1
|
Ahmed S, Azli B, Abdul Razak M, Hair-Bejo M, Omar AR, Ideris A, Mat Isa N. Delayed nuclear localization of CRISPR/Cas9-modified fiber of fowl adenovirus serotype 8b reduces pathogenicity in Specific pathogen-free chicken embryonic liver cells. Microb Pathog 2025; 203:107482. [PMID: 40097027 DOI: 10.1016/j.micpath.2025.107482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
Fowl adenovirus (FAdV) poses incessant outbreaks to poultry production worldwide, and Inclusion body hepatitis (IBH) is a predominant FAdV infectious disease. Currently, limited vaccines are available in Malaysia to fight against the local predominant FAdV strain 8b isolate (FAdV-8b), posing a desperate demand for efficient vaccine development. The fiber protein of FAdV is one of the major constituents of the adenoviral capsid involved in the virulence of pathogens. Hence, the aim was to modify the fiber gene of FAdV-8b UPMT27 to develop a live attenuated FAdV vaccine via the gene-editing CRISPR/Cas9 technology. Primary specific pathogen-free (SPF) chicken embryonic liver cells (CELs) infected with the modified isolated (cfUPMT27) were reported with significantly reduced cytopathic effects, delayed viral localization into the nucleus, and low apoptotic rates. cfUPMT27 isolate also exhibited constant amino acid substitution of Y179D in subsequent passages. Meanwhile, the liver of cfUPMT27 inoculated-SPF chicken embryonic eggs (CEE) was observed with mild hydropericardium and reported with a delayed mortality at 6-days post-infection (dpi). This holistic, integrative study incorporating genetic, pathology, and immunology analysis proposed cfUPMT27 isolate as a candidate vaccine for FAdV infections, providing efficient future protection in chickens.
Collapse
Affiliation(s)
- Salisu Ahmed
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Department of Science Laboratory Technology, Jigawa State Polytechnic, 7040, Dutse, Jigawa state, Nigeria.
| | - Bahiyah Azli
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Mariatulqabtiah Abdul Razak
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Mohd Hair-Bejo
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Abdul Rahman Omar
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Aini Ideris
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Nurulfiza Mat Isa
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Zhang JF, Shang K, Kim SW, Park JY, Wei B, Jang HK, Kang M, Cha SY. Simultaneous construction strategy using two types of fluorescent markers for HVT vector vaccine against infectious bursal disease and H9N2 avian influenza virus by NHEJ-CRISPR/Cas9. Front Vet Sci 2024; 11:1385958. [PMID: 38812565 PMCID: PMC11135205 DOI: 10.3389/fvets.2024.1385958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
Recently, herpesvirus of turkeys (HVT), which was initially employed as a vaccine against Marek's disease (MD), has been shown to be a highly effective viral vector for producing recombinant vaccines that can simultaneously express the protective antigens of multiple poultry diseases. Prior to the development of commercial HVT-vectored dual-insert vaccines, the majority of HVT-vectored vaccines in use only contained a single foreign gene and were often generated using time-consuming and inefficient traditional recombination methods. The development of multivalent HVT-vectored vaccines that induce simultaneous protection against several avian diseases is of great value. In particular, efficacy interference between individual recombinant HVT vaccines can be avoided. Herein, we demonstrated the use of CRISPR/Cas9 gene editing technology for the insertion of an IBDV (G2d) VP2 expression cassette into the UL45/46 region of the recombinant rHVT-HA viral genome to generate the dual insert rHVT-VP2-HA recombinant vaccine. The efficacy of this recombinant virus was also evaluated in specific pathogen-free (SPF) chickens. PCR and sequencing results showed that the recombinant virus rHVT-VP2-HA was successfully constructed. Vaccination with rHVT-VP2-HA produced high levels of specific antibodies against IBDV (G2d) and H9N2/Y280. rHVT-VP2-HA can provide 100% protection against challenges with IBDV (G2d) and H9N2/Y280. These results demonstrate that rHVT-VP2-HA is a safe and highly efficacious vaccine for the simultaneous control of IBDV (G2d) and H9N2/Y280.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Ke Shang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, China
| | - Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan, Republic of Korea
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
