmental resistance or adaptability. The variation in the abundance of epiphytic bacteria was different in male and female S. thunbergii, and the bacteria whose abundance greatly changed were mainly related to algal growth and metabolism. The abundance of genes with predicted functions related to metabolism, genetic information processing, environmental adaptation and infectious diseases changed with increased UV-B radiation, and those variations differed between epiphytic bacteria on male and female S. thunbergii. This study found that the algal epiphytic bacteria were influenced by the increase in UV-B radiation and underwent certain adaptations through adjustments to community structure and function, and this response was also affected by the sex of the macroalgae. These results are expected to serve as experimental basis and provide reference for further understanding of the response of algae epiphytic bacteria to enhanced UV-B radiation caused by the thinning of the ozone layer and the resulting changes in the relationship between algae and bacteria, which may change the community of the marine ecosystem and affect important marine ecological process.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peiyao Lu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yan Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
5
|
Gao X, Qian Q, Zhu Y, Chen Z, Xu J, Xu W, Jiang Q, Wang J, Zhang X. Transcriptomic and phenotype analysis revealed the role of rpoS in stress resistance and virulence of pathogenic Enterobacter cloacae from Macrobrachium rosenbergii. Front Microbiol 2022; 13:1030955. [PMID: 36439857 PMCID: PMC9684176 DOI: 10.3389/fmicb.2022.1030955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2023] Open
Abstract
Enterobacter cloacae is widely distributed in the aquatic environment, and has been determined as a novel pathogen of various aquatic animals recently. Our previous studies have indicated E. cloacae caused repeated infections in Macrobrachium rosenbergii, suggesting a high survival ability of the bacteria, and rpoS gene has been known to regulate stress response and virulence of many bacteria. In this study, the E. cloacae-rpoS RNAi strain was constructed by RNAi technology, and the regulation role of rpoS in stress resistance and virulence of E. cloacae was explored by transcriptomic and phenotype analysis. The transcriptome analysis showed a total of 488 differentially expressed genes (DEGs) were identified between rpoS-RNAi and wild-type strains, including 30 up-regulated genes and 458 down-regulated genes, and these down-regulated DEGs were mainly related to environmental response, biofilm formation, bacterial type II secretory system, flagellin, fimbrillin, and chemotactic protein which associated with bacterial survival and virulence. The phenotype changes also showed the E. cloacae-rpoS RNAi strain exhibited significantly decreasing abilities of survival in environmental stresses (starvation, salinity, low pH, and oxidative stress), biofilm production, movement, adhesion to cells, pathogenicity, and colonization to M. rosenbergii. These results reveal that rpoS plays an important regulatory role in environmental stress adaptation and virulence of E. cloacae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Banchi E, Manna V, Fonti V, Fabbro C, Celussi M. Improving environmental monitoring of Vibrionaceae in coastal ecosystems through 16S rRNA gene amplicon sequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67466-67482. [PMID: 36056283 PMCID: PMC9492620 DOI: 10.1007/s11356-022-22752-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The Vibrionaceae family groups genetically and metabolically diverse bacteria thriving in all marine environments. Despite often representing a minor fraction of bacterial assemblages, members of this family can exploit a wide variety of nutritional sources, which makes them important players in biogeochemical dynamics. Furthermore, several Vibrionaceae species are well-known pathogens, posing a threat to human and animal health. Here, we applied the phylogenetic placement coupled with a consensus-based approach using 16S rRNA gene amplicon sequencing, aiming to reach a reliable and fine-level Vibrionaceae characterization and identify the dynamics of blooming, ecologically important, and potentially pathogenic species in different sites of the northern Adriatic Sea. Water samples were collected monthly at a Long-Term Ecological Research network site from 2018 to 2021, and in spring and summer of 2019 and 2020 at two sites affected by depurated sewage discharge. The 41 identified Vibrionaceae species represented generally below 1% of the sampled communities; blooms (up to ~ 11%) mainly formed by Vibrio chagasii and Vibrio owensii occurred in summer, linked to increasing temperature and particulate matter concentration. Pathogenic species such as Vibrio anguilllarum, Vibrio tapetis, and Photobacterium damselae were found in low abundance. Depuration plant samples were characterized by a lower abundance and diversity of Vibrionaceae species compared to seawater, highlighting that Vibrionaceae dynamics at sea are unlikely to be related to wastewater inputs. Our work represents a further step to improve the molecular approach based on short reads, toward a shared, updated, and curated phylogeny of the Vibrionaceae family.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard, 54, 34151, Trieste, Italy.
