1
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Lu Y, Li J, Qin X. Study on extended-spectrum beta-lactamases genes and drug resistance in patients with urinary tract infection of enterohemorrhagic Escherichia coli after bladder cancer surgery. Medicine (Baltimore) 2025; 104:e42098. [PMID: 40295297 PMCID: PMC12040067 DOI: 10.1097/md.0000000000042098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 04/30/2025] Open
Abstract
To explore of the detection of enterohemorrhagic Escherichia coli with extended-spectrum beta-lactamase (ESBLs) in patients with urinary tract infections (UTIs) after bladder cancer surgery, and analysis of their genotypic distribution and drug resistance. From February 2022 to February 2024, patients who underwent bladder cancer surgery at our hospital were collected. Among them, those who developed UTIs with enterohemorrhagic E coli postoperatively had their urine specimens isolated and cultured, resulting in 87 strains of enterohemorrhagic E coli. Cultures were conducted on the obtained enterohemorrhagic E coli samples, ESBLs production was screened, and drug sensitivity tests were performed to investigate the resistance rate and antibacterial effects. Additionally, genotypic testing was conducted. This study successfully isolated 87 strains of E coli, among which 49 strains (56.32%) were found to produce ESBLs after screening. The resistance rates of these ESBL-producing E coli to cefotaxime and ampicillin were relatively high (93.88% and 97.96%, respectively), while the resistance rate to imipenem was the lowest (2.04%). Genotypic testing revealed that among the 49 strains of ESBL-producing E coli, the detection rate of blaCTX-M-14 was the highest at 53.06%, followed by bla-TEM at 30.61%. The detection rates of bla-SHV (4.08%), bla-OXA (2.04%), blaCTX-M-3 (2.04%), blaCTX-M-15 (2.04%), as well as combinations of several genotypes (blaCTX-M-3 + bla-TEM, blaCTX-M-14 + bla-TEM, blaCTX-M-15 + bla-TEM, all with a detection rate of 2.04%), were relatively low. Strains carrying the bla-TEM genotype exhibited 100% resistance rates to ampicillin and tetracycline. Strains carrying the blaCTX-M-14 genotype showed a 100% resistance rate to ampicillin and a 96.15% resistance rate to cefotaxime. Bladder cancer patients with postoperative complications of E coli urinary tract infection have a detection rate of 56.32% for ESBL-producing E coli. The detected ESBL-producing strains show a high resistance rate to ampicillin and cefotaxime, with the lowest resistance rate observed against imipenem. Genotypic analysis reveals that blaCTX-M-14 and bla-TEM are the main ESBL genes, with blaCTX-M-14 having the highest detection rate.
Collapse
Affiliation(s)
- Yanzhi Lu
- Department of Clinical Laboratory, Chifeng City Cancer Hospital, Chifeng, Neimenggu, China
| | - Jinman Li
- Department of Clinical Laboratory, Chifeng City Cancer Hospital, Chifeng, Neimenggu, China
| | - Xuewen Qin
- Department of Clinical Laboratory, Chifeng City Cancer Hospital, Chifeng, Neimenggu, China
| |
Collapse
|
3
|
Zhong W, Zhou Y, Che M, Wang L, Tian X, Wang C, Cheng Y, Liu H, Zhou Z, Peng G, Zhang K, Luo Y, Shi K, Zhong Z. Extended-spectrum β-lactamase-producing Escherichia coli isolated from captive primates: characteristics and horizontal gene transfer ability analysis. PLoS One 2025; 20:e0321514. [PMID: 40215220 PMCID: PMC11990791 DOI: 10.1371/journal.pone.0321514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025] Open
Abstract
The rapid spread of extended-spectrum β-lactamases (ESBLs)-producing Escherichia coli (ESBL-EC) around the world has become a significant challenge for humans and animals. In this study, we aimed to examine the characteristics and horizontal gene transfer (HGT) capacity of ESBL-EC derived from captive primates. We screened for ESBL-EC among a total of 444 multidrug-resistant (MDR) E. coli strains isolated from 13 zoos in China using double-disk test. ESBL genes, mobile genetic elements (MGEs), and virulence-associated genes (VAGs) in ESBL-EC were detected through polymerase chain reaction (PCR). Furthermore, conjugation experiments were conducted to examine the HGT capacity of ESBL-EC, and the population structure (phylogenetic groups and MLST) was determined. Our results showed that a total of 69 (15.54%, 69/444) ESBL-EC strains were identified, and 5 variants of blaCTX and 3 variants of blaTEM were detected. The highest detection rate was blaCTX-M-55 (49.28%, 34/69), followed by blaCTX-M-15 (39.13%, 27/69). Ten MGEs were detected and the most prevalent was IS26 (78.26%, 54/69), followed by ISEcp1 (60.87%, 42/69). Eighteen combinations of MGEs were detected, in which ISEcp1 + IS26 was predominant (18.84%, n = 13). A total of 15 VAGs were detected and the most prevalent was fimC (84.06%, 58/69), followed by sitA (78.26%, 54/69). Furthermore, HGT ability analysis results showed that 40.58% (28/69) of ESBL-EC strains exhibited the ability to engage in conjugative transfer. Plasmid typing revealed that IncFIB (78.57%, 22/28) had the highest detection rates. Furthermore, antibiotic resistance genes (ARGs) of blaTEM-135, tetA and qnrS; MGEs of IS26, trbC and ISCR3/14 showed high rates of conjugative transfer. The population structure analysis showed that the phylogroup B1 and ST2161 were the most prevalent. ESBL-EC poses a potential threat to captive primates and may spread to other animals, humans, and the environment. It is imperative to implement measures to prevent the transmission of ESBL-EC among captive primates.
Collapse
Affiliation(s)
- Wenhao Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yuxin Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Mengjie Che
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Xingyu Tian
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Centre for the Giant Panda, Key Laboratory of SFGA on The Giant-Panda, Chengdu, Sichuan, China
| | - Yuehong Cheng
- Sichuan Wolong National Natural Reserve Administration Bureau, Wenchuan, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Kun Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Keyun Shi
- Jiangsu Yixing People’s Hospital, Yixing, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
4
|
Matthew-Bernard M, Farmer-Diaz K, Dolphin-Bond G, Matthew-Belmar V, Cheetham S, Mitchell K, Macpherson CNL, Ramos-Nino ME. Phenotypic Antibiotic Resistance Patterns of Escherichia coli Isolates from Clinical UTI Samples and Municipal Wastewater in a Grenadian Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:97. [PMID: 39857550 PMCID: PMC11765413 DOI: 10.3390/ijerph22010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Antimicrobial resistance (AMR) is a growing global health threat. This study investigated antibiotic resistance in E. coli isolates from municipal wastewater (86 isolates) and clinical urinary tract infection (UTI) cases (34 isolates) in a Grenadian community, using data from January 2022 to October 2023. Antibiogram data, assessed per WHO guidelines for Critically Important antimicrobials (CIA), showed the highest resistance levels in both clinical and wastewater samples for ampicillin, followed by amoxicillin/clavulanic acid and nalidixic acid, all classified as Critically Important. Similar resistance was observed for sulfamethoxazole-trimethoprim (highly important) in both groups, with nitrofurantoin showing resistance in the important category. According to the WHO AWaRe classification, ampicillin (ACCESS group) had the highest resistance, while nitrofurantoin had the lowest across all samples. The WATCH group antibiotics, cefuroxime and cefoxitin, showed comparable resistance levels, whereas aztreonam from the RESERVE group (tested only in wastewater) was 100% sensitive. Multiple Antibiotic Resistance (MAR) index analysis revealed that 7% of wastewater and 38.2% of clinical samples had MAR values over 0.2, indicating prior antibiotic exposure in clinical isolates. These parallel patterns in wastewater and clinical samples highlight wastewater monitoring as a valuable tool for AMR surveillance, supporting antibiotic stewardship through ongoing environmental and clinical assessment.
