1
|
Ma Q, Li X, Jiang H, Fu X, You L, You F, Ren Y. Mechanisms underlying the effects, and clinical applications, of oral microbiota in lung cancer: current challenges and prospects. Crit Rev Microbiol 2024; 50:631-652. [PMID: 37694585 DOI: 10.1080/1040841x.2023.2247493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The oral cavity contains a site-specific microbiota that interacts with host cells to regulate many physiological processes in the human body. Emerging evidence has suggested that changes in the oral microbiota can increase the risk of lung cancer (LC), and the oral microbiota is also altered in patients with LC. Human and animal studies have shown that oral microecological disorders and/or specific oral bacteria may play an active role in the occurrence and development of LC through direct and/or indirect mechanisms. These studies support the potential of oral microbiota in the clinical treatment of LC. Oral microbiota may therefore be used in the prevention and treatment of LC and to improve the side effects of anticancer therapy by regulating the balance of the oral microbiome. Specific oral microbiota in LC may also be used as screening or predictive biomarkers. This review summarizes the main findings in research on oral microbiome-related LC and discusses current challenges and future research directions.
Collapse
Affiliation(s)
- Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Hua Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Yifeng Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| |
Collapse
|
2
|
Du X, Cui X, Fan R, Pan J, Cui X. Characteristics of gut microbiome in patients with pediatric solid tumor. Front Pediatr 2024; 12:1388673. [PMID: 39026939 PMCID: PMC11254798 DOI: 10.3389/fped.2024.1388673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Background Pediatric solid tumors are a common malignant disease in children, and more and more studies have proved that there is an inseparable relationship between adult tumors and intestinal microbiome, but the changes in the intestinal microbiota of pediatric solid tumor (PST) patients have been scarcely examined. This study aims to examine the differences in the intestinal microbiota features between patients diagnosed with PST and healthy controls (HCs). Methods To elucidate the unique characteristics of the gut microbiota in pediatric patients with solid tumors, we recruited 23 PST patients and 20 HCs. A total of 43 stool samples were gathered, and then 16S rRNA sequencing was performed. Results We noticed a noticeable pattern of elevated diversity in the gut microbiota within the PST groups. The differences in microbial communities among two groups were remarkable, regarding the analysis at the class level, the abundance of Bacilli was markedly increased in PST patients compared to HCs (P < 0.05), regarding the analysis at the genus level, The presence of Enterococcus was significantly higher in PST cases compared to HCs (P < 0.01), while Lachnospiraceae unclassified, Lachnospira, Haemophilus and Colidextribacter in PST cases, the abundance was significantly reduced. (P < 0.05), 6 genera, including Bacilli, Lactobacillales, Enterococcaceae and Morganella, showed a significant enrichment compared to healthy controls, while 10 genera, including Bilophila, Colidextribacter, Pasteurellales, Haemophilus, Lachnospiraceae unclassified, Lachnospira and Fusobacteriales, were significant reduction in the PST groups. Conclusion Our research conducted the characterization analysis of the gut microbiota in PST patients for the first time. More importantly, there are some notable differences in the gut microbiota between PST patients and healthy controls, which we believe is an interesting finding.
Collapse
Affiliation(s)
| | | | | | | | - Xichun Cui
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Varzakas T, Antoniadou M. A Holistic Approach for Ethics and Sustainability in the Food Chain: The Gateway to Oral and Systemic Health. Foods 2024; 13:1224. [PMID: 38672896 PMCID: PMC11049237 DOI: 10.3390/foods13081224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Food production is a complex matter, affecting people's lives, organizations' profits, and the well-being of the whole planet, and has multifaceted ethical considerations surrounding its production, distribution, and consumption. This paper addresses the pressing need to confront ethical challenges within the food system, encompassing issues such as environmental sustainability, food security, and individual food choices for better oral and systemic health of all individuals around the globe. From agricultural practices to global trade and food waste, ethical implications are addressed across various domains, highlighting the interconnectedness of ethical decision-making in the food industry. Central themes explored include the ethical dimensions of food production methods, the impact of global trade on food ethics, and the role of individuals in making ethically informed food choices. Additionally, this paper considers the spiritual and physical significance of food, particularly through the lens of oral health as a gateway to holistic well-being. Recognizing the complexity of the food and mouth ecosystem, this paper calls for serious interventions in legislation and economics to promote ethical protocols and techniques for sustainability reasons. It emphasizes the importance of ethical considerations in food safety management systems, regulatory frameworks, and quality standards. Moreover, this paper underlines the need for a comprehensive approach to address ethical dilemmas and moral values inherent in the food industry and oral health policies, adopting the precautionary principle and ethical decision-making frameworks. This article finally aims to serve as a call to action for stakeholders across the food industry and the healthcare sector, to prioritize ethical practices, promote transparency, rearrange economic parameters, and work towards a more sustainable and equitable food system for inner and outer oral and systemic health and human sustainability for all.