| | - Vincenzo Manna
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard, 54, 34151, Trieste, Italy
| | - Viviana Fonti
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard, 54, 34151, Trieste, Italy
| | - Cinzia Fabbro
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard, 54, 34151, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics - OGS, Via A. Piccard, 54, 34151, Trieste, Italy
| |
Collapse
|
7
|
Survival Characteristics and Transcriptomic Analyses Reveal the Adaptive Response of the Aquatic Pathogen Non-O1/O139 Vibrio cholerae to Starvation Stress. Microbiol Spectr 2022; 10:e0193921. [PMID: 35532354 PMCID: PMC9241822 DOI: 10.1128/spectrum.01939-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Non-O1/O139 Vibrio cholerae is a pathogen of various aquatic organisms but requires major self-regulation to overcome environmental stress in the aquatic environment. However, its survival strategies under environmental stress are not well understood. The objective of this study was to describe the survival characteristics and changes in expression of stress resistance-related genes of non-O1/O139 V. cholerae after 6 months of starvation at room temperature. The results demonstrated that starved cells were still viable, exhibited shortened rods and shrinking surface, and maintained virulence to Macrobrachium rosenbergii. To investigate the changes in gene expression in non-O1/O139 V. cholerae under starvation stress, especially those involved in stress resistance, transcriptome profiles of starved and wild-type cells were determined. The differentially expressed genes (DEGs) in starved cells were identified, including 191 upregulated genes and 180 downregulated genes. Among these DEGs, the well-known stress resistance-related genes were upregulated significantly, including rpoS, rpoD, rpoN, rpoE, uspA, uspC, cspD, hslJ, etc. Gene Ontology (GO) analysis of the DEGs demonstrated that environmental adaptation-related categories, such as response to stimulus and signal transduction, were upregulated significantly in the starved cells, while cell motility was downregulated significantly. These DEGs were also enriched into 54 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including biofilm formation, two-component system, quorum sensing, flagellar assembly, bacterial chemotaxis stress resistance-related pathways, etc. The potential existence of long-starved non-O1/O139 V. cholerae bacteria in the aquatic environment may raise new concerns about this devastating pathogen in aquaculture. IMPORTANCE Non-O1/O139 V. cholerae is a causal agent of vibriosis that can be subject to nutrient insufficiency and cause high rates of mortality in aquatic animals. However, its molecular mechanisms of survival in response to starvation stress have been investigated only partially. Here, we demonstrate that under starvation stress, non-O1/O139 V. cholerae can survive over the long term and cause disease by dwarfing of the cell structure, upregulation of a series of stress resistance-related genes, and downregulation of flagellum assembly-related genes. This knowledge can help the development of intervention strategies to control non-O1/O139 V. cholerae infection in aquaculture.