Collapse
Affiliation(s)
- Makeda Matthew-Bernard
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (M.M.-B.); (K.F.-D.); (G.D.-B.)
| | - Karla Farmer-Diaz
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (M.M.-B.); (K.F.-D.); (G.D.-B.)
| | - Grace Dolphin-Bond
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (M.M.-B.); (K.F.-D.); (G.D.-B.)
| | - Vanessa Matthew-Belmar
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (V.M.-B.); (S.C.)
| | - Sonia Cheetham
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (V.M.-B.); (S.C.)
| | - Kerry Mitchell
- Department of Public Health and Preventive Medicine, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada;
| | | | - Maria E. Ramos-Nino
- Department of Microbiology, Immunology, and Pharmacology, School of Medicine, St. George’s University, St. George’s P.O. Box 7, Grenada; (M.M.-B.); (K.F.-D.); (G.D.-B.)
| |
Collapse
|
5
|
Alameer KM, Abuageelah BM, Alharbi RH, Alfaifi MH, Hurissi E, Haddad M, Dhayhi N, Jafar AS, Mobarki M, Awashi H, Musawi S, Alameer AM, Kariri SH, Alhazmi AH. Retrospective Analysis of Antibiotic Resistance Patterns of Uropathogenic Escherichia coli With Focus on Extended-Spectrum β-Lactamase at a Tertiary Central Hospital in Saudi Arabia. Health Sci Rep 2025; 8:e70378. [PMID: 39867706 PMCID: PMC11757819 DOI: 10.1002/hsr2.70378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/17/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Background and Aims Urinary tract infections (UTIs) are a prevalent bacterial infection that has substantial implications for healthcare on a global scale. Escherichia coli (E. coli) is a gram-negative rod responsible for most UTI cases. ESBL-producing E. coli is widely recognized as a significant contributor to antibiotic resistance. This study aims to evaluate the prevalence and antibiotic resistance trends of ESBL-producing E. coli in patients with UTIs at a tertiary hospital in Jazan, Saudi Arabia. Methods A retrospective cross-sectional analysis was conducted on 347 urine specimens collected between January 2022 and March 2023. Results The study found that 31% of E. coli specimens were positive for ESBL. Among patients with ESBL-producing E. coli, 78.9% were females, and the majority of ESBL-producing E. coli cases were observed in the outpatient clinic departments. Among all E. coli isolates, ampicillin exhibited the highest resistance rate at 69.3%, aztreonam at 66.7%, and colistin at the lowest resistance. ESBL-producing E. coli strains exhibited higher resistance rates than non-ESBL-producing E. coli strains. Conclusion The study agrees with others in the region and shows a higher prevalence of ESBL-producing E. coli in the region, emphasizing the importance of antibiotic stewardship programs and infection control measures to mitigate the prevalence and spread of ESBL-producing E. coli in our region.
Collapse
Affiliation(s)
| | | | | | - Mona H. Alfaifi
- General Medicine Practice ProgramBatterjee Medical CollegeAbhaSaudi Arabia
| | - Eman Hurissi
- Ophthalmology Division, Department of SurgeryPrince Mohammed Bin Naser HospitalJazanSaudi Arabia
| | - Moayad Haddad
- Department of Pediatric Infectious DiseasesKing Fahad Central HospitalJazanSaudi Arabia
| | - Nabil Dhayhi
- Department of Pediatric Infectious DiseasesKing Fahad Central HospitalJazanSaudi Arabia
| | - Abdulelah S. Jafar
- Department of Pediatric Infectious DiseasesKing Fahad Central HospitalJazanSaudi Arabia
| | - Mousa Mobarki
- Faculty of MedicineJazan UniversityJazanSaudi Arabia
| | - Hassan Awashi
- Jazan Regional Laboratory, Ministry of HealthJazanSaudi Arabia
| | - Shaqraa Musawi
- Faculty of Medical Applied ScienceJazan UniversityJazanSaudi Arabia
| | | | | | | |
Collapse
|
6
|
Hope M, Kiggundu R, Tabajjwa D, Tumwine C, Lwigale F, Mwanja H, Waswa JP, Mayito J, Bulwadda D, Byonanebye DM, Kakooza F, Kambugu A. Progress on implementing the WHO-GLASS recommendations on priority pathogen-antibiotic sensitivity testing in Africa: A scoping review. Wellcome Open Res 2024; 9:692. [PMID: 39931110 PMCID: PMC11809157 DOI: 10.12688/wellcomeopenres.23133.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The World Health Organization global antimicrobial resistance surveillance system (GLASS) was rolled out in 2015 to guide antimicrobial resistance (AMR) surveillance. However, its implementation in Africa has not been fully evaluated. We conducted a scoping review to establish the progress of implementing the WHO 2015 GLASS manual in Africa. Methods We used MeSH terms to comprehensively search electronic databases (MEDLINE and Embase) for articles from Africa published in English between January 2016 and December 2023. The Arksey and O'Malley's methodological framework for scoping reviews was employed. Data were collected on compliance with WHO GLASS recommendations for AMR surveillance-priority samples, pathogens, and pathogen-antibiotic combinations and analysed using Microsoft Excel. Results Overall, 13,185 articles were identified. 7,409 were duplicates, and 5,141 articles were excluded based on titles and abstracts. 609 full-text articles were reviewed, and 147 were selected for data extraction. Of the 147 selected articles, 78.9% had been published between 2020 and 2023; 57.8% were from Eastern Africa. 93.9% of articles were on cross-sectional studies. 96.6% included only one priority sample type; blood (n=56), urine (n=64), and stool (n=22). Of the 60 articles that focused on blood as a priority sample type, 71.7%, 68.3%, 68.3%, 36.7%, 30%, and 10% reported recovery of Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Salmonella species and Streptococcus pneumoniae, respectively. Salmonella and Shigella species were reported to have been recovered from 91.3% and 73.9% of the 23 articles that focused on stool. E. coli and K. pneumoniae recoveries were also reported from 94.2% and 68.1% of the 69 articles that focused on urine. No article in this review reported having tested all the recommended WHO GLASS pathogen-antibiotic combinations for specific pathogens. Conclusion Progress has been made in implementing the GLASS recommendations in Africa, but adoption varies across countries limiting standardisation and comparability of data.