Collapse
Affiliation(s)
- Theodoros Varzakas
- Department Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece
| | - Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Certified Systemic Analyst Program in Systemic Management (CSAP), University of Piraeus, 18534 Piraeus, Greece
| |
Collapse
|
4
|
Mao S, Wang X, Li M, Liu H, Liang H. The role and mechanism of hydrogen sulfide in liver fibrosis. Nitric Oxide 2024; 145:41-48. [PMID: 38360133 DOI: 10.1016/j.niox.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Hydrogen sulfide (H2S) is the third new gas signaling molecule in the human body after the discovery of NO and CO. Similar to NO, it has the functions of vasodilation, anti-inflammatory, antioxidant, and regulation of cell formation. Enzymes that can produce endogenous H2S, such as CSE, CSB, and 3-MST, are common in liver tissues and are important regulatory molecules in the liver. In the development of liver fibrosis, H2S concentration and expression of related enzymes change significantly, which makes it possible to use exogenous gases to treat liver diseases. This review summarizes the role of H2S in liver fibrosis and its complications induced by NAFLD and CCl4, and elaborates on the anti-liver fibrosis effect of H2S through the mechanism of reducing oxidative stress, inhibiting inflammation, regulating autophagy, regulating glucose and lipid metabolism, providing theoretical reference for further research on the treatment of liver fibrosis with H2S.
Collapse
Affiliation(s)
- Shaoyu Mao
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xuemei Wang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Miaoqing Li
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hanshu Liu
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongxia Liang
- Department of Infectious Disease and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Cui G, Sun Y, Zou Y, Sun R, Gao Y, Liu X, Zhou Y, Zhang D, Wang X, Li Y, Liu L, Zhang G, Rao B, Yu Z, Ren Z. Dynamic changes of Bacterial Microbiomes in Oropharynx during Infection and Recovery of COVID-19 Omicron Variant. PLoS Pathog 2024; 20:e1012075. [PMID: 38568937 PMCID: PMC10990182 DOI: 10.1371/journal.ppat.1012075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Oropharyngeal microbiomes play a significant role in the susceptibility and severity of COVID-19, yet the role of these microbiomes play for the development of COVID-19 Omicron variant have not been reported. A total of 791 pharyngeal swab samples were prospectively included in this study, including 297 confirmed cases of Omicron variant (CCO), 222 confirmed case of Omicron who recovered (CCOR), 73 confirmed cases of original strain (CCOS) and 199 healthy controls (HC). All samples completed MiSeq sequencing. The results showed that compared with HC, conditional pathogens increased in CCO, while acid-producing bacteria decreased. Based on six optimal oropharyngeal operational taxonomy units (OTUs), we constructed a marker microbial classifier to distinguish between patients with Omicron variant and healthy people, and achieved high diagnostic efficiency in both the discovery queue and the verification queue. At same time, we introduced a group of cross-age infection verification cohort and Omicron variant subtype XBB.1.5 branch, which can be accurately distinguished by this diagnostic model. We also analyzed the characteristics of oropharyngeal microbiomes in two subgroups of Omicron disease group-severity of infection and vaccination times, and found that the change of oropharyngeal microbiomes may affect the severity of the disease and the efficacy of the vaccine. In addition, we found that some genera with significant differences gradually increased or decreased with the recovery of Omicron variant infection. The results of Spearman analysis showed that 27 oropharyngeal OTUs were closely related to 6 clinical indexes in CCO and HC. Finally, we found that the Omicron variant had different characterization of oropharyngeal microbiomes from the original strain. Our research characterizes oropharyngeal microbiomes of Omicron variant cases and rehabilitation cases, successfully constructed and verified the non-invasive diagnostic model of Omicron variant, described the correlation between microbial OTUs and clinical indexes. It was found that the infection of Omicron variant and the infection of original strain have different characteristics of oropharyngeal microbiomes.
