1
|
Kathuria S, Gupta A, Tracy AR, Luna Ramirez RI, Thulasingam SK, Zaghloul N, Ahmed M, Limesand SW. Systemic inflammatory responses to repeated and increasing endotoxin challenges in fetal sheep. Physiol Rep 2025; 13:e70316. [PMID: 40268878 PMCID: PMC12018166 DOI: 10.14814/phy2.70316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025] Open
Abstract
Repeated low-dose administration of lipopolysaccharide (LPS) attenuates subsequent fetal responses, which makes it challenging to investigate interventions to prolonged exposure. Our aim was to develop a fetal inflammatory response syndrome (FIRS) model that consistently and effectively elicits a marked physiological response to increasing LPS doses. Four intravenous LPS boluses (0.3, 1.5, 3, and 15 μg) were administered to fetal sheep over 5 days. Physiological responses were measured via blood gases, pH, lactate, and cortisol concentrations. Fetal peripheral blood mononuclear cells (PBMCs) were analyzed for transcriptomic changes and tissue cytokine expression postmortem. All LPS challenges increased lactate, cortisol, and pCO2 concentrations and decreased pH and pO2 levels at 3 and 5 hours. No interaction was found between day (increasing LPS doses) and hour (LPS response to each dose). PBMC numbers increase with LPS challenges. Transcriptional analysis on PBMCs identified several enriched gene clusters indicating upregulation of inflammatory gene signatures along with complement activation and NFκB signaling pathways. Expression of pro-inflammatory cytokines (TNFα, IL-6, or IL-1β) was measured in lung, heart, liver, placenta, and spleen. Physiological indices show both respiratory and metabolic acidosis with successive and increasing LPS challenges that demonstrate a robust systemic response despite tachyphylaxis to LPS in fetal sheep.
Collapse
Affiliation(s)
- Sanya Kathuria
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Akash Gupta
- Division of Neonatology, Department of Pediatrics, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Ayna R. Tracy
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Rosa I. Luna Ramirez
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Senthil Kumar Thulasingam
- Division of Neonatology, Department of Pediatrics, College of MedicineUniversity of ArizonaTucsonArizonaUSA
| | - Nahla Zaghloul
- Division of Neonatology, Department of Pediatrics, College of MedicineUniversity of ArizonaTucsonArizonaUSA
- Division of Neonatology, Department of Pediatrics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Mohamed Ahmed
- Division of Neonatology, Department of Pediatrics, College of MedicineUniversity of ArizonaTucsonArizonaUSA
- Division of Neonatology, Department of Pediatrics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
2
|
Fuma K, Iitani Y, Imai K, Ushida T, Tano S, Yoshida K, Yokoi A, Miki R, Kidokoro H, Sato Y, Hara Y, Ogi T, Nomaki K, Tsuda M, Komine O, Yamanaka K, Kajiyama H, Kotani T. Prenatal inflammation impairs early CD11c-positive microglia induction and delays myelination in neurodevelopmental disorders. Commun Biol 2025; 8:75. [PMID: 39824932 PMCID: PMC11742679 DOI: 10.1038/s42003-025-07511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Histological chorioamnionitis (HCA) is a form of maternal immune activation (MIA) linked to an increased risk of neurodevelopmental disorders in offspring. Our previous study identified neurodevelopmental impairments in an MIA mouse model mimicking HCA. Thus, this study investigated the role of CD11c+ microglia, key contributors to myelination through IGF-1 production, in this pathology. In the mouse model, the CD11c+ microglial population was significantly lower in the MIA group than in the control group on postnatal day 3 (PN3d). Furthermore, myelination-related protein levels significantly decreased in the MIA group at PN8d. In humans, preterm infants with HCA exhibited higher IL-6 and IL-17A cord-serum levels and lower IGF-1 levels than those without HCA, followed by a higher incidence of delayed myelination on magnetic resonance imaging at the term-equivalent age. In silico analysis revealed that the transient induction of CD11c+ microglia during early development occurred similarly in mice and humans. Notably, a lack of high CD11c+ microglial population has been observed in children with neurodevelopmental disorders. This study reports impaired induction of CD11c+ microglia during postnatal development in a mouse model of MIA associated with delayed myelination. Our findings may inform strategies for improving outcomes in infants with HCA.
