1
|
Richter J, Cork AJ, Ong Y, Keller N, Hayes AJ, Schembri MA, Jennison AV, Davies MR, Schroder K, Walker MJ, Brouwer S. Characterization of a novel covS SNP identified in Australian group A Streptococcus isolates derived from the M1 UK lineage. mBio 2025; 16:e0336624. [PMID: 39688411 PMCID: PMC11796353 DOI: 10.1128/mbio.03366-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Group A Streptococcus (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1UK lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections. However, the basis for its evolutionary success is not yet fully understood. During the transition to systemic disease, the M1 serotype is known to give rise to spontaneous mutations in the control of virulence two-component regulatory system (CovRS) that confer a fitness advantage during invasive infections. Mutations that inactivate CovS function result in the de-repression of key GAS virulence factors such as streptolysin O (SLO), a pore-forming toxin and major trigger of inflammasome/interleukin-1β-dependent inflammation. Conversely, expression of the streptococcal cysteine protease SpeB, which is required during initial stages of colonization and onset of invasive disease, is typically lost in such mutants. In this study, we identified and characterized a novel covS single nucleotide polymorphism detected in three separate invasive M1UK isolates. The resulting CovSAla318Val mutation caused a significant upregulation of SLO resulting in increased inflammasome activation in human THP-1 macrophages, indicating an enhanced inflammatory potential. Surprisingly, SpeB production was unaffected. Site-directed mutagenesis was performed to assess the impact of this mutation on virulence and global gene expression. We found that the CovSAla318Val mutation led to subtle, virulence-specific changes of the CovRS regulon compared to previously characterized covS mutations, highlighting an unappreciated level of complexity in CovRS-dependent gene regulation. Continued longitudinal surveillance is warranted to determine whether this novel covS mutation will expand in the M1UK lineage.IMPORTANCEThe M1UK lineage of GAS has contributed to a recent global upsurge in scarlet fever and invasive infections. Understanding how GAS can become more virulent is critical for infection control and identifying new treatment approaches. The two-component CovRS system, comprising the sensor kinase CovS and transcription factor CovR, is a central regulator of GAS virulence genes. In the M1 serotype, covRS mutations are associated with an invasive phenotype. Such mutations have not been fully characterized in the M1UK lineage. This study identified a novel covS mutation in invasive Australian M1UK isolates that resulted in a more nuanced virulence gene regulation compared to previously characterized covS mutations. A representative isolate displayed upregulated SLO production and triggered amplified interleukin-1β secretion in infected human macrophages, indicating an enhanced inflammatory potential. These findings underscore the need for comprehensive analyses of covRS mutants to fully elucidate their contribution to M1UK virulence and persistence.
Collapse
Affiliation(s)
- Johanna Richter
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Amanda J. Cork
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Yvette Ong
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadia Keller
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J. Hayes
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Amy V. Jennison
- Public and Environmental Health, Pathology Queensland, Queensland Health, Coopers Plains, Queensland, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark J. Walker
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Stephan Brouwer
- Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
McEwan TBD, De Oliveira DMP, Stares EK, Hartley-Tassell LE, Day CJ, Proctor EJ, Nizet V, Walker MJ, Jennings MP, Sluyter R, Sanderson-Smith ML. M proteins of group A Streptococcus bind hyaluronic acid via arginine-arginine/serine-arginine motifs. FASEB J 2024; 38:e70123. [PMID: 39436142 DOI: 10.1096/fj.202401301r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Tissue injury, including extracellular matrix (ECM) degradation, is a hallmark of group A Streptococcus (GAS) skin infection and is partially mediated by M proteins which possess lectin-like properties. Hyaluronic acid is a glycosaminoglycan enriched in the cutaneous ECM, yet an interaction with M proteins has yet to be explored. This study revealed that hyaluronic acid binding was conserved across phylogenetically diverse M proteins, mediated by RR/SR motifs predominantly localized in the C repeat region. Keratinocyte wound healing was decreased through the recruitment of hyaluronic acid by M proteins in an M type-specific manner. GAS strains 5448 (M1 serotype) and ALAB49 (M53 serotype) also bound hyaluronic acid via M proteins, but hyaluronic acid could increase bacterial adherence independently of M proteins. The identification of host-pathogen mechanisms that affect ECM composition and cell repair responses may facilitate the development of nonantibiotic therapeutics that arrest GAS disease progression in the skin.