Collapse
Affiliation(s)
- Guangying Cui
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yawen Zou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ranran Sun
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanxia Gao
- Emergency Department, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaorui Liu
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjian Zhou
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Donghua Zhang
- Anyang City Fifth People’s Hospital, Long An District, Anyang, China
| | - Xueqing Wang
- Reproductive Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yonghong Li
- Anyang City Fifth People’s Hospital, Long An District, Anyang, China
| | - Liwen Liu
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guizhen Zhang
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Yuanbo Z, Tianyi L, Xuejing S, Xinpeng L, Jianqun W, Wenxia X, Jingshu G. Using formalin fixed paraffin embedded tissue to characterize the microbiota in p16-positive and p16-negative tongue squamous cell carcinoma: a pilot study. BMC Oral Health 2024; 24:283. [PMID: 38419008 PMCID: PMC10900712 DOI: 10.1186/s12903-024-04051-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Tongue squamous cell carcinoma (TSCC) is the most common oral cavity cancer, and p16 immunohistochemistry is an exact and available tool in the prognostic and predictive characterization of squamous cell cancers in the head and neck. Microorganisms have a close relationship with the development of TSCC. However, the association between oral bacteria and p16 status has not been well defined in the case of TSCC. Compared with traditional clinical microbial collection methods, formalin-fixed paraffin-embedded (FFPE) tissue samples have several advantages. METHODS To compare the microbiota compositions between p16-positive and p16-negative patients with TSCC, we performed a small pilot study of microbiological studies of TSCC by paraffin tissue. DNA from FFPE tissue blocks were extracted and microbiomes were profiled by sequencing the 16 S-rRNA-encoding gene (V1-V2/V3-V4/V4 regions). Alterations in the functional potential of the microbiome were predicted using PICRUSt, Tax4Fun, and BugBase. RESULTS A total of 60 patients with TSCC were enrolled in the study, however, some challenges associated with DNA damage in FFPE tissues existed, and only 27 (15 p16-positive and 12 p16-negative) passed DNA quality control. Nevertheless, we have tentatively found some meaningful results. The p16 status is associated with microbiota diversity, which is significantly increased in p16-positive patients compared with p16-negative patients. Desulfobacteria, Limnochordia, Phycisphaerae, Anaerolineae, Saccharimonadia and Kapabacteria had higher abundances among participants with p16-positive. Moreover, functional prediction revealed that the increase of these bacteria may enhance viral carcinogenesis in p16-positive TSCC. CONCLUSIONS Bacterial profiles showed a significant difference between p16-positive TSCC and p16-negative TSCC. These findings may provide insights into the relationship between p16 status and the microbial taxa in TSCC, and these bacteria may provide new clues for developing therapeutic targets for TSCC.
Collapse
Affiliation(s)
- Zhan Yuanbo
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Heilongjiang, Harbin, China
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liu Tianyi
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Song Xuejing
- Harbin Institute of Technology Hospital, Harbin, China
| | - Liu Xinpeng
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wang Jianqun
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wenxia
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Geng Jingshu
- Department of pathology, Harbin Medical University Cancer Hospital, Harbin Medical University, Heilongjiang, Harbin, China.