Collapse
Affiliation(s)
- Mackline Hope
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| | - Reuben Kiggundu
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| | - Dickson Tabajjwa
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| | - Conrad Tumwine
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| | - Fahad Lwigale
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| | - Herman Mwanja
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| | - J. P. Waswa
- Management Sciences for Health Uganda, Kampala, Central Region, Uganda
| | - Jonathan Mayito
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| | - Daniel Bulwadda
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
- Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Central Region, Uganda
| | - Dathan M. Byonanebye
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
- School of Public Health, Makerere University, Kampala, Central Region, Uganda
| | - Francis Kakooza
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| | - Andrew Kambugu
- Infectious Diseases Institute, Makerere University, Kampala, Central Region, Uganda
| |
Collapse
|
7
|
Zhang X, Jiao R, Li H, Ou D, Zhang D, Shen Y, Ling N, Ye Y. Probiotic Potential, Antibacterial, and Antioxidant Capacity of Aspergillus luchuensis YZ-1 Isolated From Liubao Tea. Probiotics Antimicrob Proteins 2024; 16:1528-1540. [PMID: 37458925 DOI: 10.1007/s12602-023-10126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 10/02/2024]
Abstract
Aspergillus fungi are widely used in the traditional fermentation of food products, so their safety risks and functions are worthy of investigation. In this study, one Aspergillus luchuensis YZ-1 isolated from Liubao tea was identified based on phylogenetic analyses of sequences of three genes coding for internal transcribed spacer 1 (ITS1), β-tubulin (benA), and calmodulin (CaM). The results of hemolytic activity, DNase activity, cytotoxicity assay, and antibiotic resistance assay indicated that the strain is potentially safe. The excellent gastrointestinal fluid tolerance, acid tolerance, bile tolerance, auto-aggregation, co-aggregation, cell surface hydrophobicity, and adhesion to human colon adenocarcinoma (HT29) cell line were observed on analysis of the probiotic properties. Furthermore, the results of the antibacterial activity of A. luchuensis YZ-1 indicated that the strain had strong antagonistic effects against Gram-negative and Gram-positive bacteria as well as fungi. Simultaneously, the water extracts and 80% ethanolic extracts of A. luchuensis YZ-1 cells also showed strong ABTS, DPPH, and OH- scavenging ability. Taken together, our results suggest that A. luchuensis YZ-1 has desirable functional probiotic properties and can be proposed as a biocontrol agent in the food industry.
Collapse
Affiliation(s)
- Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Rui Jiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hui Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Danfeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yizhong Shen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
8
|
Hrovat K, Seme K, Ambrožič Avguštin J. Increasing Fluroquinolone Susceptibility and Genetic Diversity of ESBL-Producing E. coli from the Lower Respiratory Tract during the COVID-19 Pandemic. Antibiotics (Basel) 2024; 13:797. [PMID: 39334972 PMCID: PMC11428890 DOI: 10.3390/antibiotics13090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Lower respiratory tract infections (LRTIs) are the fourth leading cause of death worldwide, among which Escherichia coli (E. coli) pneumonia is considered a rare phenomenon. Treatment options for LRTIs have become limited, especially for extended-spectrum β-lactamase-producing E. coli (ESBL-EC), which are usually resistant to other groups of antimicrobials as well. The aim of our study was to compare the phenotypic resistance profiles and genotypes of ESBL-EC isolates associated with LRTIs before (pre-COVID-19) and during (COVID-19) the COVID-19 pandemic. All isolates were screened for antimicrobial resistance genes (ARGs) and virulence-associated genes (VAGs) and assigned to phylogenetic groups, sequence types and clonal groups by PCR. During the pandemic, a significantly lower proportion of ciprofloxacin-, levofloxacin- and trimethoprim-sulfamethoxazole-resistant ESBL-EC isolates was retrieved from lower respiratory tract (LRT) samples. PCR-based genotypization revealed greater clonal diversity and a significantly lower proportion of isolates with blaTEM, aac(6')-Ib-cr and qacEΔ1 genes. In addition, a higher proportion of isolates with the integrase gene int1 and virulence genes sat and tsh was confirmed. The lower prevalence of fluoroquinolone resistance and greater genetic diversity of ESBL-EC isolated during the COVID-19 period may have been due to the introduction of new bacterial strains into the hospital environment, along with changes in clinical establishment guidelines and practices.
Collapse
Affiliation(s)
- Katja Hrovat
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
9
|
Rasheed R, Uzair B, Raza A, Binsuwaidan R, Alshammari N. Fungus-mediated synthesis of Se-BiO-CuO multimetallic nanoparticles as a potential alternative antimicrobial against ESBL-producing Escherichia coli of veterinary origin. Front Cell Infect Microbiol 2024; 14:1301351. [PMID: 38655284 PMCID: PMC11037251 DOI: 10.3389/fcimb.2024.1301351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
Bacterial infections emerge as a significant contributor to mortality and morbidity worldwide. Emerging extended-spectrum β-lactamase (ESBL) Escherichia coli strains provide a greater risk of bacteremia and mortality, are increasingly resistant to antibiotics, and are a major producer of ESBLs. E. coli bacteremia-linked mastitis is one of the most common bacterial diseases in animals, which can affect the quality of the milk and damage organ functions. There is an elevated menace of treatment failure and recurrence of E. coli bacteremia necessitating the adoption of rigorous alternative treatment approaches. In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV-visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV-visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66-80 nm, respectively. Se-BiO-CuO MMNPs (100 μg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.
