1
|
Silva VD, Shridhar PB, Gonzalez OD, Dick EJ, Shivanna V. Pseudomonas Infections in the Common Marmoset (Callithrix jacchus): Gross and Histopathological Findings. J Med Primatol 2025; 54:e70016. [PMID: 40166954 PMCID: PMC11975447 DOI: 10.1111/jmp.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Common marmosets (Callithrix jacchus) are a New World nonhuman primate (NHP) whose popularity as a research model continues to expand. Marmosets were identified as the predominant NHP species that is susceptible to spontaneous Pseudomonas infections based on a 27-year survey in a primate colony, encompassing several NHP species. 26 common marmosets were retrospectively identified and evaluated for spontaneous Pseudomonas spp. infections. Clinical symptoms included lethargy, weight loss, gastrointestinal issues (diarrhea, bloating, vomiting, poor appetite), increased respiratory effort, and difficulty urinating. Affected organs (larynx, lungs, liver, gallbladder, intestines, colon, uterus, and urinary bladder) appeared discolored, distended, or enlarged. Microscopic findings included inflammatory infiltrates, edema, necrosis, hemorrhage, and pseudomembranous lesions. Only animals with clinical symptoms or gross evidence of bacterial infection were cultured; therefore, the actual incidence of Pseudomonas spp. infections is unknown. We present the common and uncommon lesions associated with Pseudomonas infections in the common marmoset.
Collapse
Affiliation(s)
- Victoria D Silva
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
| | - Pragathi B Shridhar
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
| | - Olga D Gonzalez
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
| | - Edward J Dick
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
| | - Vinay Shivanna
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX
| |
Collapse
|
2
|
Marena Guzman R, Voth DE. Embracing multiple infection models to tackle Q fever: A review of in vitro, in vivo, and lung ex vivo models. Cell Immunol 2024; 405-406:104880. [PMID: 39357100 DOI: 10.1016/j.cellimm.2024.104880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Multiple animal and cell culture models are employed to study pathogenesis of Coxiella burnetii, the causative agent of acute and chronic human Q fever. C. burnetii is a lung pathogen that is aerosolized in contaminated products and inhaled by humans to cause acute disease that can disseminate to other organs and establish chronic infection. Cellular models of Q fever include a variety of tissue-derived cell lines from mice and humans such as lung alveolar ex vivo cells. These models have the advantage of being cost-effective and reproducible. Similarly, animal models including mice and guinea pigs are cost-effective, although only immunocompromised SCID mice display a severe disease phenotype in response to Nine Mile I and Nine Mile II isolates of C. burnetii while immunocompetent guinea pigs display human-like symptoms and robust immune responses. Non-human primates such as macaques and marmosets are the closest model of human disease but are costly and largely used for adaptive immune response studies. All animal models are used for vaccine development but many differences exist in the pathogen's ability to establish lung infection when considering infection routes, bacterial isolates, and host genetic background. Similarly, while cellular models are useful for characterization of host-pathogen mechanisms, future developments should include use of a lung infection platform to draw appropriate conclusions. Here, we summarize the current state of the C. burnetii lung pathogenesis field by discussing the contribution of different animal and cell culture models and include suggestions for continuing to move the field forward.