Collapse
Affiliation(s)
- Kazuya Fuma
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Iitani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Takafumi Ushida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Rika Miki
- Laboratory of Bell Research Center‑Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
| | - Kohei Nomaki
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Kyushu University Institute for Advanced Study, Fukuoka, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Koji Yamanaka
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomomi Kotani
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Division of Reproduction and Perinatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| |
Collapse
|
3
|
Yu H, Li D, Zhao X, Fu J. Fetal origin of bronchopulmonary dysplasia: contribution of intrauterine inflammation. Mol Med 2024; 30:135. [PMID: 39227783 PMCID: PMC11373297 DOI: 10.1186/s10020-024-00909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in infants and the most frequent adverse outcome of premature birth, despite major efforts to minimize injury. It is thought to result from aberrant repair response triggered by either prenatal or recurrent postnatal injury to the lungs during development. Intrauterine inflammation is an important risk factor for prenatal lung injury, which is also increasingly linked to BPD. However, the specific mechanisms remain unclear. This review summarizes clinical and animal research linking intrauterine inflammation to BPD. We assess how intrauterine inflammation affects lung alveolarization and vascular development. In addition, we discuss prenatal therapeutic strategies targeting intrauterine inflammation to prevent or treat BPD.
Collapse
Affiliation(s)
- Haoting Yu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Xinyi Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
4
|
Holliday M, Uddipto K, Castillo G, Vera LE, Quinlivan JA, Mendz GL. Insights into the Genital Microbiota of Women Who Experienced Fetal Death in Utero. Microorganisms 2023; 11:1877. [PMID: 37630436 PMCID: PMC10456767 DOI: 10.3390/microorganisms11081877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this work was to achieve a better understanding of the bacterial pathogens associated with stillbirths that would serve to inform clinical interventions directed at reducing this adverse pregnancy outcome. A prospective observational study was conducted with the participation of 22 women from northern Peru, of whom 11 experienced fetal death in utero and 11 delivered preterm births. Swabs were taken from the vagina, placenta, amniotic fluid and axilla of the infant at birth by Caesarean section. The bacterial populations in the vagina and the amniotic space of each participant were determined by employing the amplicon sequencing of the V4 region of the 16S rRNA genes. The sequence data were analysed using bioinformatics tools. The work showed differences in the composition of the genital microbiomes of women who experienced preterm birth or fetal death in utero. There were no differences in the alpha diversity between the genital microbiotas of both groups of women, but there were more different taxa in the vagina and amniotic space of the preterm participants. Lactobacillus spp. was less abundant in the stillbirth cases. E. coli/Shigella, Staphylococcus, Gardnerella, Listeria and Bacteroides taxa were associated with the stillbirths. In each woman, there was a minimal concordance between the bacterial populations in the vagina and amniotic space.
Collapse
Affiliation(s)
- Mira Holliday
- College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia; (M.H.); (J.A.Q.)
| | - Kumar Uddipto
- School of Medicine, Sydney, University of Notre Dame Australia, Darlinghurst, NSW 2010, Australia;
| | - Gerardo Castillo
- Área de Ciencias Biomédicas y Policlínico, University of Piura, San Eduardo, Piura 20009, Peru; (G.C.); (L.E.V.)
| | - Luz Estela Vera
- Área de Ciencias Biomédicas y Policlínico, University of Piura, San Eduardo, Piura 20009, Peru; (G.C.); (L.E.V.)
| | - Julie A. Quinlivan
- College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia; (M.H.); (J.A.Q.)