- Bio Disease Control (BIOD) Co., Ltd., Iksan, Republic of Korea
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
3
|
Zhang JF, Kim SW, Shang K, Park JY, Choi YR, Jang HK, Wei B, Kang M, Cha SY. Protection of Chickens against H9N2 Avian Influenza Isolates with a Live Vector Vaccine Expressing Influenza Hemagglutinin Gene Derived from Y280 Avian Influenza Virus. Animals (Basel) 2024; 14:872. [PMID: 38539970 PMCID: PMC10967311 DOI: 10.3390/ani14060872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 11/11/2024] Open
Abstract
Since the outbreak of the H9N2/Y439 avian influenza virus in 1996, the Korean poultry industry has incurred severe economic losses. A novel possibly zoonotic H9N2 virus from the Y280-like lineage (H9N2/Y280) has been prevalent in Korea since June 2020, posing a threat to the poultry sector. Rapid mutation of influenza viruses urges the development of effective vaccines against newly generated strains. Thus, we engineered a recombinant virus rHVT/Y280 to combat H9N2/Y280. We integrated the hemagglutinin (HA) gene of the H9N2/Y280 strain into the US2 region of the herpesvirus of turkeys (HVT) Fc126 vaccine strain, utilizing CRISPR/Cas9 gene-editing technology. The successful construction of rHVT/Y280 was confirmed by polymerase chain reaction and sequencing, followed by efficacy evaluation. Four-day-old specific pathogen-free chickens received the rHVT/Y280 vaccine and were challenged with the H9N2/Y280 strain A21-MRA-003 at 3 weeks post-vaccination. In 5 days, there were no gross lesions among the vaccinated chickens. The rHVT/Y280 vaccine induced strong humoral immunity and markedly reduced virus shedding, achieving 100% inhibition of virus recovery in the cecal tonsil and significantly lowering tissue viral load. Thus, HVT vector vaccines expressing HA can be used for protecting poultry against H9N2/Y280. The induction of humoral immunity by live vaccines is vital in such cases. In summary, the recombinant virus rHVT/Y280 is a promising vaccine candidate for the protection of chickens against the H9N2/Y280.
Collapse
Affiliation(s)
- Jun-Feng Zhang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Sang-Won Kim
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Ke Shang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- College of Animal Science and Technology, Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471000, China
| | - Jong-Yeol Park
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Yu-Ri Choi
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Hyung-Kwan Jang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Bai Wei
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| | - Min Kang
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
- Bio Disease Control (BIOD) Co., Ltd., Iksan 54596, Republic of Korea
| | - Se-Yeoun Cha
- Department of Avian Diseases, College of Veterinary Medicine and Center for Avian Disease, Jeonbuk National University, Iksan 54596, Republic of Korea; (J.-F.Z.); (S.-W.K.); (K.S.); (J.-Y.P.); (Y.-R.C.); (H.-K.J.); (B.W.)
| |
Collapse
|
4
|
Zahedipour F, Zahedipour F, Zamani P, Jaafari MR, Sahebkar A. Harnessing CRISPR technology for viral therapeutics and vaccines: from preclinical studies to clinical applications. Virus Res 2024; 341:199314. [PMID: 38211734 PMCID: PMC10825633 DOI: 10.1016/j.virusres.2024.199314] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The CRISPR/Cas system, identified as a type of bacterial adaptive immune system, have attracted significant attention due to its remarkable ability to precisely detect and eliminate foreign genetic material and nucleic acids. Expanding upon these inherent capabilities, recent investigations have unveiled the potential of reprogrammed CRISPR/Cas 9, 12, and 13 systems for treating viral infections associated with human diseases, specifically targeting DNA and RNA viruses, respectively. Of particular interest is the RNA virus responsible for the recent global outbreak of coronavirus disease 2019 (COVID-19), which presents a substantial public health risk, coupled with limited efficacy of current prophylactic and therapeutic techniques. In this regard, the utilization of CRISPR/Cas technology offers a promising gene editing approach to overcome the limitations of conventional methods in managing viral infections. This comprehensive review provides an overview of the latest CRISPR/Cas-based therapeutic and vaccine strategies employed to combat human viral infections. Additionally, we discuss significant challenges and offer insights into the future prospects of this cutting-edge gene editing technology.
