1
|
Zhang H, Tian Y, Ma S, Ji Y, Wang Z, Xiao P, Xu Y. Chaperone-Mediated Autophagy in Brain Injury: A Double-Edged Sword with Therapeutic Potentials. Mol Neurobiol 2024; 61:10671-10683. [PMID: 38775879 DOI: 10.1007/s12035-024-04230-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/10/2024] [Indexed: 11/24/2024]
Abstract
Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.
Collapse
Affiliation(s)
- Huiyi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuai Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yichen Ji
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihang Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Yang L, Liu X, Zhen L, Liu Y, Wu L, Xu W, Peng L, Xie C. ANXA4 restricts HBV replication by inhibiting autophagic degradation of MCM2 in chronic hepatitis B. BMC Med 2024; 22:521. [PMID: 39511535 PMCID: PMC11546334 DOI: 10.1186/s12916-024-03724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is an enveloped DNA virus that causes chronic hepatitis B (CHB) infection. Annexin, a Ca2+-activated protein, is widely expressed in various organs and tissues and has potential utility in disease diagnosis and treatment. However, the relationship between the annexin family and CHB remains unclear. METHODS Clinical samples from hepatitis patients and donors or healthy individuals were collected. Transcriptome sequencing in CHB liver tissues and HBV-infected cells were performed. HepG2.2.15 cells with the full-length HBV genome and HBV-infected HepG2-NTCP cell models were established. HBV-infected mouse model was constructed and adeno-associated virus was utilized. RESULTS ANXA4 expression was elevated during CHB infection. ANXA4 knockdown promoted HBV replication and aggravated liver injury, while ANXA4 overexpression alleviated that. Mechanistically, autophagy pathway was activated by ANXA4 deficiency, promoting autophagic degradation of minichromosome maintenance complex component 2 (MCM2). MCM2 inhibition activated HBV replication, while MCM2 overexpression attenuated ANXA4 deficiency-induced HBV replication and liver injury. Clinically, the expression of hepatitis B viral protein was negatively correlated with the ANXA4 levels, and CHB patients with high ANXA4 levels (> 8 ng/ml) showed higher sensitivity to interferon therapy. CONCLUSIONS ANXA4 functions as a protective factor during HBV infection. ANXA4 expression is elevated under HBV attack to restrict HBV replication by inhibiting autophagic degradation of MCM2, thereby alleviating liver injury and suppressing the CHB infection process. ANXA4 also enhances the sensitivity of CHB patients to interferon therapy. Therefore, ANXA4 is expected to be a new target for CHB treatment and prognostic evaluation.
Collapse
Affiliation(s)
- Luo Yang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Breast Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of General Surgery, Jinan, Shandong, China
| | - Xianzhi Liu
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Limin Zhen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lina Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chan Xie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Li W, Zhang M, Wang Y, Zhao S, Xu P, Cui Z, Chen J, Xia P, Zhang Y. PRRSV GP5 inhibits the antivirus effects of chaperone-mediated autophagy by targeting LAMP2A. mBio 2024; 15:e0053224. [PMID: 38940560 PMCID: PMC11323736 DOI: 10.1128/mbio.00532-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Autophagy is an important biological process in host defense against viral infection. However, many viruses have evolved various strategies to disrupt the host antiviral system. Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus with a large economic impact on the swine industry. At present, studies on the escape mechanism of PRRSV in the autophagy process, especially through chaperone-mediated autophagy (CMA), are limited. This study confirmed that PRRSV glycoprotein 5 (GP5) could disrupt the formation of the GFAP-LAMP2A complex by inhibiting the MTORC2/PHLPP1/GFAP pathway, promoting the dissociation of the pGFAP-EF1α complex, and blocking the K63-linked polyubiquitination of LAMP2A to inhibit the activity of CMA. Further research demonstrated that CMA plays an anti-PRRSV role by antagonizing nonstructural protein 11 (NSP11)-mediated inhibition of type I interferon (IFN-I) signaling. Taken together, these results indicate that PRRSV GP5 inhibits the antiviral effect of CMA by targeting LAMP2A. This research provides new insight into the escape mechanism of immunosuppressive viruses in CMA. IMPORTANCE Viruses have evolved sophisticated mechanisms to manipulate autophagy to evade degradation and immune responses. Porcine reproductive and respiratory syndrome virus (PRRSV) is a typical immunosuppressive virus that causes enormous economic losses in the swine industry. However, the mechanism by which PRRSV manipulates autophagy to defend against host antiviral effects remains unclear. In this study, we found that PRRSV GP5 interacts with LAMP2A and disrupts the formation of the GFAP-LAMP2A complex, thus inhibiting the activity of CMA and subsequently enhancing the inhibitory effect of the NSP11-mediated IFN-I signaling pathway, ultimately facilitating PRRSV replication. Our study revealed a novel mechanism by which PRRSV escapes host antiviral effects through CMA, providing a potential host target, LAMP2A, for developing antiviral drugs and contributing to understanding the escape mechanism of immunosuppressive viruses.