Collapse
|
8
|
Jiao J, Zhao L, Huang L, Qin Y, Su Y, Zheng W, Zhang J, Yan Q. The contributions of fliG gene to the pathogenicity of Pseudomonas plecoglossicida and pathogen-host interactions with Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2021; 119:238-248. [PMID: 34634455 DOI: 10.1016/j.fsi.2021.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Pseudomonas plecoglossicida is a Gram-negative aerobic rod-shaped bacterium with polar flagella. It is the causative agent of visceral white spot disease in cultured fish, resulting in serious economic losses. In our previous study, RNA sequencing showed that the expression of the fliG gene in P. plecoglossicida is significantly up-regulated during infection of orange-spotted grouper (Epinephelus coioides). In this study, four P. plecoglossicida RNA interference (RNAi) mutants were successfully constructed by linking four short hairpin RNAs (shRNAs), which target different sites of the fliG gene, to pCM130/tac, respectively. The mRNA expression levels of the fliG gene in P. plecoglossicida were significantly decreased in four mutants. The shRNA-335 mutant (fliG-RNAi strain) showed the best silencing efficiency (88.2%) and was thus chosen for further analysis. Electron microscopy indicated that the flagella of the fliG-RNAi strain of P. plecoglossicida were shorter and finer than those of the wild type strain. The fliG-RNAi strain also showed significantly decreased mobility, chemotaxis, adhesion, and biofilm formation. Furthermore, compared with wild type strain infection, E. coioides infected with the fliG-RNAi strain exhibited a 0.5-d delay in the time of first death and 55% reduction in accumulated mortality, as well as milder splenic symptoms. RNAi of the fliG gene significantly affected the transcriptomes of both pathogen and host in the infected spleens of E. coioides. KEGG analysis revealed that the flagellar assembly pathway, bacterial chemotaxis pathway, and starch and sucrose metabolism pathway were significantly enriched in the pathogen at 3 days post infection (dpi). In contrast, the complement and coagulation cascade pathway and antigen processing and presentation pathway were significantly enriched in the host at 3 dpi. More immune-related pathways were enriched at 5 dpi and more differentially expressed genes were found in the complement and coagulation cascade and antigen processing and presentation pathways. Cytokine-cytokine receptor interaction, hematopoietic cell lineage, and IgA-producing intestinal immune network pathways were significantly enriched in the host at 5 dpi. These results indicate that fliG is an important virulence gene of P. plecoglossicida and contributes to the pathogenicity of P. plecoglossicida as well as pathogen-host interactions with E. coioides.
Collapse
Affiliation(s)
- Jiping Jiao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, 352000, China.
| |
Collapse
|
9
|
De Silva LADS, Wickramanayake MVKS, Heo GJ. Occurrence of Virulence and Antimicrobial Resistance Determinants in Vibrio harveyi Isolated from Marine Food Fish Cultured in Korea. Microb Drug Resist 2021; 28:255-265. [PMID: 34569863 DOI: 10.1089/mdr.2020.0618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio harveyi is a significant cause of infection in both marine animals and humans. It has been reported frequently in seafood-borne infections worldwide. This study was conducted to determine the potential health impact of the V. harveyi isolated from marine food fish cultured in Korea concerning their virulence and antimicrobial resistance. A total of 49 V. harveyi samples were isolated by biochemical tests and multiplex PCR. Phenotypic detection of virulence factors resulted DNase activity (81.63%), hemolysis (α = 75.51% and β = 12.25), gelatinase activity (71.43%), protease production (71.43%), phospholipase activity (65.31%), and lipase production (34.69%). Virulence genes, including VPI, tlh, tdh, toxR, VAC, and ctxAB, were detected in 57.14%, 44.90%, 36.73%, 22.45%, 12.24%, and 8.16% of the isolates, respectively. Resistance to ampicillin (77.55%), oxacillin (69.39%), nalidixic acid (53.06%), amoxicillin (46.94%), oxytetracycline (46.94%), colistin sulfate (34.69%), fosfomycin (34.69%), chloramphenicol (32.65%), streptomycin (32.65%), cephalothin (28.57%), oxytetracycline (26.53%), ceftriaxone (20.41%), erythromycin (14.29%), and cefoxitin (12.24%) was detected in disc diffusion assay. Most of the isolates were classified as multidrug resistant as they scored multiple antimicrobial resistance index ≥0.2. Furthermore, antimicrobial resistance genes tetB, qnrA, intI1 (Class 1 integron integrase), aac(6')-Ib, blaSHV, blaCTX-M, strA-strB, tetA, aphAI-IAB, qnrC, qnrS, and blaTEM were found in 81.63%, 67.35%, 61.22%, 46.94%, 44.90%, 44.90%, 36.73%, 18.37%, 10.20%, 10.20%, 8.16% and 6.12% of the isolates, respectively. In conclusion, the development of antimicrobial resistance among V. harveyi will ultimately reduce the efficacy of antimicrobials used for treating and can favor the development of more virulent V. harveyi strains.