Collapse
Affiliation(s)
- Rida Rasheed
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Abida Raza
- National Center of Industrial Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
10
|
Maveke SM, Aboge GO, Kanja LW, Mainga AO, Gachau N, Muchira BW, Moriasi GA. Phenotypic and Genotypic Characterization of Extended Spectrum Beta-Lactamase-Producing Clinical Isolates of Escherichia coli and Klebsiella pneumoniae in Two Kenyan Facilities: A National Referral and a Level Five Hospital. Int J Microbiol 2024; 2024:7463899. [PMID: 38384586 PMCID: PMC10881238 DOI: 10.1155/2024/7463899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Background The emergence of antimicrobial resistance (AMR) and multidrug resistance (MDR) among Escherichia coli and Klebsiella pneumoniae, especially through the production of extended spectrum β-lactamases (ESBLs), limits therapeutic options and poses a significant public health threat. Objective The aim of this study was to assess the phenotypic and genetic determinants of antimicrobial resistance of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates from patient samples in two Kenyan Hospitals. Methods We collected 138 E. coli and 127 K. pneumoniae isolates from various clinical specimens at the two health facilities from January 2020 to February 2021. The isolates' ESBL production and antibiotic susceptibility were phenotypically confirmed using a standard procedure. Molecular analysis was done through conventional polymerase chain reaction (PCR) with appropriate primers for gadA, rpoB, blaTEM, blaSHV, blaOXA, blaCTX-M-group-1, blaCTX-M-group-2, blaCTX-M-group-9, and blaCTX-M-group-8/25 genes, sequencing and BLASTn analysis. Results Most E. coli (82.6%) and K. pneumoniae (92.9%) isolates were ESBL producers, with the highest resistance was against ceftriaxone (69.6% among E. coli and 91.3% among K. pneumoniae) and amoxicillin/clavulanic acid (70.9% among K. pneumoniae). The frequency of MDR was 39.9% among E. coli and 13.4% among K. pneumoniae isolates. The commonest MDR phenotypes among the E. coli isolates were CRO-FEP-AZM-LVX and CRO-AZM-LVX, while the FOX-CRO-AMC-MI-TGC-FM, FOX-CRO-FEP-AMC-TZP-AZM-LVX-MI and CRO-AMC-TZP-AZM-MI were the most frequent among K. pneumoniae isolates. Notably, the FOX-CRO-FEP-AMC-TZP-AZM-LVX-MI phenotype was observed in ESBL-positive and ESBL-negative K. pneumoniae isolates. The most frequent ESBL genes were blaTEM (42%), blaSHV (40.6%), and blaOXA (36.2%) among E. coli, and blaTEM (89%), blaSHV (82.7%), blaOXA (76.4%), and blaCTX-M-group-1 (72.5%) were most frequent ESBL genes among K. pneumoniae isolates. The blaSHV and blaOXA and blaTEM genotypes were predominantly associated with FOX-CRO-FEP-MEM and CRO-FEP multidrug resistance (MDR) and CRO antimicrobial resistance (AMR) phenotypes, among E. coli isolates from Embu Level V (16.7%) and Kenyatta National Hospital (7.0%), respectively. Conclusions The high proportion of ESBL-producing E. coli and K. pneumoniae isolates increases the utilization of last-resort antibiotics, jeopardizing antimicrobial chemotherapy. Furthermore, the antimicrobial resistance patterns exhibited towards extended-spectrum cephalosporins, beta-lactam/beta-lactamase inhibitor combinations, fluoroquinolones, and macrolides show the risk of co-resistance associated with ESBL-producing isolates responsible for MDR. Hence, there is a need for regular surveillance and implementation of infection prevention and control strategies and antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Sylvia M. Maveke
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Gabriel O. Aboge
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Laetitia W. Kanja
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Alfred O. Mainga
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Naftaly Gachau
- Department of Laboratory Medicine, Microbiology, Kenyatta National Hospital, P.O. Box 20723-00202, Nairobi, Kenya
| | - Beatrice W. Muchira
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Gervason A. Moriasi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100-GPO, Nairobi, Kenya
- Department of Medical Biochemistry, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
| |
Collapse
|
11
|
Elbehiry A, Al Shoaibi M, Alzahrani H, Ibrahem M, Moussa I, Alzaben F, Alsubki RA, Hemeg HA, Almutairi D, Althobaiti S, Alanazi F, Alotaibi SA, Almutairi H, Alzahrani A, Abu-Okail A. Enterobacter cloacae from urinary tract infections: frequency, protein analysis, and antimicrobial resistance. AMB Express 2024; 14:17. [PMID: 38329626 PMCID: PMC10853136 DOI: 10.1186/s13568-024-01675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/27/2024] [Indexed: 02/09/2024] Open
Abstract
The genus Enterobacter belongs to the ESKAPE group, which includes Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. This group is characterized by the development of resistance to various antibiotics. In recent years, Enterobacter cloacae (E. cloacae) has emerged as a clinically important pathogen responsible for a wide range of healthcare-associated illnesses. Identifying Enterobacter species can be challenging due to their similar phenotypic characteristics. The emergence of multidrug-resistant E. cloacae is also a significant problem in healthcare settings. Therefore, our study aimed to identify and differentiate E. cloacae using Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) as a fast and precise proteomic analytical technique. We also tested hospital-acquired E. cloacae isolates that produce Extended-spectrum beta-lactamases (ESBL) against commonly used antibiotics for treating urinary tract infections (UTIs). We used a total of 189 E. cloacae isolates from 2300 urine samples of patients with UTIs in our investigation. We employed culturing techniques, as well as the BD Phoenix™ automated identification system (Becton, Dickinson) and Analytical Profile Index (API) system for the biochemical identification of E. cloacae isolates. We used the MALDI Biotyper (MBT) device for peptide mass fingerprinting analysis of all isolates. We utilized the single peak intensities and Principal Component Analysis (PCA) created by MBT Compass software to discriminate and cluster the E. cloacae isolates. Additionally, we evaluated the sensitivity and resistance of ESBL-E. cloacae isolates using the Kirby Bauer method. Out of the 189 E. cloacae isolates, the BD Phoenix system correctly identified 180 (95.24%) isolates, while the API system correctly identified 165 (87.30%) isolates. However, the MBT accurately identified 185 (98.95%) isolates with a score of 2.00 or higher. PCA positively discriminated the identified E. cloacae isolates into one group, and prominent peaks were noticed between 4230 mass-to-charge ratio (m/z) and 8500 m/z. The ESBL-E. cloacae isolates exhibited a higher degree of resistance to ampicillin, amoxicillin-clavulanate, cephalothin, cefuroxime, and cefoxitin. Several isolates were susceptible to carbapenems (meropenem, imipenem, and ertapenem); however, potential future resistance against carbapenems should be taken into consideration. In conclusion, MALDI-TOF MS is a powerful and precise technology that can be routinely used to recognize and differentiate various pathogens in clinical samples. Additionally, the growing antimicrobial resistance of this bacterium may pose a significant risk to human health.