| |
Collapse
|
7
|
Cui X, Du X, Cui X, Fan R, Pan J, Wang Z. Oral microbiome characteristics in patients with pediatric solid tumor. Front Microbiol 2024; 14:1286522. [PMID: 38249475 PMCID: PMC10797044 DOI: 10.3389/fmicb.2023.1286522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Background Pediatric solid tumor, the abnormal proliferation of solid tissues in children resulting in the formation of tumors, represent a prevailing malignant ailment among the younger population. Extensive literature highlights the inseparable association linking oral microbiome and adult tumors, but due to differences in age of onset, characteristics of onset, etc., there are many differences between Pediatric solid tumors and adult tumors, and therefore, studying the relationship between Pediatric solid tumor and the oral microbiota is also essential. Methods To unravel the distinct characteristics of the oral microbiota within Pediatric solid tumor patients, 43 saliva samples, encompassing 23 Pediatric solid tumor patients and 20 healthy controls, were diligently procured. A meticulous screening process ensued, and conducted microbial MiSeq sequencing after screening. Results We documented the oral microbiome attributes among pediatric diagnosed with solid tumors (PST), and meanwhile, we observed a significant trend of decreased oral microbiota diversity in the pediatric solid tumor group. There were notable disparities in microbial communities observed between the two groups, 18 genera including Veillonellaceae, Firmicutes unclassified, Coriobacteriia, Atopobiaceae, Negativicutes, were significantly enriched in PST patients, while 29 genera, including Gammaproteobacteria, Proteobacteria, Burkholderiales, Neisseriaceae, were dominant in the HCs group. It was found that PST group had 16 gene functions, including Amino acid metabolism, Cysteine and methionine metabolism, Photosynthesis antenna proteins, Arginine and proline metabolism, and Aminoacyl tRNA biosynthesi, were significantly dominant, while 29 gene functions that prevailed in HCs. Conclusion This study characterized the oral microbiota of Pediatric solid tumor patients for the first time, and importantly, targeted biomarkers of oral microbiota may serve as powerful and non-invasive diagnostic tools for pediatric solid tumor patients.
Collapse
Affiliation(s)
- Xichun Cui
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoran Du
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Cui
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rongrong Fan
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juntao Pan
- Pediatric Surgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhifang Wang
- Endocrinology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Lian X, Liu Z, Wu T, Lou J, Chen Y, Liu S, Jin L, Li S, Lian Y, Jiang Y, Ren Z. Oral microbiome alterations in epilepsy and after seizure control. Front Microbiol 2023; 14:1277022. [PMID: 38107849 PMCID: PMC10721976 DOI: 10.3389/fmicb.2023.1277022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The existing diagnostic methods of epilepsy such as history collection and electroencephalogram have great limitations in practice, so more reliable and less difficult diagnostic methods are needed. METHODS By characterizing oral microbiota in patients diagnosed with epilepsy (EPs) and patients whose seizures were under control (EPRs), we sought to discover biomarkers for different disease states. 16S rRNA gene sequencing was performed on 480 tongue swabs [157 EPs, 22 EPRs, and 301 healthy controls (HCs)]. RESULTS Compared with normal individuals, patients with epilepsy exhibit increased alpha diversity in their oral microbiota, and the oral microbial communities of the two groups demonstrate significant beta diversity differences. EPs exhibit a significant increase in the abundance of 26 genera, including Streptococcus, Granulicatella, and Kluyvera, while the abundance of 14 genera, including Peptostreptococcus, Neisseria, and Schaalia, is significantly reduced. The area under the receiver operating characteristic curve (AUC) of oral microbial markers in the training cohort and validation cohort was 98.85% and 97.23%, respectively. Importantly, the AUC of the biomarker set achieved 92.44% of additional independent validation sets. In addition, EPRs also have their own unique oral community. CONCLUSION This study describes the characterization of the oral microbiome in EP and EPR and demonstrates the potential of the specific microbiome as a non-invasive diagnostic tool for epilepsy.