Collapse
Affiliation(s)
- Liyana Arachchilage Dinithi S De Silva
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Gang-Joon Heo
- Laboratory of Aquatic Animal Medicine, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
10
|
Abstract
All multicellular organisms are associated with a diverse and specific community of microorganisms; consequently, the microbiome is of fundamental importance for health and fitness of the multicellular host. However, studies on microbiome contribution to host fitness are in their infancy, in particular, for less well-established hosts such as the moon jellyfish Aurelia aurita. Here, we studied the impact of the native microbiome on the asexual reproduction and on further fitness traits (health, growth, and feeding) of the basal metazoan due to induced changes in its microbiome. We observed significant impact on all fitness traits analyzed, in particular, in the absence of the protective microbial shield and when challenged with marine potentially pathogenic bacterial isolates. Notable is the identified crucial importance of the native microbiome for the generation of offspring, consequently affecting life cycle decisions. Thus, we conclude that the microbiome is essential for the maintenance of a healthy metaorganism. All multicellular organisms are associated with microbial communities, ultimately forming a metaorganism. Several studies conducted on well-established model organisms point to immunological, metabolic, and behavioral benefits of the associated microbiota for the host. Consequently, a microbiome can influence the physiology of a host; moreover, microbial community shifts can affect host health and fitness. The present study aimed to evaluate the significance and functional role of the native microbiota for life cycle transitions and fitness of the cnidarian moon jellyfish Aurelia aurita. A comprehensive host fitness experiment was conducted studying the polyp life stage and integrating 12 combinations of treatments with microbiota modification (sterile conditions, foreign food bacteria, and potential pathogens). Asexual reproduction, e.g., generation of daughter polyps, and the formation and release of ephyrae were highly affected in the absence of the native microbiota, ultimately resulting in a halt of strobilation and ephyra release. Assessment of further fitness traits showed that health, growth, and feeding rate were decreased in the absence and upon community changes of the native microbiota, e.g., when challenged with selected bacteria. Moreover, changes in microbial community patterns were detected by 16S rRNA amplicon sequencing during the course of the experiment. This demonstrated that six operational taxonomic units (OTUs) significantly correlated and explained up to 97% of fitness data variability, strongly supporting the association of impaired fitness with the absence/presence of specific bacteria. Conclusively, our study provides new insights into the importance and function of the microbiome for asexual reproduction, health, and fitness of the basal metazoan A. aurita.
Collapse
|
11
|
Liu Z, Zhao L, Huang L, Qin Y, Zhang J, Zhang J, Yan Q. Integration of RNA-seq and RNAi provides a novel insight into the immune responses of Epinephelus coioides to the impB gene of Pseudomonas plecoglossicida. FISH & SHELLFISH IMMUNOLOGY 2020; 105:135-143. [PMID: 32645517 DOI: 10.1016/j.fsi.2020.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Pseudomonas plecoglossicida is a Gram-negative bacterium that causes visceral white spot disease in Epinephelus coioides and leads to severe aquatic economic losses. The RNA-seq results of a previous study showed that the expression of the impB gene in P. plecoglossicida was significantly upregulated during infection. Four shRNAs were designed and synthesized to silence the impB gene in P. plecoglossicida, and the maximum silencing efficiency was 95.2%. Intraperitoneal injection of the impB-RNAi strain of P. plecoglossicida did not cause E. coioides death, and the spleens of infected fish did not show significant clinical symptoms. Although the injection of the mutant strain increased the antibody titer in E. coioides serum, it could not effectively protect E. coioides against wild strain infection. Compared with E. coioides infected with the wild type strain, the RNA-seq results for E. coioides infected with the impB-RNAi strain differed greatly. The KEGG enrichment analysis showed that key genes of the chemokine signalling pathway of E. coioides were downregulated by the silencing of impB in P. plecoglossicida. Infection with the impB-RNAi strain of P. plecoglossicida through injection did not produce good immune protection against E. coioides. The present study provides a novel insight into the immune responses of E. coioides to the impB gene of P. plecoglossicida.