Collapse
Affiliation(s)
- Farzaneh Zahedipour
- Microbiology Department, Medical Sciences Branch, Islamic Azad University (IAU), Tehran, Iran
| | - Fatemeh Zahedipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Apinda N, Yao Y, Zhang Y, Muenthaisong A, Sangkakam K, Nambooppha B, Rittipornlertrak A, Koonyosying P, Nair V, Sthitmatee N. Efficiency of NHEJ-CRISPR/Cas9 and Cre-LoxP Engineered Recombinant Turkey Herpesvirus Expressing Pasteurella multocida OmpH Protein for Fowl Cholera Prevention in Ducks. Vaccines (Basel) 2023; 11:1498. [PMID: 37766174 PMCID: PMC10535566 DOI: 10.3390/vaccines11091498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fowl cholera is caused by the bacterium Pasteurella multocida, a highly transmissible avian ailment with significant global implications, leading to substantial economic repercussions. The control of fowl cholera outbreaks primarily relies on vaccination using traditional vaccines that are still in use today despite their many limitations. In this research, we describe the development of a genetically engineered herpesvirus of turkeys (HVT) that carries the OmpH gene from P. multocida integrated into UL 45/46 intergenic region using CRISPR/Cas9-NHEJ and Cre-Lox system editing. The integration and expression of the foreign cassettes were confirmed using polymerase chain reaction (PCR), indirect immunofluorescence assays, and Western blot assays. The novel recombinant virus (rHVT-OmpH) demonstrated stable integration of the OmpH gene even after 15 consecutive in vitro passages, along with similar in vitro growth kinetics as the parent HVT virus. The protective efficacy of the rHVT-OmpH vaccine was evaluated in vaccinated ducks by examining the levels of P. multocida OmpH-specific antibodies in serum samples using ELISA. Groups of ducks that received the rHVT-OmpH vaccine or the rOmpH protein with Montanide™ (SEPPIC, Paris, France) adjuvant exhibited high levels of antibodies, in contrast to the negative control groups that received the parental HVT or PBS. The recombinant rHVT-OmpH vaccine also provided complete protection against exposure to virulent P. multocida X-73 seven days post-vaccination. This outcome not only demonstrates that the HVT vector possesses many characteristics of an ideal recombinant viral vaccine vector for protecting non-chicken hosts, such as ducks, but also represents significant research progress in identifying a modern, effective vaccine candidate for combatting ancient infectious diseases.
Collapse
Affiliation(s)
- Nisachon Apinda
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| | - Yongxiu Yao
- The Pirbright Institute, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.N.)
| | - Yaoyao Zhang
- The Pirbright Institute, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.N.)
| | - Anucha Muenthaisong
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokwan Sangkakam
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| | - Boondarika Nambooppha
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| | - Amarin Rittipornlertrak
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| | - Pongpisid Koonyosying
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Venugopal Nair
- The Pirbright Institute, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.N.)
- Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK
| | - Nattawooti Sthitmatee
- Laboratory of Veterinary Vaccine and Biological Products, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.A.); (A.M.); (K.S.); (B.N.); (A.R.); (P.K.)
| |
Collapse
|
6
|
Apinda N, Muenthaisong A, Chomjit P, Sangkakam K, Nambooppha B, Rittipornlertrak A, Koonyosying P, Yao Y, Nair V, Sthitmatee N. Simultaneous Protective Immune Responses of Ducks against Duck Plague and Fowl Cholera by Recombinant Duck Enteritis Virus Vector Expressing Pasteurella multocida OmpH Gene. Vaccines (Basel) 2022; 10:vaccines10081358. [PMID: 36016245 PMCID: PMC9415155 DOI: 10.3390/vaccines10081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Duck enteritis virus and Pasteurella multocida are major duck pathogens that induce duck plague and fowl cholera, respectively, in ducks and other waterfowl populations, leading to high levels of morbidity and mortality. Immunization with live attenuated DEV vaccine containing P. multocida outer membrane protein H (OmpH) can provide the most effective protection against these two infectious diseases in ducks. We have recently reported the construction of recombinant DEV expressing P. multocida ompH gene using the CRISPR/Cas9 gene editing strategy with the goal of using it as a bivalent vaccine that can simultaneously protect against both infections. Here we describe the findings of our investigation into the systemic immune responses, potency and clinical protection induced by the two recombinant DEV-ompH vaccine constructs, where one copy each of the ompH gene was inserted into the DEV genome at the UL55-LORF11 and UL44-44.5 intergenic regions, respectively. Our study demonstrated that the insertion of the ompH gene exerted no adverse effect on the DEV parental virus. Moreover, ducklings immunized with the rDEV-ompH-UL55 and rDEV-ompH-UL44 vaccines induced promising levels of P. multocida OmpH-specific as well as DEV-specific antibodies and were completely protected from both diseases. Analysis of the humoral and cellular immunity confirmed the immunogenicity of both recombinant vaccines, which provided strong immune responses against DEV and P. multocida. This study not only provides insights into understanding the immune responses of ducks to recombinant DEV-ompH vaccines but also demonstrates the potential for simultaneous prevention of viral and bacterial infections using viral vectors expressing bacterial immunogens.