Collapse
Affiliation(s)
- Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, 52741, Al Bukayriyah, Saudi Arabia.
| | - Mansor Al Shoaibi
- Department of Support Service, King Fahad Armed Hospital, 23311, Jeddah, Saudi Arabia
| | - Hamzah Alzahrani
- Department of Preventive Medicine, King Fahad Armed Hospital, 23311, Jeddah, Saudi Arabia
| | - Mai Ibrahem
- Department of Public Health, College of Applied Medical Science, King Khalid University, 61421, Abha, Saudi Arabia
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Feras Alzaben
- Department of Food Service, King Fahad Armed Forces Hospital, 23311, Jeddah, Saudi Arabia
| | - Rousa A Alsubki
- Department of Clinical Laboratory Science, College of Applied Science, King Saud University, Riyadh, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Dakheel Almutairi
- Medical Transportation Administration of Prince Sultan Military Medical City, 12233, Riyadh, Saudi Arabia
| | - Saleh Althobaiti
- Pharmacy Department, Armed Forces Hospital in Jubail, 35517, Jubail, Saudi Arabia
| | - Fawaz Alanazi
- Supply Administration, Armed Forces Hospital, King Abdul Aziz Naval Base in Jubail, 35517, Jubail, Saudi Arabia
| | - Sultan A Alotaibi
- Medical Administration, Armed Forces Hospital, King Abdul Aziz Naval Base in Jubail, 35517, Jubail, Saudi Arabia
| | - Hamoud Almutairi
- Aviation Medicine, King Abdulaziz Medical City of National Guard, 14611, Riyadh, Saudi Arabia
| | - Ali Alzahrani
- Department of Preventive Medicine, King Fahad Armed Hospital, 23311, Jeddah, Saudi Arabia
| | - Akram Abu-Okail
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, 52571, Buraydah, Saudi Arabia
| |
Collapse
|
12
|
Shahbazi R, Alebouyeh M, Shahkolahi S, Shahbazi S, Hossainpour H, Salmanzadeh-Ahrabi S. Molecular study on virulence and resistance genes of ST131 clone (uropathogenic/enteropathogenic Escherichia coli) hybrids in children. Future Microbiol 2023; 18:1353-1361. [PMID: 37882814 DOI: 10.2217/fmb-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To analyze ST131 clones and other characteristics in uropathogenic and atypical enteropathogenic Escherichia coli hybrids. Methods: Samples were collected from children with urinary tract infections and underwent testing for antimicrobial susceptibility, multidrug resistance and extended-spectrum β-lactamases, in vitro biofilm formation and virulence, resistance genes, hybrid pathotypes and ST131 clones. Results: E. coli isolates showed high levels of antibiotic resistance, extended-spectrum β-lactamase production, virulence genes, multidrug resistance and biofilm formation. Four (5.0%) isolates were identified as uropathogenic/atypical enteropathogenic E. coli hybrids, all of which belonged to the high-risk ST131 clone. Conclusion: Our results provide promising insights about hybrid isolates and should be addressed to improve prevention measures for hybrid pathotypes.
Collapse
Affiliation(s)
- Razieh Shahbazi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Center, Research for Children'sHealth, Shahid Beheshti University of MedicalSciences, 1983969411, Tehran, Iran
| | - Shaghayegh Shahkolahi
- Department of Microbiology, North Tehran Branch, IslamicAad University, 1651153311, Tehran. Iran
| | - Shahla Shahbazi
- Department of Molecular Biology, Pasteur Institute of Iran, 1316943551, Tehran, Iran
| | - Hadi Hossainpour
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, 6715847141, Kermanshah, Iran
| | - Siavosh Salmanzadeh-Ahrabi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, 1993891176, Tehran, Iran
| |
Collapse
|
13
|
Fu Y, Dou Q, Smalla K, Wang Y, Johnson TA, Brandt KK, Mei Z, Liao M, Hashsham SA, Schäffer A, Smidt H, Zhang T, Li H, Stedtfeld R, Sheng H, Chai B, Virta M, Jiang X, Wang F, Zhu Y, Tiedje JM. Gut microbiota research nexus: One Health relationship between human, animal, and environmental resistomes. MLIFE 2023; 2:350-364. [PMID: 38818274 PMCID: PMC10989101 DOI: 10.1002/mlf2.12101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 06/01/2024]
Abstract
The emergence and rapid spread of antimicrobial resistance is of global public health concern. The gut microbiota harboring diverse commensal and opportunistic bacteria that can acquire resistance via horizontal and vertical gene transfers is considered an important reservoir and sink of antibiotic resistance genes (ARGs). In this review, we describe the reservoirs of gut ARGs and their dynamics in both animals and humans, use the One Health perspective to track the transmission of ARG-containing bacteria between humans, animals, and the environment, and assess the impact of antimicrobial resistance on human health and socioeconomic development. The gut resistome can evolve in an environment subject to various selective pressures, including antibiotic administration and environmental and lifestyle factors (e.g., diet, age, gender, and living conditions), and interventions through probiotics. Strategies to reduce the abundance of clinically relevant antibiotic-resistant bacteria and their resistance determinants in various environmental niches are needed to ensure the mitigation of acquired antibiotic resistance. With the help of effective measures taken at the national, local, personal, and intestinal management, it will also result in preventing or minimizing the spread of infectious diseases. This review aims to improve our understanding of the correlations between intestinal microbiota and antimicrobial resistance and provide a basis for the development of management strategies to mitigate the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated PlantsBraunschweigGermany
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Kristian K. Brandt
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Sino‐Danish Center (SDC)BeijingChina
| | - Zhi Mei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Maoyuan Liao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Syed A. Hashsham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Andreas Schäffer
- Institute for Environmental ResearchRWTH Aachen UniversityAachenGermany
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningenThe Netherlands
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil EngineeringThe University of Hong KongPokfulamHong KongChina
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Robert Stedtfeld
- Department of Civil and Environmental EngineeringMichigan State UniversityMichiganUSA
| | - Hongjie Sheng
- Institute of Agricultural Resources and EnvironmentJiangsu Academy of Agricultural SciencesNanjingChina
| | - Benli Chai
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| | - Marko Virta
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yong‐Guan Zhu
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- State Key Laboratory of Urban and Regional EcologyChinese Academy of SciencesBeijingChina
| | - James M. Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial EcologyMichigan State UniversityMichiganUSA
| |
Collapse
|
14
|
Yap PSX, Chong CW, Ponnampalavanar S, Ramli R, Harun A, Tengku Jamaluddin TZM, Ahmed Khan A, Ngoi ST, Lee YQ, Lau MY, Tan SC, Kong ZX, Woon JJ, Mak ST, Abdul Jabar K, Karunakaran R, Ismail Z, Salleh SA, Md Noor SS, Masri SN, Mohd Taib N, Jasni AS, Tee LH, Leong KC, Lim VKE, Abu Bakar S, Teh CSJ. A multicentre study to determine the in vitro efficacy of flomoxef against extended-spectrum beta-lactamase producing Escherichia coli in Malaysia. PeerJ 2023; 11:e16393. [PMID: 38047021 PMCID: PMC10691355 DOI: 10.7717/peerj.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/11/2023] [Indexed: 12/05/2023] Open
Abstract