Collapse
Affiliation(s)
- Xiaolei Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianwen Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshuo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Limin Jin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Lei Y, Li S, He M, Ao Z, Wang J, Wu Q, Wang Q. Oral Pathogenic Bacteria and the Oral-Gut-Liver Axis: A New Understanding of Chronic Liver Diseases. Diagnostics (Basel) 2023; 13:3324. [PMID: 37958220 PMCID: PMC10648517 DOI: 10.3390/diagnostics13213324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Liver diseases have long been a prevalent cause of morbidity and mortality, and their development and progression involve multiple vital organs throughout the body. Recent studies on the oral-gut-liver axis have revealed that the oral microbiota is associated with the pathophysiology of chronic liver diseases. Since interventions aimed at regulating oral biological disorders may delay the progress of liver disease, it is crucial to better comprehend this process. Oral bacteria with potential pathogenicity have been extensively studied and are closely related to several types of chronic liver diseases. Therefore, this review will systemically describe the emerging role of oral pathogenic bacteria in common liver diseases, including alcoholic liver disease (ALD), non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease (NAFLD), cirrhosis, autoimmune liver diseases (AILD), and liver cancer, and bring in new perspectives for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Institute of Infection, Immunology and Tumor Microenvironment, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China; (Y.L.); (S.L.); (M.H.); (Z.A.); (J.W.); (Q.W.)
| |
Collapse
|
10
|
Fu Y, Li J, Zhu Y, Chen C, Liu J, Gu S, Zheng Y, Li Y. Causal effects of gut microbiome on autoimmune liver disease: a two-sample Mendelian randomization study. BMC Med Genomics 2023; 16:232. [PMID: 37789337 PMCID: PMC10548566 DOI: 10.1186/s12920-023-01670-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Epidemiological studies have indicated a potential link between the gut microbiome and autoimmune liver disease (AILD) such as autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). The relationship between the gut microbiome and autoimmune liver disease is still uncertain due to confounding variables. In our study, we aim to shed light on this relationship by employing a two-sample Mendelian randomization approach. METHODS We conducted a two-sample Mendelian randomization (MR) study using the R package "TwoSampleMR". The exposure data consisted of genetic variants associated with 194 bacterial traits obtained from the MiBioGen consortium. Summary statistics for AILD were obtained from the GWAS Catalog website. Furthermore, a series of sensitivity analyses were performed to validate the initial MR results. RESULTS There were two, four and three bacteria traits associated with an increased risk of AIH. PBC, and PSC respectively. In contrast, there were five, two and five bacteria traits associated with a decreased risk for AIH, PBC and PSC. Notably, the genus_Clostridium_innocuum_group showed a negative association with AIH (OR = 0.67, 95% CI: 0.49-0.93), and the genus_Actinomyces was found to be genetically associated with a decreased risk of PSC (OR = 0.62, 95% CI: 0.42-0.90). CONCLUSIONS Our study identified the causal impact of specific bacterial features on the risk of AILD subtypes. Particularly, the genus_Clostridium_innocuum_group and the genus_Actinomyces demonstrated significant protective effects against AIH and PSC respectively. These findings provide further support for the potential use of targeted probiotics in the management of AILD.
Collapse
Affiliation(s)
- Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China.
| |
Collapse
|
11
|
Guadalupi G, Contini C, Iavarone F, Castagnola M, Messana I, Faa G, Onali S, Chessa L, Vitorino R, Amado F, Diaz G, Manconi B, Cabras T, Olianas A. Combined Salivary Proteome Profiling and Machine Learning Analysis Provides Insight into Molecular Signature for Autoimmune Liver Diseases Classification. Int J Mol Sci 2023; 24:12207. [PMID: 37569584 PMCID: PMC10418803 DOI: 10.3390/ijms241512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases that target the liver and have a wide spectrum of presentation. A global overview of quantitative variations on the salivary proteome in presence of these two pathologies is investigated in this study. The acid-insoluble salivary fraction of AIH and PBC patients, and healthy controls (HCs), was analyzed using a gel-based bottom-up proteomic approach combined with a robust machine learning statistical analysis of the dataset. The abundance of Arginase, Junction plakoglobin, Desmoplakin, Hexokinase-3 and Desmocollin-1 decreased, while that of BPI fold-containing family A member 2 increased in AIHp compared to HCs; the abundance of Gelsolin, CD14, Tumor-associated calcium signal transducer 2, Clusterin, Heterogeneous nuclear ribonucleoproteins A2/B1, Cofilin-1 and BPI fold-containing family B member 2 increased in PBCp compared to HCs. The abundance of Hornerin decreased in both AIHp and PBCp with respect to HCs and provided an area under the ROC curve of 0.939. Machine learning analysis confirmed the feasibility of the salivary proteome to discriminate groups of subjects based on AIH or PBC occurrence as previously suggested by our group. The topology-based functional enrichment analysis performed on these potential salivary biomarkers highlights an enrichment of terms mostly related to the immune system, but also with a strong involvement in liver fibrosis process and with antimicrobial activity.