Collapse
Affiliation(s)
- Nisachon Apinda
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Anucha Muenthaisong
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Paweena Chomjit
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kanokwan Sangkakam
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Boondarika Nambooppha
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Amarin Rittipornlertrak
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pongpisid Koonyosying
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yongxiu Yao
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
- Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence: ; Tel.: +66-53-948-017; Fax: +66-53-948-041
| |
Collapse
|
7
|
Teng M, Zheng LP, Li HZ, Ma SM, Zhu ZJ, Chai SJ, Yao Y, Nair V, Zhang GP, Luo J. Pathogenicity and Pathotype Analysis of Henan Isolates of Marek’s Disease Virus Reveal Long-Term Circulation of Highly Virulent MDV Variant in China. Viruses 2022; 14:v14081651. [PMID: 36016273 PMCID: PMC9413509 DOI: 10.3390/v14081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years, outbreaks of Marek’s disease (MD) have been frequently reported in vaccinated chicken flocks in China. Herein, we have demonstrated that four Marek’s disease virus (MDV) isolates, HN502, HN302, HN304, and HN101, are all pathogenic and oncogenic to hosts. Outstandingly, the HN302 strain induced 100% MD incidence, 54.84% mortality, and 87.10% tumor incidence, together with extensive atrophy of immune organs. Pathotyping of HN302 was performed in comparison to a standard very virulent (vv) MDV strain Md5. We found that both CVI988 and HVT vaccines significantly reduced morbidity and mortality induced by HN302 or Md5 strains, but the protection indices (PIs) provided by these two vaccines against HN302 were significantly lower (27.03%) or lower (33.33%) than that against Md5, which showed PIs of 59.89% and 54.29%, respectively. These data suggested that HN302 possesses a significant higher virulence than Md5 and at least could be designated as a vvMDV strain. Together with our previous phylogenetic analysis on MDV-1 meq genes, we have presently suggested HN302 to be a typical highly virulent MDV variant belonging to an independent Chinese branch. To our knowledge, this is the first report to provide convincible evidence to identify a pathogenic MDV variant strain with a higher virulence than Md5 in China, which may have emerged and circulating in poultry farms in China for a long time and involved in the recent MD outbreaks.
Collapse
Affiliation(s)
- Man Teng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.T.); (L.-P.Z.); (H.-Z.L.); (S.-M.M.); (Z.-J.Z.); (S.-J.C.)
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lu-Ping Zheng
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.T.); (L.-P.Z.); (H.-Z.L.); (S.-M.M.); (Z.-J.Z.); (S.-J.C.)
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hui-Zhen Li
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.T.); (L.-P.Z.); (H.-Z.L.); (S.-M.M.); (Z.-J.Z.); (S.-J.C.)
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China;
| | - Sheng-Ming Ma
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.T.); (L.-P.Z.); (H.-Z.L.); (S.-M.M.); (Z.-J.Z.); (S.-J.C.)
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Zhi-Jian Zhu
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.T.); (L.-P.Z.); (H.-Z.L.); (S.-M.M.); (Z.-J.Z.); (S.-J.C.)
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shu-Jun Chai
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.T.); (L.-P.Z.); (H.-Z.L.); (S.-M.M.); (Z.-J.Z.); (S.-J.C.)
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU240NF, UK; (Y.Y.); (V.N.)
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Ash Road, Guildford, Surrey GU240NF, UK; (Y.Y.); (V.N.)
| | - Gai-Ping Zhang
- International Joint Research Center of National Animal Immunology & College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jun Luo
- Key Laboratory of Animal Immunology, Ministry of Agriculture and Rural Affairs of China & Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (M.T.); (L.-P.Z.); (H.-Z.L.); (S.-M.M.); (Z.-J.Z.); (S.-J.C.)
- UK-China Centre of Excellence for Research on Avian Diseases, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
- Correspondence: ; Tel.: +86-(0)371-65756056
| |
Collapse
|
8
|
Liu Z, Kong Z, Chen M, Shang Y. Design of live-attenuated animal vaccines based on pseudorabies virus platform. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00044-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AbstractPseudorabies virus (PRV) is a double-stranded DNA virus with a genome approximating 150 kb in size. PRV contains many non-essential genes that can be replaced with genes encoding heterogenous antigens without affecting viral propagation. With the ability to induce cellular, humoral and mucosal immune responses in the host, PRV is considered to be an ideal and potential live vector for generation of animal vaccines. In this review, we summarize the advances in attenuated recombinant PRVs and design of PRV-based live vaccines as well as the challenge of vaccine application.