Background The high burden of extended-spectrum beta-lactamase-producing (ESBL)-producing Enterobacterales worldwide, especially in the densely populated South East Asia poses a significant threat to the global transmission of antibiotic resistance. Molecular surveillance of ESBL-producing pathogens in this region is vital for understanding the local epidemiology, informing treatment choices, and addressing the regional and global implications of antibiotic resistance. Methods Therefore, an inventory surveillance of the ESBL-Escherichia coli (ESBL-EC) isolates responsible for infections in Malaysian hospitals was conducted. Additionally, the in vitro efficacy of flomoxef and other established antibiotics against ESBL-EC was evaluated. Results A total of 127 non-repetitive ESBL-EC strains isolated from clinical samples were collected during a multicentre study performed in five representative Malaysian hospitals. Of all the isolates, 33.9% were isolated from surgical site infections and 85.8% were hospital-acquired infections. High rates of resistance to cefotaxime (100%), cefepime (100%), aztreonam (100%) and trimethoprim-sulfamethoxazole (100%) were observed based on the broth microdilution test. Carbapenems remained the most effective antibiotics against the ESBL-EC, followed by flomoxef. Antibiotic resistance genes were identified by PCR. The blaCTX-M-1 was the most prevalent ESBL gene, with 28 isolates (22%) harbouring blaCTX-M-1 only, 27 isolates (21.3%) co-harbouring blaCTX-M-1 and blaTEM, and ten isolates (7.9%) co-harbouring blaCTX-M-1, blaTEM and blaSHV. A generalised linear model showed significant antibacterial activity of imipenem against different types of infection. Besides carbapenems, this study also demonstrated a satisfactory antibacterial activity of flomoxef (81.9%) on ESBL-EC, regardless of the types of ESBL genes.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | | | - Ramliza Ramli
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | - Anis Ahmed Khan
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Soo Tein Ngoi
- Department of Anesthesiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Yee Qing Lee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Min Yi Lau
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shiang Chiet Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zhi Xian Kong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jia Jie Woon
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Siew Thong Mak
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kartini Abdul Jabar
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Rina Karunakaran
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zalina Ismail
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Sharifah Azura Salleh
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Siti Suraiya Md Noor
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Siti Norbaya Masri
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Niazlin Mohd Taib
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azmiza Syawani Jasni
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | - Victor Kok Eow Lim
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Sazaly Abu Bakar
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Razaq L, Uddin F, Ali S, Abbasi SM, Sohail M, Yousif NE, Abo-Dief HM, El-Bahy ZM. In Vitro Activity of New β-Lactamase Inhibitor Combinations against blaNDM, blaKPC, and ESBL-Producing Enterobacteriales Uropathogens. Antibiotics (Basel) 2023; 12:1481. [PMID: 37887182 PMCID: PMC10604030 DOI: 10.3390/antibiotics12101481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Antibiotic resistance in uropathogens has increased substantially and severely affected treatment of urinary tract infections (UTIs). Lately, some new formulations, including meropenem/vaborbactam (MEV), ceftazidime/avibactam (CZA), and ceftolozane/tazobactam (C/T) have been introduced to treat infections caused by drug-resistant pathogens. This study was designed to screen Enterobacteriales isolates from UTI patients and to assess their antimicrobial resistance pattern, particularly against the mentioned (new) antibiotics. Phenotypic screening of extended-spectrum β-lactamase (ESBL) and carbapenem resistance was followed by inhibitor-based assays to detect K. pneumoniae carbapenemase (KPC), metallo-β-lactamase (MBL), and class D oxacillinases (OXA). Among 289 Enterobacteriales, E. coli (66.4%) was the most predominant pathogen, followed by K. pneumoniae (13.8%) and P. mirabilis (8.3%). The isolates showed higher resistance to penicillins and cephalosporins (70-87%) than to non-β-lactam antimicrobials (33.2-41.5%). NDM production was a common feature among carbapenem-resistant (CR) isolates, followed by KPC and OXA. ESBL producers were susceptible to the tested new antibiotics, but NDM-positive isolates appeared resistant to these combinations. KPC-producers showed resistance to only C/T. ESBLs and carbapenemase encoding genes were located on plasmids and most of the genes were successfully transferred to recipient cells. This study revealed that MEV and CZA had significant activity against ESBL and KPC producers.
Collapse
Affiliation(s)
- Lubna Razaq
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Fakhur Uddin
- Department of Microbiology, Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan
| | - Shahzad Ali
- Department of Urology, Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan;
| | - Shah Muhammad Abbasi
- Department of Main Clinical Laboratory, Jinnah Postgraduate Medical Center (JPMC), Karachi 75510, Pakistan;
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan;
| | - Nabila E. Yousif
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.Y.); (H.M.A.-D.)
| | - Hala M. Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (N.E.Y.); (H.M.A.-D.)
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| |
Collapse
|
16
|
Muleme J, Kankya C, Munyeme M, Musoke D, Ssempebwa JC, Isunju JB, Wambi R, Balugaba BE, Sekulima T, Mugambe RK, Cadmus S, Kajumbula HM. Phenotypic Characterization and Antibiograms of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated at the Human-Animal-Environment Interface Using a One Health Approach Among Households in Wakiso District, Uganda. Infect Drug Resist 2023; 16:2203-2216. [PMID: 37081947 PMCID: PMC10112474 DOI: 10.2147/idr.s398951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023] Open
Abstract
Background The occurrence of extended spectrum beta-lactamase (ESBL) producing bacteria such as Escherichia coli has increasingly become recognized beyond hospital settings. Resistance to other types of antibiotics limits treatment options while the existence of such bacteria among humans, animals, and the environment is suggestive of potential zoonotic and reverse-zoonotic transmission. This study aimed to establish the antibiotic susceptibility profiles of the ESBL-producing Escherichia coli (ESBL-EC) from human, animal, and environmental isolates obtained among farming households within Wakiso district using a One Health approach. Methods A total of 100 ESBL-EC isolates from humans 35/100 (35%), animals 56/100 (56%), and the environment 9/100 (9%) were tested for susceptibility to 11 antibiotics. This was done using the Kirby-Bauer disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Data were analyzed in STATA ver. 16 and graphs were drawn in Microsoft excel ver. 10. Results Most of the ESBL-EC isolates (98%) were resistant to more than two antibiotics. ESBL-EC isolates were most susceptible to meropenem (MEM) (88.0%), and imipenem (82.0%) followed by gentamicin (72%). ESBL-EC isolates from humans were most susceptible to meropenem (MEM) followed by imipenem (IPM)> gentamicin (CN)> ciprofloxacin (CIP). Animal samples were more susceptible to MEM, IPM, and CN but were highly resistant to cefotaxime (CTX)> cefepime (FEP)>other antibiotics. Multidrug resistance (MDR) was mostly reported among households keeping goats under intensive husbandry practices. Seven percent of the isolates exhibited carbapenem resistance while 22% showed aminoglycoside resistance. Similar resistance patterns among humans, animals, and environmental samples were also reported. Conclusion Our study provides baseline information on non-hospital-based MDR caused by ESBL-EC using a One Health approach. ESBL-EC isolates were prevalent among apparently healthy community members, animals, and their environment. It is important to conduct more One Health approach studies to generate evidence on the drivers, resistance patterns, and transmission of ESBL-producing organisms at the human-animal-environmental interface.