Collapse
Affiliation(s)
- Giulia Guadalupi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Federica Iavarone
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00168 Rome, Italy;
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital, 09124 Cagliari, Italy;
| | - Simona Onali
- Liver Unit, University Hospital of Cagliari, 09124 Cagliari, Italy; (S.O.); (L.C.)
| | - Luchino Chessa
- Liver Unit, University Hospital of Cagliari, 09124 Cagliari, Italy; (S.O.); (L.C.)
| | - Rui Vitorino
- iBiMED, Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Francisco Amado
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Giacomo Diaz
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09124 Cagliari, Italy;
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| |
Collapse
|
12
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
13
|
Yan P, Sun Y, Luo J, Liu X, Wu J, Miao Y. Integrating the serum proteomic and fecal metaproteomic to analyze the impacts of overweight/obesity on IBD: a pilot investigation. Clin Proteomics 2023; 20:6. [PMID: 36759757 PMCID: PMC9909917 DOI: 10.1186/s12014-023-09396-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) encompasses a group of chronic relapsing disorders which include ulcerative colitis (UC) and Crohn's disease (CD). The incidences of IBD and overweight/obesity are increasing in parallel. Here, we investigated alterations in proteomic in serum and metaproteomic in feces of IBD patients with overweight/obesity and aimed to explore the effect of overweight/ obesity on IBD and the underlying mechanism. METHODS This prospective observational study (n = 64) comprised 26 health control subjects (HC, 13 with overweight/obesity) and 38 IBD patients (19 with overweight/obesity) at a tertiary hospital. Overweight/obesity was evaluated by body mass index (BMI) and defined as a BMI greater than 24 kg/m2. The comprehensive serum proteomic and fecal metaproteomic analyses were conducted by ultra-performance liquid chromatography-Orbitrap Exploris 480 mass spectrometry. RESULTS UC and CD presented similar serum molecular profiles but distinct gut microbiota. UC and CD serum exhibited higher levels of cytoskeleton organization- associated and inflammatory response-related proteins than the HC serum. Compared the serum proteome of UC and CD without overweight/obesity, inflammatory response-associated proteins were dramatically decreased in UC and CD with overweight/obesity. Fecal metaproteome identified 66 species in the feces. Among them, Parasutterella excrementihominis was increased in CD compared with that in HC. UC group had a significant enrichment of Moniliophthora roreri, but had dramatically decreased abundances of Alistipes indistinctus, Clostridium methylpentosum, Bacteroides vulgatus, and Schizochytrium aggregatum. In addition, overweight/obesity could improve the microbial diversity of UC. Specifically, the UC patients with overweight/obesity had increased abundance of some probiotics in contrast to those without overweight/obesity, including Parabacteroides distasonis, Alistipes indistincus, and Ruminococcus bromii. CONCLUSION This study provided high-quality multi-omics data of IBD serum and fecal samples, which enabled deciphering the molecular bases of clinical phenotypes of IBD, revealing the impacts of microbiota on IBD, and emphasizing the important role of overweight/obesity in IBD.
Collapse
Affiliation(s)
- Ping Yan
- grid.285847.40000 0000 9588 0960Kunming Medical University, Kunming, China ,grid.440682.c0000 0001 1866 919XDepartment of Gastroenterology, First Affiliated Hospital of Dali University, Dali, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yang Sun
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Juan Luo
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Xiaolin Liu
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Jing Wu
- grid.414902.a0000 0004 1771 3912Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China ,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, China. .,Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China.