Collapse
Affiliation(s)
- Zixu Liu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Jiaonan Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Jiaolin Zhang
- Key Laboratory of Special Aquatic Feed for Fujian, Fujian Tianma Technology Company Limited, Fuzhou, Fujian, 350308, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
12
|
Maiti B, Dubey S, Munang'andu HM, Karunasagar I, Karunasagar I, Evensen Ø. Application of Outer Membrane Protein-Based Vaccines Against Major Bacterial Fish Pathogens in India. Front Immunol 2020; 11:1362. [PMID: 32849496 PMCID: PMC7396620 DOI: 10.3389/fimmu.2020.01362] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/28/2020] [Indexed: 12/23/2022] Open
Abstract
Aquaculture is one of the fastest-growing food-producing sectors in the world. However, its growth is hampered by various disease problems due to infectious microorganisms, including Gram-negative bacteria in finfish aquaculture. Disease control in aquaculture by use of antibiotics is not recommended as it leads to antibiotic residues in the final product, selection, and spread of antibiotic resistance in the environment. Therefore, focus is on disease prevention by vaccination. All Gram-negative bacteria possess surface-associated outer membrane proteins (OMPs), some of which have long been recognized as potential vaccine candidates. OMPs are essential for maintaining the integrity and selective permeability of the bacterial membrane and play a key role in adaptive responses of bacteria such as solute and ion uptake, iron acquisition, antimicrobial resistance, serum resistance, and bile salt resistance and some adhesins have virulence attributes. Antigenic diversity among bacterial strains even within the same bacterial species has constrained vaccine developments, but OMPs that are conserved across serotypes could be used as potential candidates in vaccine development, and several studies have demonstrated their efficacy and potential as vaccine candidates. In this review, we will look into the application of OMPs for the design of vaccines based on recombinant proteins, subunit vaccines, chimeric proteins, and DNA vaccines as new-generation vaccine candidates for major bacterial pathogens of fish for sustainable aquaculture.
Collapse
Affiliation(s)
- Biswajit Maiti
- Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Saurabh Dubey
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Hetron Mweemba Munang'andu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research, Mangaluru, India
- NITTE (Deemed to be University), Mangaluru, India
| | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
13
|
Froelich BA, Daines DA. In hot water: effects of climate change on Vibrio-human interactions. Environ Microbiol 2020; 22:4101-4111. [PMID: 32114705 DOI: 10.1111/1462-2920.14967] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Sea level rise and the anthropogenic warming of the world's oceans is not only an environmental tragedy, but these changes also result in a significant threat to public health. Along with coastal flooding and the encroachment of saltwater farther inland comes an increased risk of human interaction with pathogenic Vibrio species, such as Vibrio cholerae, V. vulnificus and V. parahaemolyticus. This minireview examines the current literature for updates on the climatic changes and practices that impact the location and duration of the presence of Vibrio spp., as well as the infection routes, trends and virulence factors of these highly successful pathogens. Finally, an overview of current treatments and methods for the mitigation of both oral and cutaneous exposures are presented.