Collapse
Affiliation(s)
- James Muleme
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
- Department of Biosecurity Ecosystems and Veterinary Public Health, Makerere University College of Veterinary Medicine Animal Resources and Biosecurity, Kampala, Uganda
- Correspondence: James Muleme, Email
| | - Clovice Kankya
- Department of Biosecurity Ecosystems and Veterinary Public Health, Makerere University College of Veterinary Medicine Animal Resources and Biosecurity, Kampala, Uganda
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - David Musoke
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - John C Ssempebwa
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - John Bosco Isunju
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Rogers Wambi
- Department of Biosecurity Ecosystems and Veterinary Public Health, Makerere University College of Veterinary Medicine Animal Resources and Biosecurity, Kampala, Uganda
- Department of Clinical Laboratory, Mulago National Referral Hospital, Kampala, Uganda
| | - Bonny Enock Balugaba
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Tahalu Sekulima
- Department of Biotechnical and Diagnostic Sciences, Veterinary Microbiology Research Laboratory, College of Veterinary Medicine, Animal Resources and Biosecurity, Kampala, Uganda
| | - Richard K Mugambe
- Department of Disease Control and Environmental Health, Makerere University School of Public Health, Kampala, Uganda
| | - Simeon Cadmus
- Department of Veterinary Public Health and Preventive Medicine, Center for Control and Prevention of Zoonoses, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Henry M Kajumbula
- Department of Medical Microbiology, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
17
|
Abalkhail A, AlYami AS, Alrashedi SF, Almushayqih KM, Alslamah T, Alsalamah YA, Elbehiry A. The Prevalence of Multidrug-Resistant Escherichia coli Producing ESBL among Male and Female Patients with Urinary Tract Infections in Riyadh Region, Saudi Arabia. Healthcare (Basel) 2022; 10:1778. [PMID: 36141390 PMCID: PMC9498880 DOI: 10.3390/healthcare10091778] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
The Escherichia coli that produces extended-spectrum lactamases (ESBL-E. coli) can develop resistance to many antibiotics. The control of ESBL-E. coli disorders is challenging due to their restricted therapeutic approaches, so this study aims to determine the prevalence and pattern of the antibiotic resistance of ESBL-E. coli among male and female patients with urinary tract infections in Riyadh, Saudi Arabia. During the period of 2019 to 2020 at King Fahd Medical City, Riyadh, 2250 urine samples from patients with urinary tract infections (UTIs) were collected, and microbial species were cultured and identified using standard biochemical techniques. A double-disc synergy test was used to identify ESBL-producing strains of E. coli, and an in vitro method and the clinical laboratory standard institute (CLSI) criteria were employed to determine the resistance of these strains to antimicrobial drugs. ESBL-E. coli was detected in 510 (33.49%) of the 1523 E. coli isolates, 67.27% of which were recovered from women and 33.7% of which were recovered from men. A total of 284 (55.69%) ESBL-E. coli isolates were found in patients under 50 years of age, and 226 (44.31%) were found in patients over 50 years of age. Nearly all the isolates of ESBL-E. coli were resistant to cephalosporins (ceftriaxone, cefotaxime, cefepime, cefuroxime, and cephalothin) and penicillin (ampicillin), whereas the majority of the isolates were sensitive to several carbapenems (imipenem, meropenem, and ertapenem), aminoglycosides (amikacin), and nitrofurantoins. The development of antibiotic resistance by ESBL-E. coli, the most frequent pathogen linked to urinary tract infections, plays a crucial role in determining which antibiotic therapy is appropriate.
Collapse
Affiliation(s)
- Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Ahmad S. AlYami
- King Fahad Medical City, P.O. Box 59046, Riyadh 11525, Saudi Arabia
| | | | | | - Thamer Alslamah
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| | - Yasir Ahmed Alsalamah
- General Surgery Department, Unaizah College of Medicine, Qassim University, Unayzah 56453, Saudi Arabia
| | - Ayman Elbehiry
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52741, Saudi Arabia
| |
Collapse
|
18
|
Dzib-Baak HE, Uc-Cachón AH, Dzul-Beh ADJ, Rosado-Manzano RF, Gracida-Osorno C, Molina-Salinas GM. Efficacy of Fosfomycin against Planktonic and Biofilm-Associated MDR Uropathogenic Escherichia coli Clinical Isolates. Trop Med Infect Dis 2022; 7:235. [PMID: 36136646 PMCID: PMC9505523 DOI: 10.3390/tropicalmed7090235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Urinary tract infections (UTI) are a severe public health problem and are caused mainly by the uropathogenic Escherichia coli (UPEC). Antimicrobial resistance and limited development of new antimicrobials have led to the reuse of old antibiotics such as fosfomycin. The aim of this study was to evaluate the in vitro efficacy of fosfomycin on a collection of multidrug-resistant (MDR) UPEC and the degradative activity on biofilm producers. A total of 100 MDR UPEC clinical isolates were collected from patients at Mexican second- and third-level hospitals. Microorganism identification was performed using an automated system, the evaluation of the susceptibility of clinical isolates to fosfomycin was performed using the resazurin microtiter assay, and the identification of biofilm producers and the effect of fosfomycin in biofilms were evaluated using the crystal violet method. Among planktonic MDR UPEC, 93% were susceptible to fosfomycin. Eighty-three MDR UPEC were categorized as weak (39.8%), moderate (45.2%), and strong (14.5%) biofilm producers. Fosfomycin exhibited degradative activity ranging from 164.4 µg/mL to 1045 µg/mL. Weak producers required statistically lower concentrations of fosfomycin to destroy the biofilm, contrary to moderate and strong producers. In conclusion, fosfomycin could be an option for the treatment of infections caused by MDR UPEC, for which the antimicrobial treatment is more often becoming limited.