Collapse
Affiliation(s)
- R Marena Guzman
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
3
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
4
|
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infect 2023; 12:2178242. [PMID: 36748729 PMCID: PMC9970229 DOI: 10.1080/22221751.2023.2178242] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Outbreaks of emerging infectious diseases pose a serious threat to public health security, human health and economic development. After an outbreak, an animal model for an emerging infectious disease is urgently needed for studying the etiology, host immune mechanisms and pathology of the disease, evaluating the efficiency of vaccines or drugs against infection, and minimizing the time available for animal model development, which is usually hindered by the nonsusceptibility of common laboratory animals to human pathogens. Thus, we summarize the technologies and methods that induce animal susceptibility to human pathogens, which include viral receptor humanization, pathogen-targeted tissue humanization, immunodeficiency induction and screening for naturally susceptible animal species. Furthermore, the advantages and deficiencies of animal models developed using each method were analyzed, and these will guide the selection of susceptible animals and potentially reduce the time needed to develop animal models during epidemics.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, People’s Republic of China, Jiangning Liu
| |
Collapse
|
5
|
Clay KA, Hartley MG, Whelan AO, Bailey MS, Norville IH. Evaluation of Alternative Doxycycline Antibiotic Regimes in an Inhalational Murine Model of Q Fever. Antibiotics (Basel) 2023; 12:antibiotics12050914. [PMID: 37237817 DOI: 10.3390/antibiotics12050914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The timing of the initiation of antibiotic treatment has been shown to impact the clinical outcome of many bacterial infections, including Q fever. Delayed, suboptimal or incorrect antibiotic treatment has been shown to result in poor prognosis, resulting in the progression of acute disease to long-term chronic sequalae. Therefore, there is a requirement to identify an optimal, effective therapeutic regimen to treat acute Q fever. In the study, the efficacies of different doxycycline monohydrate regimens (pre-exposure prophylaxis, post-exposure prophylaxis or treatment at symptom onset or resolution) were evaluated in an inhalational murine model of Q fever. Different treatment lengths (7 or 14 days) were also evaluated. Clinical signs and weight loss were monitored during infection and mice were euthanized at different time points to characterize bacterial colonization in the lungs and the dissemination of bacteria to other tissues including the spleen, brain, testes, bone marrow and adipose. Post-exposure prophylaxis or doxycycline treatment starting at symptoms onset reduced clinical signs, and also delayed the systemic clearance of viable bacteria from key tissues. Effective clearance was dependent on the development of an adaptive immune response, but also driven by sufficient bacterial activity to maintain an active immune response. Pre-exposure prophylaxis or post-exposure treatment at the resolution of clinical signs did not improve outcomes. These are the first studies to experimentally evaluate different doxycycline treatment regimens for Q fever and illustrate the need to explore the efficacy of other novel antibiotics.
Collapse
Affiliation(s)
- Kate A Clay
- Academic Department, Royal Centre for Defence Medicine (Academia and Research), Birmingham B15 2GW, UK
| | - M Gill Hartley
- CBR Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK
| | - Adam O Whelan
- CBR Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK
| | - Mark S Bailey
- Academic Department, Royal Centre for Defence Medicine (Academia and Research), Birmingham B15 2GW, UK
| | - Isobel H Norville
- CBR Division, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
6
|
Laidoudi Y, Rousset E, Dessimoulie AS, Prigent M, Raptopoulo A, Huteau Q, Chabbert E, Navarro C, Fournier PE, Davoust B. Tracking the Source of Human Q Fever from a Southern French Village: Sentinel Animals and Environmental Reservoir. Microorganisms 2023; 11:microorganisms11041016. [PMID: 37110439 PMCID: PMC10142994 DOI: 10.3390/microorganisms11041016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Coxiella burnetii, also known as the causal agent of Q fever, is a zoonotic pathogen infecting humans and several animal species. Here, we investigated the epidemiological context of C. burnetii from an area in the Hérault department in southern France, using the One Health paradigm. In total, 13 human cases of Q fever were diagnosed over the last three years in an area comprising four villages. Serological and molecular investigations conducted on the representative animal population, as well as wind data, indicated that some of the recent cases are likely to have originated from a sheepfold, which revealed bacterial contamination and a seroprevalence of 47.6%. However, the clear-cut origin of human cases cannot be ruled out in the absence of molecular data from the patients. Multi-spacer typing based on dual barcoding nanopore sequencing highlighted the occurrence of a new genotype of C. burnetii. In addition, the environmental contamination appeared to be widespread across a perimeter of 6 km due to local wind activity, according to the seroprevalence detected in dogs (12.6%) and horses (8.49%) in the surrounding populations. These findings were helpful in describing the extent of the exposed area and thus supporting the use of dogs and horses as valuable sentinel indicators for monitoring Q fever. The present data clearly highlighted that the epidemiological surveillance of Q fever should be reinforced and improved.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Elodie Rousset