Collapse
Affiliation(s)
- Brett A Froelich
- Department of Biology, George Mason University, 10900 University Boulevard, Manassas, VA, 20110
| | - Dayle A Daines
- College of Sciences, Office of the Dean, Old Dominion University, Norfolk, VA, 23529
| |
Collapse
|
14
|
Zhang L, Hou L, Zhang S, Kou X, Li R, Wang S. Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Batallones V, Fernandez J, Farthing B, Shoemaker J, Qian KL, Phan K, Fung E, Rivera A, Van K, de la Cruz F, Ferreri AJ, Burinski K, Zhang J, Lizarraga V, Doan K, Rocha K, Traglia G, Ramirez MS, Tolmasky ME. Disruption of hmgA by DNA Duplication is Responsible for Hyperpigmentation in a Vibrio anguillarum Strain. Sci Rep 2019; 9:14589. [PMID: 31601906 PMCID: PMC6787238 DOI: 10.1038/s41598-019-51126-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
Vibrio anguillarum 531A, isolated from a diseased fish in the Atlantic Ocean, is a mixture composed of about 95 and 5% of highly pigmented cells (strain 531Ad) and cells with normal levels of pigmentation (strain 531Ac), respectively. Analysis of the V. anguillarum 531Ad DNA region encompassing genes involved in the tyrosine metabolism showed a 410-bp duplication within the hmgA gene that results in a frameshift and early termination of translation of the homogentisate 1,2-dioxygenase. We hypothesized that this mutation results in accumulation of homogentisate that is oxidized and polymerized to produce pyomelanin. Introduction in E. coli of recombinant clones carrying the V. anguillarum hppD (4-hydroxyphenylpyruvate-dioxygenase), and a mutated hmgA produced brown colored colonies. Complementation with a recombinant clone harboring hmgA restored the original color to the colonies confirming that in the absence of homogentisate 1,2-dioxygenase the intermediary in tyrosine catabolism homogentisate accumulates and undergoes nonenzymatic oxidation and polymerization resulting in high amounts of the brown pigment. Whole-genome sequence analysis showed that V. anguillarum 531 Ac and 531Ad differ in the hmgA gene mutation and 23 mutations, most of which locate to intergenic regions and insertion sequences.
Collapse
Affiliation(s)
- Veronica Batallones
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Jennifer Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Brett Farthing
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Jordan Shoemaker
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Keizen Li Qian
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Kimberly Phan
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Eric Fung
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Ashley Rivera
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Kevin Van
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Francesca de la Cruz
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Alexandra J Ferreri
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Krystle Burinski
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Jackie Zhang
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Vicente Lizarraga
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Kevin Doan
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Kenneth Rocha
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - German Traglia
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Maria S Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA.
| |
Collapse
|
16
|
Tang Y, Sun Y, Zhao L, Xu X, Huang L, Qin Y, Su Y, Yi G, Yan Q. Mechanistic insight into the roles of Pseudomonas plecoglossicida clpV gene in host-pathogen interactions with Larimichthys crocea by dual RNA-seq. FISH & SHELLFISH IMMUNOLOGY 2019; 93:344-353. [PMID: 31352116 DOI: 10.1016/j.fsi.2019.07.066] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economical important farmed fish in China. "Visceral White Spot Disease" caused by Pseudomonas plecoglossicida is a disease with a high mortality rate in cage-cultured L. crocea in recent years and resulted in heavy economy lossess. The dual RNA-seq results of previous study showed that the expression of clpV gene in P. plecoglossicida was significantly up-regulated during infection. RNAi significantly reduced the expression of clpV in P. plecoglossicida with maximum silencing efficiency of 96.1%. Compared with the wild type strain, infection of clpV-RNAi strain resulted in a delayed onset time and a 25% reduction in mortality of L. crocea, as well as lessening the symptoms of the spleen. The results of dual RNA-seq of L. crocea infected by clpV-RNAi strain of P. plecoglossicida changed considerably, compared with the counterpart infected with the wild strain. The KEGG enrichment analysis showed that Cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway and MAPK signaling pathway of L. crocea were most affected by the silence of clpV in P. plecoglossicida. RNAi of clpV resulted in the downregulation of genes in flagella assembly pathway and a weaker immune response of host.
Collapse
Affiliation(s)
- Yi Tang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yujia Sun
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Xiaojin Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Aquatic Products Co., Ltd., Ningde, Fujian, 352000, China
| | - Ganfeng Yi
- Fujian Dabeinong Aquaculture Science & Technology Co. Ltd., Zhangzhou, Fujian, 363502, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|