Collapse
Affiliation(s)
- Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Mengting Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yueshuai Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Valdor R, Martinez-Vicente M. The Role of Chaperone-Mediated Autophagy in Tissue Homeostasis and Disease Pathogenesis. Biomedicines 2024; 12:257. [PMID: 38397859 PMCID: PMC10887052 DOI: 10.3390/biomedicines12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Chaperone-mediated autophagy (CMA) is a selective proteolytic pathway in the lysosomes. Proteins are recognized one by one through the detection of a KFERQ motif or, at least, a KFERQ-like motif, by a heat shock cognate protein 70 (Hsc70), a molecular chaperone. CMA substrates are recognized and delivered to a lysosomal CMA receptor, lysosome-associated membrane protein 2A (LAMP-2A), the only limiting component of this pathway, and transported to the lysosomal lumen with the help of another resident chaperone HSp90. Since approximately 75% of proteins are reported to have canonical, phosphorylation-generated, or acetylation-generated KFERQ motifs, CMA maintains intracellular protein homeostasis and regulates specific functions in the cells in different tissues. CMA also regulates physiologic functions in different organs, and is then implicated in disease pathogenesis related to aging, cancer, and the central nervous and immune systems. In this minireview, we have summarized the most important findings on the role of CMA in tissue homeostasis and disease pathogenesis, updating the recent advances for this Special Issue.
Collapse
Affiliation(s)
- Rut Valdor
- Immunology-Cell Therapy and Hematopoietic Transplant Group, Department of Biochemistry and Molecular Biology B, University of Murcia (UMU), 30100 Murcia, Spain
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Pascual Parrilla (IMIB), 30120 Murcia, Spain
| | - Marta Martinez-Vicente
- Autophagy and Lysosomal Dysfunction Lab, Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute—CIBERNED, 08035 Barcelona, Spain
| |
Collapse
|
5
|
Bopape M, Tiloke C, Ntsapi C. Moringa oleifera and Autophagy: Evidence from In Vitro Studies on Chaperone-Mediated Autophagy in HepG 2 Cancer Cells. Nutr Cancer 2023; 75:1822-1847. [PMID: 37850743 DOI: 10.1080/01635581.2023.2270215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer in Sub-Saharan African countries, including South Africa (SA). Given the limitations in current HCC therapeutics, there is an increasing need for alternative adjuvant therapeutic options. As such, several cell survival mechanisms, such as autophagy, have been identified as potential adjuvant therapeutic targets in HCC treatment. Of the three most established autophagic pathways, the upregulation of chaperone-mediated autophagy (CMA) has been extensively described in various cancer cells, including HCC cells. CMA promotes tumor growth and chemotherapeutic drug resistance, thus contributing to HCC tumorigenesis. Therefore, the modulation of CMA serves as a promising adjuvant target for current HCC therapeutic strategies. Phytochemical extracts found in the medicinal plant, Moringa oleifera (MO), have been shown to induce apoptosis in numerous cancer cells, including HCC. MO leaves have the greatest abundance of phytochemicals displaying anticancer potential. However, the potential interaction between the pro-apoptotic effects of MO aqueous leaf extract and the survival-promoting role of CMA in an in vitro model of HCC remains unclear. This review aims to summarize the latest findings on the role of CMA, and MO in the progression of HCC.