Collapse
Affiliation(s)
- Haziel Eleazar Dzib-Baak
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico
| | | | - Angel de Jesús Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico
| | | | - Carlos Gracida-Osorno
- Hospital General Regional No. 1, Instituto Mexicano del Seguro Social, Mérida 97150, Mexico
| | | |
Collapse
|
19
|
Siriphap A, Kitti T, Khuekankaew A, Boonlao C, Thephinlap C, Thepmalee C, Suwannasom N, Khoothiam K. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates: A 5-year retrospective study at a Tertiary Hospital in Northern Thailand. Front Cell Infect Microbiol 2022; 12:955774. [PMID: 36004324 PMCID: PMC9393477 DOI: 10.3389/fcimb.2022.955774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background The global emergence and spread of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales, especially Escherichia coli and Klebsiella pneumoniae, have been recognized as a public health concern as severe infections caused by these microorganisms increase morbidity and mortality. This study aimed to assess the prevalence of ESBL-positive E. coli and K. pneumoniae strains isolated from hospitalized patients in Chiangrai Prachanukroh hospital, Chiangrai province, Thailand. Methods This retrospective analysis was conducted from January 2016 to December 2020. A total of 384,001 clinical specimens were collected aseptically and further cultivated on an appropriate medium. All clinical isolates (one isolate per patient) were identified based on standard laboratory methods. Antibiotic susceptibility testing was performed by the Kirby Bauer disc diffusion technique following CLSI guidelines. ESBL production was screened with ceftazidime and cefotaxime discs based on the CLSI recommendations. Phenotypic confirmation of ESBL production was carried out using a double-disc synergy technique following the CLSI standard. Results Of a total of 384,001 clinical samples analyzed for bacterial species identification, 11,065 (2.9%) tested positive for E. coli and 5,617 (1.5%) for K. pneumoniae. Approximately 42.5% (4,706/11,065) of E. coli and 30.2% (1,697/5,617) of K. pneumoniae isolates were classified as ESBL producers. A higher proportion of ESBL producers was found in patients older than 60 years and male groups. The highest infection rates of ESBL-positive pathogens were observed among patients in a medical unit. ESBL-producing E. coli and K. pneumoniae isolates were predominantly found in urine and sputum, respectively. ESBL producers exhibited a high resistance rate to ampicillin (99.8–100%), cefazolin (100%), cefotaxime (100%), fluoroquinolones, and trimethoprim/sulfamethoxazole. Conclusions This study demonstrated the high prevalence and emerging antibiotic resistance of ESBL-positive E. coli and K. pneumoniae isolates from patients admitted to a provincial hospital in northern Thailand. Most ESBL-producing strains were highly resistant to several antimicrobial agents apart from carbapenems and aminoglycosides. These findings indicated that carbapenems and aminoglycosides should be advised as the first-line drugs of choice for serious infections with ESBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Thawatchai Kitti
- Faculty of Oriental Medicine, Chiang Rai College, Chiang Rai, Thailand
| | | | - Chalermchai Boonlao
- Department of Clinical Microbiology, Chiangrai Prachanukroh Hospital, Chiang Rai, Thailand
| | - Chonthida Thephinlap
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Chutamas Thepmalee
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Nittiya Suwannasom
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Krissana Khoothiam
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
- *Correspondence: Krissana Khoothiam,
| |
Collapse
|
20
|
Mohammed EJ, Hasan KC, Allami M. Phylogenetic groups, serogroups and virulence factors of uropathogenic Escherichia coli isolated from patients with urinary tract infection in Baghdad, Iraq. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:445-457. [PMID: 36721510 PMCID: PMC9867636 DOI: 10.18502/ijm.v14i4.10230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Uropathogenic Escherichia coli (UPEC) is divided into different phylogenetic groups that differ in their antibiotic resistance patterns, serogroups and pathogenicity. This study aimed to investigate the prevalence of phylogenetic groups of UPEC isolates and their relationship with serogroups and virulence factors in patients with UTIs. Materials and Methods Of the 412 urine samples tested a total of 150 UPEC were isolated and confirmed with PCR using 16S rRNA gene. Antibiotic resistance of the isolates was tested using disk diffusion method and the isolates were divided into phylogenetic groups by the quadruplex PCR method. The prevalence of serogroups and virulence genes were investigated using multiplex PCR. Results 87 (58%) of the isolates belonged to phylogroup B2. Virulence genes fimH (95.3%), aer (49.3%) and serogroups O8 (22.3%), O25 (21.5%) showed the highest prevalence. The lowest drug resistance was observed against imipenem (4.6%) and meropenem (3.3%). The prevalence of multidrug-resistant and extended-spectrum beta-lactamases isolates were 60% and 61.3%, respectively. We also found a significant relationship between phylogenetic groups, serogroups and virulence factors among our isolates. Conclusion The high abundance of phylogenetic group B2, serogroups O8 and O25, and virulence genes fimH and aer indicate their importance in the pathogenesis of UPEC in this country.
Collapse
Affiliation(s)
- Eman Jassim Mohammed
- Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Kadhim Ch. Hasan
- Department of Surgery, Babil Medical College, University of Babylon, Babil, Iraq
| | - Mohammed Allami
- Department of Dentistry, Al-Manara College for Medical Sciences, Maysan, Iraq,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,Corresponding author: Mohammed Allami, MSc, Department of Dentistry, Al-Manara College for Medical Sciences, Maysan, Iraq; Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. Tel: +964-7712640070
| |
Collapse
|
21
|
Nejjari C, El Achhab Y, Benaouda A, Abdelfattah C. Antimicrobial resistance among GLASS pathogens in Morocco: an epidemiological scoping review. BMC Infect Dis 2022; 22:438. [PMID: 35525923 PMCID: PMC9077917 DOI: 10.1186/s12879-022-07412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Monitoring of antimicrobial resistance (AMR) is of great importance due to the frequency of strains becoming increasingly resistant to antibiotics. This review, using a public health focused approach, which aims to understand and describe the current status of AMR in Morocco in relation to WHO priority pathogens and treatment guidelines. METHODS PubMed, ScienceDirect and Google Scholar Databases and grey literature are searched published articles on antimicrobial drug resistance data for GLASS priority pathogens isolated from Morocco between January 2011 and December 2021. Articles are screened using strict inclusion/exclusion criteria. AMR data is extracted with medians and IQR of resistance rates. RESULTS Forty-nine articles are included in the final analysis. The most reported bacterium is Escherichia coli with median resistance rates of 90.9%, 64.0%, and 56.0%, for amoxicillin, amoxicillin-clavulanic acid, and co-trimoxazole, respectively. Colistin had the lowest median resistance with 0.1%. A median resistance of 63.0% is calculated for amoxicillin-clavulanic acid in Klebsiella pneumonia. Imipenem resistance with a median of 74.5% is reported for Acinetobacter baumannii. AMR data for Streptococcus pneumonie does not exceed 50.0% as a median. CONCLUSIONS Whilst resistance rates are high for most of GLASS pathogens, there are deficient data to draw vigorous conclusions about the current status AMR in Morocco. The recently join to the GLASS system surveillance will begin to address this data gap.
Collapse
Affiliation(s)
- Chakib Nejjari
- International School of Public Health, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Youness El Achhab
- Laboratory of Epidemiology, Clinical Research and Community Health, Faculty of Medicine and Pharmacy of Fez, University Sidi Mohamed Ben Abdellah, Km 2.2 Rte Sidi Harazem, B.P 1893, Fez, Morocco.
- CRMEF Fez-Meknes, Rue Kuwait, B.P 49, Fez, Morocco.
| | - Amina Benaouda
- Department of Microbiology, Cheikh Zayed International University Hospital, Rabat, Morocco
| | - Chakib Abdelfattah
- Department of Infectious Diseases, Faculty of Medicine, University Hassan II, Casablanca, Morocco
| |
Collapse
|