Collapse
|
9
|
Apinda N, Yao Y, Zhang Y, Reddy VRAP, Chang P, Nair V, Sthitmatee N. CRISPR/Cas9 Editing of Duck Enteritis Virus Genome for the Construction of a Recombinant Vaccine Vector Expressing ompH Gene of Pasteurella multocida in Two Novel Insertion Sites. Vaccines (Basel) 2022; 10:vaccines10050686. [PMID: 35632442 PMCID: PMC9147145 DOI: 10.3390/vaccines10050686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Duck enteritis virus (DEV) and Pasteurella multocida, the causative agent of duck plague and fowl cholera, are acute contagious diseases and leading causes of morbidity and mortality in duck. The NHEJ-CRISPR/Cas9-mediated gene editing strategy, accompanied with the Cre–Lox system, have been employed in the present study to show that two new sites at UL55-LORF11 and UL44-44.5 loci in the genome of the attenuated Jansen strain of DEV can be used for the stable expression of the outer membrane protein H (ompH) gene of P. multocida that could be used as a bivalent vaccine candidate with the potential of protecting ducks simultaneously against major viral and bacterial pathogens. The two recombinant viruses, DEV-OmpH-V5-UL55-LORF11 and DEV-OmpH-V5-UL44-44.5, with the insertion of ompH-V5 gene at the UL55-LORF11 and UL44-44.5 loci respectively, showed similar growth kinetics and plaque size, compared to the wildtype virus, confirming that the insertion of the foreign gene into these did not have any detrimental effects on DEV. This is the first time the CRISPR/Cas9 system has been applied to insert a highly immunogenic gene from bacteria into the DEV genome rapidly and efficiently. This approach offers an efficient way to introduce other antigens into the DEV genome for multivalent vector.
Collapse
Affiliation(s)
- Nisachon Apinda
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Yongxiu Yao
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | - Yaoyao Zhang
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | | | - Pengxiang Chang
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
| | - Venugopal Nair
- The Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (Y.Y.); (Y.Z.); (V.R.A.P.R.); (P.C.); (V.N.)
- Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
- Department of Zoology, University of Oxford, Oxford OX1 2JD, UK
| | - Nattawooti Sthitmatee
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-948-017; Fax: +66-53-948-041
| |
Collapse
|
10
|
Bayoumi M, Munir M. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction. Front Microbiol 2021; 12:743580. [PMID: 34899631 PMCID: PMC8664230 DOI: 10.3389/fmicb.2021.743580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Prokaryotes have evolutionarily acquired an immune system to fend off invading mobile genetic elements, including viral phages and plasmids. Through recognizing specific sequences of the invading nucleic acid, prokaryotes mediate a subsequent degradation process collectively referred to as the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) (CRISPR-Cas) system. The CRISPR-Cas systems are divided into two main classes depending on the structure of the effector Cas proteins. Class I systems have effector modules consisting of multiple proteins, while class II systems have a single multidomain effector. Additionally, the CRISPR-Cas systems can also be categorized into types depending on the spacer acquisition components and their evolutionary features, namely, types I-VI. Among CRISPR/Cas systems, Cas9 is one of the most common multidomain nucleases that identify, degrade, and modulate DNA. Importantly, variants of Cas proteins have recently been found to target RNA, especially the single-effector Cas13 nucleases. The Cas13 has revolutionized our ability to study and perturb RNAs in endogenous microenvironments. The Cas13 effectors offer an excellent candidate for developing novel research tools in virological and biotechnological fields. Herein, in this review, we aim to provide a comprehensive summary of the recent advances of Cas13s for targeting viral RNA for either RNA-mediated degradation or CRISPR-Cas13-based diagnostics. Additionally, we aim to provide an overview of the proposed applications that could revolutionize our understanding of viral-host interactions using Cas13-mediated approaches.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
11
|
Methods for the Manipulation of Herpesvirus Genome and the Application to Marek's Disease Virus Research. Microorganisms 2021; 9:microorganisms9061260. [PMID: 34200544 PMCID: PMC8228275 DOI: 10.3390/microorganisms9061260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Herpesviruses are a group of double-strand DNA viruses that infect a wide range of hosts, including humans and animals. In the past decades, numerous methods have been developed to manipulate herpesviruses genomes, from the introduction of random mutations to specific genome editing. The development of genome manipulation methods has largely advanced the study of viral genes function, contributing not only to the understanding of herpesvirus biology and pathogenesis, but also the generation of novel vaccines and therapies to control and treat diseases. In this review, we summarize the major methods of herpesvirus genome manipulation with emphasis in their application to Marek’s disease virus research.
Collapse
|