Collapse
Affiliation(s)
- Tahnee B-D McEwan
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - David M P De Oliveira
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Emily K Stares
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Christopher J Day
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Emma-Jayne Proctor
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Mark J Walker
- Institute for Molecular Biosciences, The Centre for Superbug Solutions, The University of Queensland, St Lucia, Queensland, Australia
| | - Michael P Jennings
- Institute for Biomedicine and Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ronald Sluyter
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L Sanderson-Smith
- Molecular Horizons Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
3
|
Williams JG, Sluyter R, Sanderson-Smith ML. Streptococcus pyogenes emm98.1 variants activate inflammatory caspases in human neutrophils. Virulence 2023; 14:2264090. [PMID: 37830540 PMCID: PMC10578187 DOI: 10.1080/21505594.2023.2264090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
ABBREVIATIONS CovRS, control of virulence regulatory system; GAS, Group A Streptococcus; PMN, polymorphonuclear leukocyte.
Collapse
Affiliation(s)
- Jonathan G. Williams
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L. Sanderson-Smith
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
4
|
Shumba P, Sura T, Moll K, Chakrakodi B, Tölken LA, Hoßmann J, Hoff KJ, Hyldegaard O, Nekludov M, Svensson M, Arnell P, Skrede S, Norrby-Teglund A, Siemens N. Neutrophil-derived reactive agents induce a transient SpeB negative phenotype in Streptococcus pyogenes. J Biomed Sci 2023; 30:52. [PMID: 37430325 DOI: 10.1186/s12929-023-00947-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Streptococcus pyogenes (group A streptococci; GAS) is the main causative pathogen of monomicrobial necrotizing soft tissue infections (NSTIs). To resist immuno-clearance, GAS adapt their genetic information and/or phenotype to the surrounding environment. Hyper-virulent streptococcal pyrogenic exotoxin B (SpeB) negative variants caused by covRS mutations are enriched during infection. A key driving force for this process is the bacterial Sda1 DNase. METHODS Bacterial infiltration, immune cell influx, tissue necrosis and inflammation in patient´s biopsies were determined using immunohistochemistry. SpeB secretion and activity by GAS post infections or challenges with reactive agents were determined via Western blot or casein agar and proteolytic activity assays, respectively. Proteome of GAS single colonies and neutrophil secretome were profiled, using mass spectrometry. RESULTS Here, we identify another strategy resulting in SpeB-negative variants, namely reversible abrogation of SpeB secretion triggered by neutrophil effector molecules. Analysis of NSTI patient tissue biopsies revealed that tissue inflammation, neutrophil influx, and degranulation positively correlate with increasing frequency of SpeB-negative GAS clones. Using single colony proteomics, we show that GAS isolated directly from tissue express but do not secrete SpeB. Once the tissue pressure is lifted, GAS regain SpeB secreting function. Neutrophils were identified as the main immune cells responsible for the observed phenotype. Subsequent analyses identified hydrogen peroxide and hypochlorous acid as reactive agents driving this phenotypic GAS adaptation to the tissue environment. SpeB-negative GAS show improved survival within neutrophils and induce increased degranulation. CONCLUSIONS Our findings provide new information about GAS fitness and heterogeneity in the soft tissue milieu and provide new potential targets for therapeutic intervention in NSTIs.