- Institute for Health Research, University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - George L. Mendz
- School of Medicine, Sydney, University of Notre Dame Australia, Darlinghurst, NSW 2010, Australia;
| |
Collapse
|
5
|
Dos Anjos Borges LG, Pastuschek J, Heimann Y, Dawczynski K, Schleußner E, Pieper DH, Zöllkau J. Vaginal and neonatal microbiota in pregnant women with preterm premature rupture of membranes and consecutive early onset neonatal sepsis. BMC Med 2023; 21:92. [PMID: 36907851 PMCID: PMC10009945 DOI: 10.1186/s12916-023-02805-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Preterm premature rupture of membranes (PPROM), which is associated with vaginal dysbiosis, is responsible for up to one-third of all preterm births. Consecutive ascending colonization, infection, and inflammation may lead to relevant neonatal morbidity including early-onset neonatal sepsis (EONS). The present study aims to assess the vaginal microbial composition of PPROM patients and its development under standard antibiotic therapy and to evaluate the usefulness of the vaginal microbiota for the prediction of EONS. It moreover aims to decipher neonatal microbiota at birth as possible mirror of the in utero microbiota. METHODS As part of the PEONS prospective multicenter cohort study, 78 women with PPROM and their 89 neonates were recruited. Maternal vaginal and neonatal pharyngeal, rectal, umbilical cord blood, and meconium microbiota were analyzed by 16S rRNA gene sequencing. Significant differences between the sample groups were evaluated using permutational multivariate analysis of variance and differently distributed taxa by the Mann-Whitney test. Potential biomarkers for the prediction of EONS were analyzed using the MetaboAnalyst platform. RESULTS Vaginal microbiota at admission after PPROM were dominated by Lactobacillus spp. Standard antibiotic treatment triggers significant changes in microbial community (relative depletion of Lactobacillus spp. and relative enrichment of Ureaplasma parvum) accompanied by an increase in bacterial diversity, evenness and richness. The neonatal microbiota showed a heterogeneous microbial composition where meconium samples were characterized by specific taxa enriched in this niche. The vaginal microbiota at birth was shown to have the potential to predict EONS with Escherichia/Shigella and Facklamia as risk taxa and Anaerococcus obesiensis and Campylobacter ureolyticus as protective taxa. EONS cases could also be predicted at a reasonable rate from neonatal meconium communities with the protective taxa Bifidobacterium longum, Agathobacter rectale, and S. epidermidis as features. CONCLUSIONS Vaginal and neonatal microbiota analysis by 16S rRNA gene sequencing after PPROM may form the basis of individualized risk assessment for consecutive EONS. Further studies on extended cohorts are necessary to evaluate how far this technique may in future close a diagnostic gap to optimize and personalize the clinical management of PPROM patients. TRIAL REGISTRATION NCT03819192, ClinicalTrials.gov. Registered on January 28, 2019.
Collapse
Affiliation(s)
- Luiz Gustavo Dos Anjos Borges
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany
| | - Jana Pastuschek
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Yvonne Heimann
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Kristin Dawczynski
- Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Department of Pediatrics, Section Neonatology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | | | - Ekkehard Schleußner
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Brunswick, Germany.
| | - Janine Zöllkau
- Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Case (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
6
|
Dong Y, Rivetti S, Lingampally A, Tacke S, Kojonazarov B, Bellusci S, Ehrhardt H. Insights into the Black Box of Intra-Amniotic Infection and Its Impact on the Premature Lung: From Clinical and Preclinical Perspectives. Int J Mol Sci 2022; 23:ijms23179792. [PMID: 36077187 PMCID: PMC9456379 DOI: 10.3390/ijms23179792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Intra-amniotic infection (IAI) is one major driver for preterm birth and has been demonstrated by clinical studies to exert both beneficial and injurious effects on the premature lung, possibly due to heterogeneity in the microbial type, timing, and severity of IAI. Due to the inaccessibility of the intra-amniotic cavity during pregnancies, preclinical animal models investigating pulmonary consequences of IAI are indispensable to elucidate the pathogenesis of bronchopulmonary dysplasia (BPD). It is postulated that on one hand imbalanced inflammation, orchestrated by lung immune cells such as macrophages, may impact on airway epithelium, vascular endothelium, and interstitial mesenchyme, resulting in abnormal lung development. On the other hand, excessive suppression of inflammation may as well cause pulmonary injury and a certain degree of inflammation is beneficial. So far, effective strategies to prevent and treat BPD are scarce. Therapeutic options targeting single mediators in signaling cascades and mesenchymal stromal cells (MSCs)-based therapies with global regulatory capacities have demonstrated efficacy in preclinical animal models and warrant further validation in patient populations. Ante-, peri- and postnatal exposome analysis and therapeutic investigations using multiple omics will fundamentally dissect the black box of IAI and its effect on the premature lung, contributing to precisely tailored and individualized therapies.