Collapse
Affiliation(s)
- Matlola Bopape
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Charlette Tiloke
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| | - Claudia Ntsapi
- Department of Basic Medical Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
6
|
Du L, Wu Y, Jia Q, Li J, Li Y, Ma H, Fan Z, Guo X, Li L, Peng Y, Li J, Fang Z, Zhang X. Autophagy Suppresses Ferroptosis by Degrading TFR1 to Alleviate Cognitive Dysfunction in Mice with SAE. Cell Mol Neurobiol 2023; 43:3605-3622. [PMID: 37341832 PMCID: PMC11410008 DOI: 10.1007/s10571-023-01370-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/30/2023] [Indexed: 06/22/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis that is characterized by long-term cognitive impairment, which imposes a heavy burden on families and society. However, its pathological mechanism has not been elucidated. Ferroptosis is a novel form of programmed cell death that is involved in multiple neurodegenerative diseases. In the current study, we found that ferroptosis also participated in the pathological process of cognitive dysfunction in SAE, while Liproxstatin-1 (Lip-1) effectively inhibited ferroptosis and alleviated cognitive impairment. Additionally, since an increasing number of studies have suggested the crosstalk between autophagy and ferroptosis, we further proved the essential role of autophagy in this process and demonstrated the key molecular mechanism of the autophagy-ferroptosis interaction. Currently, we showed that autophagy in the hippocampus was downregulated within 3 days of lipopolysaccharide injection into the lateral ventricle. Moreover, enhancing autophagy ameliorated cognitive dysfunction. Importantly, we found that autophagy suppressed ferroptosis by downregulating transferrin receptor 1 (TFR1) in the hippocampus, thereby alleviating cognitive impairment in mice with SAE. In conclusion, our findings indicated that hippocampal neuronal ferroptosis is associated with cognitive impairment. In addition, enhancing autophagy can inhibit ferroptosis via degradation of TFR1 to ameliorate cognitive impairment in SAE, which shed new light on the prevention and therapy for SAE.
Collapse
Affiliation(s)
- Lixia Du
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - You Wu
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qi Jia
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yi Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hongwei Ma
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhongmin Fan
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaofeng Guo
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Ling Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yuliang Peng
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
- Translational Research Institute of Brain and Brain-Like Intelligence, School of Medicine, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Xijing Zhang
- Department of Anesthesiology and Perioperative Medicine and Department of Intensive Care Unit, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
7
|
Yao R, Shen J. Chaperone-mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm (Beijing) 2023; 4:e347. [PMID: 37655052 PMCID: PMC10466100 DOI: 10.1002/mco2.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 09/02/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway that eliminates substrate proteins through heat-shock cognate protein 70 recognition and lysosome-associated membrane protein type 2A-assisted translocation. It is distinct from macroautophagy and microautophagy. In recent years, the regulatory mechanisms of CMA have been gradually enriched, including the newly discovered NRF2 and p38-TFEB signaling, as positive and negative regulatory pathways of CMA, respectively. Normal CMA activity is involved in the regulation of metabolism, aging, immunity, cell cycle, and other physiological processes, while CMA dysfunction may be involved in the occurrence of neurodegenerative disorders, tumors, intestinal disorders, atherosclerosis, and so on, which provides potential targets for the treatment and prediction of related diseases. This article describes the general process of CMA and its role in physiological activities and summarizes the connection between CMA and macroautophagy. In addition, human diseases that concern the dysfunction or protective role of CMA are discussed. Our review deepens the understanding of the mechanisms and physiological functions of CMA and provides a summary of past CMA research and a vision of future directions.
Collapse
Affiliation(s)
- Ruchen Yao
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research CenterShanghaiChina
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive DiseaseShanghaiChina
| | - Jun Shen
- Division of Gastroenterology and HepatologyKey Laboratory of Gastroenterology and HepatologyMinistry of Health, Inflammatory Bowel Disease Research CenterShanghaiChina
- Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Institute of Digestive DiseaseShanghaiChina
| |
Collapse
|
8
|
Chaperone-mediated autophagy: mechanisms and physiological relevance. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci 2022; 23:ijms23073757. [PMID: 35409117 PMCID: PMC8999072 DOI: 10.3390/ijms23073757] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound’s chemopreventive properties.
Collapse
|