Collapse
Affiliation(s)
- Patience Shumba
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Thomas Sura
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Bhavya Chakrakodi
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Lea A Tölken
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| | - Jörn Hoßmann
- Helmholtz Center for Infection Research, Brunswick, Germany
| | - Katharina J Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany
| | - Ole Hyldegaard
- Department of Anaesthesia, Head and Orthopedic Center, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nekludov
- Department of Anaesthesia, Surgical Services and Intensive Care, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Per Arnell
- Department of Anaesthesiology and Intensive Care Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
5
|
Bae S, Gu H, Gwon MG, An HJ, Han SM, Lee SJ, Leem J, Park KK. Therapeutic Effect of Bee Venom and Melittin on Skin Infection Caused by Streptococcus pyogenes. Toxins (Basel) 2022; 14:663. [PMID: 36287932 PMCID: PMC9611473 DOI: 10.3390/toxins14100663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Streptococcus pyogenes (S. pyogenes) bacteria cause almost all primary skin infections in humans. Bee venom (BV) and melittin (Mel) have multiple effects, including antibacterial and anti-inflammatory activities. This study aims to demonstrate their effects on bacterial mouse skin infection using S. pyogenes. The dorsal skin was tape-stripped, then S. pyogenes was topically applied. BV or Mel were topically applied to the lesion. The tissues were stained with hematoxylin and eosin, while immunohistochemical staining was performed with anti-neutrophil. S. pyogenes-infected skin revealed increased epidermal and dermal layers, but it was reduced in the BV and Mel groups. Finding increased neutrophils in the mice infected with S. pyogenes, but the BV and Mel mice showed decreased expression. These results suggest that BV and Mel treatments could reduce the inflammatory reactions and help improve lesions induced by S. pyogenes skin infection. This study provides additional assessment of the potential therapeutic effects of BV and Mel in managing skin infection caused by S. pyogenes, further suggesting that it could be a candidate for developing novel treatment alternative for streptococcal skin infections.
Collapse
Affiliation(s)
- Seongjae Bae
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea
| | - Hyemin Gu
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea
| | - Mi-Gyeong Gwon
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea
| | - Hyun-Jin An
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea
| | - Sang-Mi Han
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 54875, Korea
| | - Sun-Jae Lee
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Gyeongsan 42472, Korea
| |
Collapse
|
6
|
McEwan TBD, Sanderson-Smith ML, Sluyter R. Purinergic Signalling in Group A Streptococcus Pathogenesis. Front Immunol 2022; 13:872053. [PMID: 35422801 PMCID: PMC9002173 DOI: 10.3389/fimmu.2022.872053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- T B-D McEwan
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - M L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - R Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Wilde S, Johnson AF, LaRock CN. Playing With Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front Cell Infect Microbiol 2021; 11:704099. [PMID: 34295841 PMCID: PMC8290871 DOI: 10.3389/fcimb.2021.704099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus is an obligate human pathogen that is a major cause of infectious morbidity and mortality. It has a natural tropism for the oropharynx and skin, where it causes infections with excessive inflammation due to its expression of proinflammatory toxins and other virulence factors. Inflammation directly contributes to the severity of invasive infections, toxic shock syndrome, and the induction of severe post-infection autoimmune disease caused by autoreactive antibodies. This review discusses what is known about how the virulence factors of Group A Streptococcus induce inflammation and how this inflammation can promote disease. Understanding of streptococcal pathogenesis and the role of hyper-immune activation during infection may provide new therapeutic targets to treat the often-fatal outcome of severe disease.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, and Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Richter J, Brouwer S, Schroder K, Walker MJ. Inflammasome activation and IL-1β signalling in group A Streptococcus disease. Cell Microbiol 2021; 23:e13373. [PMID: 34155776 DOI: 10.1111/cmi.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes significant morbidity and mortality worldwide. Recent clinical evidence suggests that the inflammatory marker interleukin-1β (IL-1β) plays an important role in GAS disease progression, and presents a potential target for therapeutic intervention. Interaction with GAS activates the host inflammasome pathway to stimulate production and secretion of IL-1β, but GAS can also stimulate IL-1β production in an inflammasome-independent manner. This review highlights progress that has been made in understanding the importance of host cell inflammasomes and IL-1 signalling in GAS disease, and explores challenges and unsolved problems in this host-pathogen interaction. TAKE AWAY: Inflammasome signalling during GAS infection is an emerging field of research. GAS modulates the NLRP3 inflammasome pathway through multiple mechanisms. SpeB contributes to IL-1β production independently of the inflammasome pathway. IL-1β signalling can be host-protective, but also drive severe GAS disease.
Collapse
Affiliation(s)
- Johanna Richter
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kate Schroder
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|