Collapse
Affiliation(s)
- Ying Dong
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Feulgen Street 12, 35392 Giessen, Germany
- Correspondence:
| | - Stefano Rivetti
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany
| | - Arun Lingampally
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany
| | - Sabine Tacke
- Clinic for Small Animals (Surgery), Faculty of Veterinary Medicine, Justus-Liebig-University, Frankfurter Street 114, 35392 Giessen, Germany
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Feulgen Street 12, 35392 Giessen, Germany
| |
Collapse
|
7
|
Animal Models of Chorioamnionitis: Considerations for Translational Medicine. Biomedicines 2022; 10:biomedicines10040811. [PMID: 35453561 PMCID: PMC9032938 DOI: 10.3390/biomedicines10040811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth is defined as any birth occurring before 37 completed weeks of gestation by the World Health Organization. Preterm birth is responsible for perinatal mortality and long-term neurological morbidity. Acute chorioamnionitis is observed in 70% of premature labor and is associated with a heavy burden of multiorgan morbidities in the offspring. Unfortunately, chorioamnionitis is still missing effective biomarkers and early placento- as well as feto-protective and curative treatments. This review summarizes recent advances in the understanding of the underlying mechanisms of chorioamnionitis and subsequent impacts on the pregnancy outcome, both during and beyond gestation. This review also describes relevant and current animal models of chorioamnionitis used to decipher associated mechanisms and develop much needed therapies. Improved knowledge of the pathophysiological mechanisms underpinning chorioamnionitis based on preclinical models is a mandatory step to identify early in utero diagnostic biomarkers and design novel anti-inflammatory interventions to improve both maternal and fetal outcomes.
Collapse
|
8
|
Lewis EL, Tulina N, Anton L, Brown AG, Porrett PM, Elovitz MA. IFNγ-Producing γ/δ T Cells Accumulate in the Fetal Brain Following Intrauterine Inflammation. Front Immunol 2021; 12:741518. [PMID: 34675929 PMCID: PMC8524441 DOI: 10.3389/fimmu.2021.741518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022] Open
Abstract
Intrauterine inflammation impacts prenatal neurodevelopment and is linked to adverse neurobehavioral outcomes ranging from cerebral palsy to autism spectrum disorder. However, the mechanism by which a prenatal exposure to intrauterine inflammation contributes to life-long neurobehavioral consequences is unknown. To address this gap in knowledge, this study investigates how inflammation transverses across multiple anatomic compartments from the maternal reproductive tract to the fetal brain and what specific cell types in the fetal brain may cause long-term neuronal injury. Utilizing a well-established mouse model, we found that mid-gestation intrauterine inflammation resulted in a lasting neutrophil influx to the decidua in the absence of maternal systemic inflammation. Fetal immunologic changes were observed at 72-hours post-intrauterine inflammation, including elevated neutrophils and macrophages in the fetal liver, and increased granulocytes and activated microglia in the fetal brain. Through unbiased clustering, a population of Gr-1+ γ/δ T cells was identified as the earliest immune cell shift in the fetal brain of fetuses exposed to intrauterine inflammation and determined to be producing high levels of IFNγ when compared to γ/δ T cells in other compartments. In a case-control study of term infants, IFNγ was found to be elevated in the cord blood of term infants exposed to intrauterine inflammation compared to those without this exposure. Collectively, these data identify a novel cellular immune mechanism for fetal brain injury in the setting of intrauterine inflammation.
Collapse
Affiliation(s)
- Emma L Lewis
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States
| | - Natalia Tulina
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States
| | - Lauren Anton
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy G Brown
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States
| | - Paige M Porrett
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Michal A Elovitz
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, United States.,Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|