| |
Collapse
|
14
|
Abstract
Autoimmune hepatitis is an inflammatory disease of the liver of unknown cause that may progress to liver cirrhosis and end stage liver failure if diagnosis is overlooked and treatment delayed. The clinical presentation is often that of acute hepatitis, sometimes very severe; less frequently, it can be insidious or completely asymptomatic. The disease can affect people of any age and is more common in women; its incidence and prevalence seem to be on the rise worldwide. An abnormal immune response targeting liver autoantigens and inducing persistent and self-perpetuating liver inflammation is the pathogenic mechanism of the disease. A specific set of autoantibodies, increased IgG concentrations, and histological demonstration of interface hepatitis and periportal necrosis are the diagnostic hallmarks of autoimmune hepatitis. Prompt response to treatment with corticosteroids and other immunomodulatory drugs is almost universal and supports the diagnosis. The aims of treatment are to induce and maintain long term remission of liver inflammation. Treatment can often even reverse liver fibrosis, thus preventing progression to advanced cirrhosis and its complications. Most patients need lifelong maintenance therapy, and repeated follow-up in experienced hands improves the quality of care and quality of life for affected patients.
Collapse
Affiliation(s)
- Luigi Muratori
- DIMEC, Università di Bologna and IRCCS Policlinico di Sant'Orsola, Bologna, Italy
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER)
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER)
| | - Marco Lenzi
- DIMEC, Università di Bologna and IRCCS Policlinico di Sant'Orsola, Bologna, Italy
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER)
| |
Collapse
|
15
|
Olianas A, Guadalupi G, Cabras T, Contini C, Serrao S, Iavarone F, Castagnola M, Messana I, Onali S, Chessa L, Diaz G, Manconi B. Top-Down Proteomics Detection of Potential Salivary Biomarkers for Autoimmune Liver Diseases Classification. Int J Mol Sci 2023; 24:959. [PMID: 36674470 PMCID: PMC9866740 DOI: 10.3390/ijms24020959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases characterized by chronic hepatic inflammation and progressive liver fibrosis. The possible use of saliva as a diagnostic tool has been explored in several oral and systemic diseases. The use of proteomics for personalized medicine is a rapidly emerging field. (2) Salivary proteomic data of 36 healthy controls (HCs), 36 AIH and 36 PBC patients, obtained by liquid chromatography/mass spectrometry top-down pipeline, were analyzed by multiple Mann-Whitney test, Kendall correlation, Random Forest (RF) analysis and Linear Discriminant Analysis (LDA); (3) Mann-Whitney tests provided indications on the panel of differentially expressed salivary proteins and peptides, namely cystatin A, statherin, histatin 3, histatin 5 and histatin 6, which were elevated in AIH patients with respect to both HCs and PBC patients, while S100A12, S100A9 short, cystatin S1, S2, SN and C showed varied levels in PBC with respect to HCs and/or AIH patients. RF analysis evidenced a panel of salivary proteins/peptides able to classify with good accuracy PBC vs. HCs (83.3%), AIH vs. HCs (79.9%) and PBC vs. AIH (80.2%); (4) RF appears to be an attractive machine-learning tool suited for classification of AIH and PBC based on their different salivary proteomic profiles.