- ANSES, Laboratoire de Sophia Antipolis, Unité fièvre Q animale, 06902 Sophia Antipolis, France
| | | | - Myriam Prigent
- ANSES, Laboratoire de Sophia Antipolis, Unité fièvre Q animale, 06902 Sophia Antipolis, France
| | - Alizée Raptopoulo
- ANSES, Laboratoire de Sophia Antipolis, Unité fièvre Q animale, 06902 Sophia Antipolis, France
| | - Quentin Huteau
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | | | | | - Pierre-Edouard Fournier
- IHU Méditerranée Infection, 13005 Marseille, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- Centre National de Référence Rickettsies, Bartonella et Coxiella, 13005 Marseille, France
| | - Bernard Davoust
- Aix Marseille University, IRD, AP-HM, MEPHI, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
7
|
Histopathological and Immunological Findings in the Common Marmoset Following Exposure to Aerosolized SARS-CoV-2. Viruses 2022; 14:v14071580. [PMID: 35891560 PMCID: PMC9322862 DOI: 10.3390/v14071580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/05/2022] Open
Abstract
There is an enduring requirement to develop animal models of COVID-19 to assess the efficacy of vaccines and therapeutics that can be used to treat the disease in humans. In this study, six marmosets were exposed to a small particle aerosol (1–3 µm) of SARS-CoV-2 VIC01 that delivered the virus directly to the lower respiratory tract. Following the challenge, marmosets did not develop clinical signs, although a disruption to the normal diurnal temperature rhythm was observed in three out of six animals. Early weight loss and changes to respiratory pattern and activity were also observed, yet there was limited evidence of viral replication or lung pathology associated with infection. There was a robust innate immunological response to infection, which included an early increase in circulating neutrophils and monocytes and a reduction in the proportion of circulating T-cells. Expression of the ACE2 receptor in respiratory tissues was almost absent, but there was ubiquitous expression of TMPRSS2. The results of this study indicate that exposure of marmosets to high concentrations of aerosolised SARS-CoV-2 did not result in the development of clear, reproducible signs of COVID-19.
Collapse
|
8
|
Han HJ, Powers SJ, Gabrielson KL. The Common Marmoset-Biomedical Research Animal Model Applications and Common Spontaneous Diseases. Toxicol Pathol 2022; 50:628-637. [PMID: 35535728 PMCID: PMC9310150 DOI: 10.1177/01926233221095449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Marmosets are becoming more utilized in biomedical research due to multiple advantages including (1) a nonhuman primate of a smaller size with less cost for housing, (2) physiologic similarities to humans, (3) translatable hepatic metabolism, (4) higher numbers of litters per year, (5) genome is sequenced, molecular reagents are available, (6) immunologically similar to humans, (7) transgenic marmosets with germline transmission have been produced, and (8) are naturally occurring hematopoietic chimeras. With more use of marmosets, disease surveillance over a wide range of ages of marmosets has been performed. This has led to a better understanding of the disease management of spontaneous diseases that can occur in colonies. Knowledge of clinical signs and histologic lesions can assist in maximizing the colony's health, allowing for improved outcomes in translational studies within biomedical research. Here, we describe some basic husbandry, biology, common spontaneous diseases, and animal model applications for the common marmoset in biomedical research.
Collapse
Affiliation(s)
- Hyo-Jeong Han
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- University of Ulsan, College of Medicine, Seoul, Korea
| | - Sarah J Powers
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Tesfamariam M, Binette P, Long CM. Preclinical Animal Models for Q Fever Vaccine Development. Front Cell Infect Microbiol 2022; 12:828784. [PMID: 35223553 PMCID: PMC8866712 DOI: 10.3389/fcimb.2022.828784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Coxiella burnetii is a zoonotic pathogen responsible for the human disease Q fever. While an inactivated whole cell vaccine exists for this disease, its widespread use is precluded by a post vaccination hypersensitivity response. Efforts for the development of an improved Q fever vaccine are intricately connected to the availability of appropriate animal models of human disease. Accordingly, small mammals and non-human primates have been utilized for vaccine-challenge and post vaccination hypersensitivity modeling. Here, we review the animal models historically utilized in Q fever vaccine development, describe recent advances in this area, discuss the limitations and strengths of these models, and summarize the needs and criteria for future modeling efforts. In summary, while many useful models for Q fever vaccine development exist, there remains room for growth and expansion of these models which will in turn increase our understanding of C. burnetii host interactions.
Collapse
|