Collapse
Affiliation(s)
- Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Giulia Guadalupi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Simone Serrao
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| | - Federica Iavarone
- Fondazione Policlinico Universitario “A. Gemelli”—IRCCS, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy
| | - Simona Onali
- Liver Unit, University Hospital of Cagliari, 09042 Cagliari, Italy
| | - Luchino Chessa
- Liver Unit, University Hospital of Cagliari, 09042 Cagliari, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università di Cagliari, 09042 Cagliari, Italy
| | - Giacomo Diaz
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09042 Cagliari, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
16
|
Zhou Z, Lv H, Lv J, Shi Y, Huang H, Chen L, Shi D. Alterations of gut microbiota in cirrhotic patients with spontaneous bacterial peritonitis: A distinctive diagnostic feature. Front Cell Infect Microbiol 2022; 12:999418. [PMID: 36147601 PMCID: PMC9485664 DOI: 10.3389/fcimb.2022.999418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSpontaneous bacterial peritonitis (SBP) is a severe infection in cirrhotic patients that requires early diagnosis to improve the long-term outcome. Alterations in the gut microbiota have been shown to correlate with the development and progression of liver cirrhosis. However, the relationship between SBP and gut microbiota remains unknown.MethodsIn this study, we applied 16S rRNA pyrosequencing of feces to ascertain possible links between the gut microbiota and SBP. We recruited 30 SBP patients, 30 decompensated cirrhotic patients without SBP (NSBP) and 30 healthy controls. Metagenomic functional prediction of bacterial taxa was achieved using PICRUSt. ResultsThe composition of the gut microbiota in the SBP patients differed remarkably from that in the NSBP patients and healthy individuals. The microbial richness was significantly decreased, while the diversity was increased in the SBP patients. Thirty-four bacterial taxa containing 15 species, mainly pathogens such as Klebsiella pneumoniae, Serratia marcescens and Prevotella oris, were dominant in the SBP group, while 42 bacterial taxa containing 16 species, especially beneficial species such as Faecalibacterium prausnitzii, Methanobrevibacter smithii and Lactobacillus reuteri, were enriched in the NSBP group. Notably, we found that 18 gene functions of gut microbiota were different between SBP patients and NSBP patients, which were associated with energy metabolism and functional substance metabolism. Five optimal microbial markers were determined using a random forest model, and the combination of Lactobacillus reuteri, Rothia mucilaginosa, Serratia marcescens, Ruminococcus callidus and Neisseria mucosa achieved an area under the curve (AUC) value of 0.8383 to distinguish SBP from decompensated cirrhosis.ConclusionsWe described the obvious dysbiosis of gut microbiota in SBP patients and demonstrated the potential of microbial markers as noninvasive diagnostic tools for SBP at an early stage.
Collapse
Affiliation(s)
- Zumo Zhou
- Department of Infectious Diseases, Zhuji People’s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hui Lv
- Health Promotion Center, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jiawen Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Shandong Laboratory, Jinan Microecological Biomedicine, Jinan, China
| | - Yongming Shi
- Department of Infectious Diseases, Zhuji People’s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Heqing Huang
- Department of Infectious Diseases, Zhuji People’s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Lin Chen
- Department of Infectious Diseases, Zhuji People’s Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Shandong Laboratory, Jinan Microecological Biomedicine, Jinan, China
- *Correspondence: Ding Shi,
| |
Collapse
|
17
|
Roy S, Nag S, Saini A, Choudhury L. Association of human gut microbiota with rare diseases: A close peep through. Intractable Rare Dis Res 2022; 11:52-62. [PMID: 35702576 PMCID: PMC9161125 DOI: 10.5582/irdr.2022.01025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/05/2022] Open
Abstract
The human body harbors approximately 1014 cells belonging to a diverse group of microorganisms. Bacteria outnumbers protozoa, fungi and viruses inhabiting our gastrointestinal tract (GIT), commonly referred to as the "human gut microbiome". Dysbiosis occurs when the balanced relationship between the host and the gut microbiota is disrupted, altering the usual microbial population there. This increases the susceptibility of the host to pathogens, and chances of its morbidity. It is due to the fact that the gut microbiome plays an important role in human health; it influences the progression of conditions varying from colorectal cancer to GIT disorders linked with the nervous system, autoimmunity, metabolism and inheritance. A rare disease is a lethal and persistent condition affecting 2-3 people per 5,000 populaces. This review article intends to discuss such rare neurological, autoimmune, cardio-metabolic and genetic disorders of man, focusing on the fundamental mechanism that links them with their gut microbiome. Ten rare diseases, including Pediatric Crohn's disease (PCD), Lichen planus (LP), Hypophosphatasia (HPP), Discitis, Cogan's syndrome, Chancroid disease, Sennetsu fever, Acute cholecystitis (AC), Grave's disease (GD) and Tropical sprue (TS) stands to highlight as key examples, along with personalized therapeutics meant for them. This medicinal approach addresses the individual's genetic and genomic pathography, and tackles the illness with specific and effective treatments.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India
| | - Sagnik Nag
- Department of Biotechnology, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tamil Nadu, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), New Delhi, India
| | - Lopamudra Choudhury
- Department of Microbiology, Sarsuna College (under Calcutta University), Kolkata, India
| |
Collapse
|